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Abstract. Given a biorthogonal pair of multi-resolution analyses on the inter-
val, by integration or differentiation, we build a new biorthogonal pair of multi-
resolution analyses. Using both pairs, isotropic or, as we focus on, anisotropic
divergence-free wavelet bases on the hypercube are constructed. Our con-
struction generalizes the one from [Rev. Mat. Iberoamericana, 8 (1992), pp.
221–237] by P.G. Lemarié-Rieusset for stationary multi-resolution analyses on
R. It turns out that it requires a specific choice of boundary conditions.

1. Introduction

Divergence-free wavelet bases have been advocated for solving Stokes and in-
compressible Navier-Stokes equations. Although divergence-free wavelet bases on
bounded domains have been mentioned in several papers, and some papers are de-
voted to their construction, it is questionable whether the collections of divergence
free wavelets constructed so far are appropriately called bases. Indeed, as we will
see, the codimension of their spans in the appropriate Sobolev space is infinite. In
this paper, we will construct divergence-free wavelets on the n-dimensional unit
cube, necessarily subject to rather specific boundary conditions, that form a Riesz
basis for the full corresponding Sobolev space of divergence free functions.

To understand the difficulties with the construction of divergence-free wavelet
bases on bounded domains, we start with recalling the construction of divergence-
free wavelets on R

n by Lemarié-Rieusset in [LR92] . For convenience, when doing
so we restrict ourselves to the two-dimensional case n = 2.

Let φ, φ̃ be compactly supported biorthogonal scaling functions on R with φ̃ ∈
H1+ε(R), and let ψ, ψ̃ be the corresponding biorthogonal “mother” wavelets. Then,
as shown in [LR92], there exists another pair of compactly supported biorthogonal

scaling functions φ+, φ̃−, and corresponding biorthogonal “mother” wavelets ψ+,
ψ̃− such that

φ̇+(x) = φ(x) − φ(x− 1), ψ̇+ = ψ,

φ̃−(x+ 1) − φ̃−(x) = ˙̃φ(x), ψ̃− = − ˙̃ψ.

(Our formulas are somewhat different than in [LR92], but the differences are harm-
less. Among other things, we found it convenient to reverse the role of the primal
and dual side.) Throughout the paper, a “dot” on top of a univariate function
denotes its derivative.
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Furthermore, with for θ ∈ {φ, ψ, φ̃, ψ̃, φ+, ψ+, φ̃−, ψ̃−} and ℓ, i ∈ Z, θℓ,i(x) :=

2ℓ/2θ(2ℓx− i), in the same paper it was shown that
{[

ψ+
ℓ,i ⊗ (φℓ,j+1 − φℓ,j)

ψℓ,i ⊗ φ+
ℓ,j

]

,

[

φ+
ℓ,i ⊗ ψℓ,j

(φℓ,i+1 − φℓ,i) ⊗ ψ+
ℓ,j

]

,

[−ψ+
ℓ,i ⊗ ψℓ,j

ψℓ,i ⊗ ψ+
ℓ,j

]

: ℓ, i, j ∈ Z

}

is a Riesz basis for H(div0; R2) = {u ∈ H(div; R2) : div u = 0}, and that, after a
proper scaling, it is also a Riesz basis for {u ∈ H1(R2)2 : div u = 0}.

Above vector-valued wavelets are isotropic; the components are tensor products
of wavelets on the same level. Using the biorthogonal wavelet pairs ψ, ψ̃ and ψ+,
ψ̃− from the Lemarié-Rieusset construction, in [DP06] by Deriaz and Perrier, a
basis was constructed of divergence-free anisotropic wavelets.

We consider the latter construction in somewhat more detail: Since L2(R
2) =

L2(R) ⊗ L2(R), the set

{[

ψ+
ℓ,i ⊗ ψm,j

0

]

,

[

0
ψℓ,i ⊗ ψ+

m,j

]

: ℓ,m, i, j ∈ Z

}

is a Riesz

basis for L2(R
2)2, with dual basis

{[

ψ̃−
ℓ,i ⊗ ψ̃m,j

0

]

,

[

0

ψ̃ℓ,i ⊗ ψ̃−
m,j

]

: ℓ,m, i, j ∈ Z

}

.

Applying the orthogonal transformation 1√
4ℓ+4m

[

2m −2ℓ

2ℓ 2m

]

to the pair of basis

functions

[

ψ+
ℓ,i ⊗ ψm,j

0

]

,

[

0
ψℓ,i ⊗ ψ+

m,j

]

, we infer that also

(1.1)

{

1√
4ℓ+4m

[

2mψ+
ℓ,i ⊗ ψm,j

−2ℓψℓ,i ⊗ ψ+
m,j

]

, 1√
4ℓ+4m

[

2ℓψ+
ℓ,i ⊗ ψm,j

2mψℓ,i ⊗ ψ+
m,j

]

: ℓ,m, i, j ∈ Z

}

is a Riesz basis for L2(R
2)2, with dual basis

{

1√
4ℓ+4m

[

2mψ̃−
ℓ,i ⊗ ψ̃m,j

−2ℓψ̃ℓ,i ⊗ ψ̃−
m,j

]

, 1√
4ℓ+4m

[

2ℓψ̃−
ℓ,i ⊗ ψ̃m,j

2mψ̃ℓ,i ⊗ ψ̃−
m,j

]

: ℓ,m, i, j ∈ Z

}

.

From ψ̇+
ℓ,i = 2ℓψℓ,i, we have div

[

2mψ+
ℓ,i ⊗ ψm,j

−2ℓψℓ,i ⊗ ψ+
m,j

]

= 0. Moreover, considering

the coefficients of u ∈ H(div; R2) with respect to the basis (1.1), i.e., the inner

products of u with the dual basis functions, from
˙̃
ψℓ,i = −2ℓψ̃−

ℓ,i and integration by
parts, we find that

〈

u,

[

2ℓψ̃−
ℓ,i ⊗ ψ̃m,j

2mψ̃ℓ,i ⊗ ψ̃−
m,j

]

〉

L2(R2)2
= −〈u,grad ψ̃ℓ,i⊗ ψ̃m,j〉L2(R2)2 = 〈div u, ψ̃ℓ,i⊗ ψ̃m,j〉L2(R2),

which vanishes when div u = 0. We conclude that
{

1√
4ℓ+4m

[

2mψ+
ℓ,i ⊗ ψm,j

−2ℓψℓ,i ⊗ ψ+
m,j

]

: ℓ,m, i, j ∈ Z

}

is a Riesz basis for H(div0; R2), and properly scaled, also for {u ∈ H1(R2)2 :
div u = 0}.

The construction of both the isotropic and anisotropic divergence-free wavelet
bases generalizes to arbitrary space dimensions n ≥ 2. The generalization of the
anisotropic divergence-free wavelets to n > 2 proposed in [DP06, DP09] does not
yield stable bases. We develop a construction that yield Riesz bases of anisotropic
divergence-free wavelets in any dimension. As we will demonstrate, the advantage
of the anisotropic bases is that sufficiently smooth divergence-free functions can be
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approximated from the span of these bases with a convergence rate that is better
than with isotropic wavelets, and in particular, that is independent of n. For this
reason, the focus will be on the anisotropic construction.

In view of the construction on R
n, the key to the construction of anisotropic or

isotropic divergence-free wavelet bases on

� := (0, 1)n,

is to have available on

I := (0, 1),

biorthogonal Riesz bases Ψ, Ψ̃ and Ψ+, Ψ̃− for L2(I), that for some invertible
diagonal matrix D, satisfy

Ψ̇+ = DΨ, ˙̃Ψ = −DΨ̃−.

Here we view bases formally as column vectors. In the stationary wavelet construc-
tion on R, the diagonal matrix D is the one with diagonal entry 2ℓ corresponding to
wavelet ψℓ,i. With such bases at hand, the construction of divergence-free wavelet
bases on � follows the same lines as on R

n.
The difficulty lies in the construction of Ψ, Ψ̃, Ψ+ and Ψ̃− on I. Using the nota-

tion 〈Σ,Υ〉 := [〈σ, υ〉]σ∈Σ,υ∈Υ, integration by parts shows that above assumptions
imply that necessarily

Ψ+(1)Ψ̃(1)⊤ − Ψ+(0)Ψ̃(0)⊤ = 〈Ψ̇+, Ψ̃〉L2(I) + 〈Ψ+, ˙̃Ψ〉L2(I)

= 〈DΨ, Ψ̃〉L2(I) − 〈Ψ+,DΨ̃−〉L2(I) = D · Id − Id ·D = 0,

i.e.,

(1.2) ψ+(1)ψ̃(1) − ψ+(0)ψ̃(0) = 0 (ψ+ ∈ Ψ+, ψ̃ ∈ Ψ̃).

To obtain such vanishing boundary terms, in [JLR93] (in our notations) the

collection Ψ+ was taken from H1
0 (I). As a consequence, any element of Ψ = D−1Ψ̇+

has vanishing mean, so that Ψ cannot be a basis for L2(I) (the reason being that
the mean value is a non-zero, continuous functional on L2(I); it is not continuous
on L2(R), and therefore the latter space can be equipped with a Riesz basis of
functions all having a vanishing mean).

The collections Ψ, Ψ̃ can be arranged, however, to be bases for L2,0(I), being the
space of L2(I) functions with vanishing mean. In this way, divergence-free wave-
let collections can be constructed. They will, however, not span a full space of
divergence-free functions with vanishing normals on a part Γ of ∂Ω (i.e., a space
H0,Γ(div0; �) defined in (5.5)), but, for say n = 3, they span such a space inter-
sected with L2(I)⊗L2,0(I)⊗L2,0(I)×L2,0(I)⊗L2(I)⊗L2,0(I)×L2,0(I)⊗L2,0(I)⊗L2(I).
The codimension in H0,Γ(div0; �) of this intersection is infinite.

To get vanishing boundary terms in (1.2), alternatively in [Urb01] (in our nota-

tions) a framework was presented where Ψ̃ was taken from H1
0 (I). In this case, Ψ̃−

cannot be a basis for L2(I), and so neither can Ψ+. The same arguments as applied
above show that at best one ends up with a collection of divergence free wavelets
whose span has infinite codimension in a “full” space H0,Γ(div0; �).

To have vanishing boundary terms in (1.2), a third possibility would be to impose

periodic boundary conditions for both Ψ+ and Ψ̃. In this case, any element from
even both Ψ and Ψ̃− has vanishing mean, giving rise to the same problems as above.
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In view of the sketched difficulties to realize a vanishing expression (1.2), in
this paper, we will give a general recipe for constructing biorthogonal Riesz bases
Ψ, Ψ̃ and Ψ+, Ψ̃− for L2(I), that, for some invertible diagonal matrix D, satisfy

Ψ̇+ = DΨ and ˙̃Ψ = −DΨ̃−, and for which the elements of Ψ̃ vanish at 1, and those

of Ψ+ vanish at 0. The key why with these boundary conditions such bases can
be constructed, is that the mapping g 7→ ġ is boundedly invertible from H1

0,{0}(I),

being the space of H1(I) functions that vanish at 0, to L2(I), with inverse given by
f 7→ (x 7→

∫ x

0 f(y)dy). Obviously, by symmmetry here and on all other places the
roles of the left and right boundary can be interchanged.

Our recipe will not be of the type of adapting shift and scale invariant collections
on the line to the interval by keeping those that are fully supported in I, and
by taking suitable linear combinations of those with supports that intersect the
boundary points. Instead, given any biorthogonal multi-resolution analyses on I,
characterized by sequences of primal and dual scaling functions and wavelets (Φℓ)ℓ,

(Φ̃ℓ)ℓ, (Ψℓ)ℓ and (Ψ̃ℓ)ℓ, where the dual functions vanish at 1, by integration or
differentiation, we explicitly construct new biorthogonal multi-resolution analyses,
characterized by (Φ+

ℓ )ℓ, (Φ̃−
ℓ )ℓ, (Ψ+

ℓ )ℓ, (Ψ̃−
ℓ )ℓ, for which the primals vanish at 0. If,

in the original multi-resolution analyses, at the primal side no boundary conditions
are incorporated, and at the dual side no boundary conditions at 0, then whenever
the original multi-resolution analyses satisfy Jackson estimates of order d and d̃ at
primal and dual side, the new multi-resolution analyses satisfy these estimates with
the full orders d+ 1 and d̃− 1, respectively. We give an example (Example 4.4) of

our construction for d = 2, d̃ = 4.
With these biorthogonal Riesz bases Ψ, Ψ̃ and Ψ+, Ψ̃− for L2(I) at hand,

where Ψ := Φ0 ∪ ∪ℓ∈N0Ψℓ and similarly for the other collections, we construct
a divergence-free anisotropic wavelet basis for the “full” divergence-free spaces on
the n-cube, subject to vanishing normal components on Γ := ∪nm−1[0, 1]m−1 ×
{0} × [0, 1]n−m. That is, properly scaled, this wavelet collection will be a Riesz
basis for H0,Γ(div0; �) as well as for H0,Γ(div0; �) ∩ H1(�)n. In addition, with

Γ̃ := ∂�\Γ, we construct a Riesz basis of wavelet type for the orthogonal comple-
ment gradH1

0,Γ̃
(�) of H0,Γ(div0; �) in L2(�)n, and show how the corresponding

so-called Helmholtz decomposition of any u ∈ L2(�)n can be computed. We give
also expansions of curl and div operators in wavelet coordinates.

Our construction on � requires specific boundary conditions, and of course we
rather would have presented a construction that applies to general, given boundary
conditions, but we do not know whether this is possible. What we can say is that
to the best of our knowledge, so far there are no other divergence free wavelet bases

on bounded domains available.
Finally, divergence free wavelets have been used to represent the solution of the

Navier-Stokes equations or to solve them, or to compute the Helmholtz decomposi-
tion of (turbulent) velocity fields (e.g. see [Urb02, DP06]). For those applications,
it seems preferable to have possibly some mismatch in the boundary conditions,
than not to be able to represent vector fields whose coordinates frozen in some
directions do not have a vanishing mean over the remaining directions.

This paper is organized as follows: In Section 2, standard assumptions on the
original biorthogonal sets of scaling functions and wavelets are formulated. In
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Sections 3 and 4, by integration or differentiation, new biorthogonal sets are con-
structed of wavelets and scaling functions, respectively. Section 5 is devoted to the
construction of divergence-free wavelet bases. Finally, in Section 6, we discuss the
computation of the Helmholtz decomposition, and give expansions of div and curl

operators in wavelet coordinates.
In this paper, by C . D we will mean that C can be bounded by a multiple of

D, independently of parameters which C and D may depend on. Obviously, C & D
is defined as D . C, and C h D as C . D and C & D.

2. Biorthogonal scaling functions and wavelets on the interval

For ℓ ∈ N0, and index sets Iℓ = {1, . . . ,#Iℓ}, Jℓ = {1, . . . ,#Jℓ} with #Iℓ h 2ℓ

and #Iℓ + #Jℓ = #Iℓ+1, we assume collections, often viewed as column vectors, of
primal and dual scaling functions

Φℓ = [φℓ,i]i∈Iℓ
, Φ̃ℓ = [φ̃ℓ,i]i∈Iℓ

,

and wavelets

Ψℓ = [ψℓ,i]i∈Jℓ
, Ψ̃ℓ = [ψ̃ℓ,i]i∈Jℓ

,

such that, with S(Σ) denoting the span of a collection Σ,

S(Φ0) ⊂ S(Φ1) ⊂ · · · ⊂ L2(I), S(Φ̃0) ⊂ S(Φ̃1) ⊂ · · · ⊂ L2(I),

S(Φℓ) + S(Ψℓ) = S(Φℓ+1), S(Φ̃ℓ) + S(Ψ̃ℓ) = S(Φ̃ℓ+1),

and

(2.1)

〈[

Φℓ
Ψℓ

]

,

[

Φ̃ℓ
Ψ̃ℓ

]〉

L2(I)

= Id (biorthogonality).

Furthermore, we assume localness and boundedness of primal and dual scaling func-
tions and wavelets in the sense that

(2.2)







sup
ℓ∈N0, i∈Iℓ

2ℓdiam(suppφℓ,i) <∞,

sup
ℓ, k∈N0

#{i ∈ Iℓ : suppφℓ,i ∩ [k2−ℓ, (k + 1)2−ℓ] 6= ∅} <∞,

and

(2.3) sup
ℓ∈N0, i∈Iℓ

‖φℓ,i‖L2(I) <∞,

and similarly for ∪ℓΦ̃ℓ, ∪ℓΨℓ and ∪ℓΨ̃ℓ.
Without loss of generality, we assume that the sets of primal and dual scaling

functions are ordered in the sense that

(2.4) i ≤ j =⇒ inf suppφℓ,i ≤ inf suppφℓ,j ,

and similarly for the dual scaling functions.
Apart from above standard conditions, for our goal we have to impose specific

boundary conditions. We impose no boundary conditions at the primal side, and
no boundary conditions at 0 at the dual side, whereas we assume that all dual
scaling functions and dual wavelets vanish at 1. Together with standard Jackson
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and Bernstein assumptions, it means that, for some 0 < γ < d ∈ N, 1 < γ̃ < d̃ ∈ N,
we assume

inf
v∈S(Φℓ)

‖u− v‖L2(I) . 2−ℓd‖u‖Hd(I) (u ∈ Hd(I)),(2.5)

inf
v∈S(Φ̃ℓ)

‖u− v‖L2(I) . 2−ℓd̃‖u‖Hd̃(I) (u ∈ H d̃(I) ∩H1
0,{1}(I)),(2.6)

and, for any s ∈ [0, γ), that S(Φℓ) ⊂ Hs(I) with

‖ · ‖Hs(I) . 2ℓs‖ · ‖L2(I) on S(Φℓ),

and, for any s ∈ [0, γ̃), that S(Φ̃ℓ) ⊂ Hs(I) ∩H1
0,{1}(I) with

(2.7) ‖ · ‖Hs(I) . 2ℓs‖ · ‖L2(I) on S(Φ̃ℓ).

Here and in the following, for Ω being a domain in R
n, and Σ ⊂ ∂Ω with positive

measure, with H1
0,Σ(Ω) we mean the subspace of H1(Ω) consisting of the functions

whose trace vanishes on Σ.
In view of (2.6), in particular in view of the boundary conditions incorporated

at the dual side, a natural further assumption is that outside a 2−ℓ neighbourhood
of 1, the constants are contained in the span of the dual scaling functions on level
ℓ, i.e., that

(2.8) sup
ℓ∈N0

2ℓdist
(

1, inf supp
(

1 −
∑

i∈Iℓ

〈1, φℓ,i〉L2(I)φ̃ℓ,i
)

)

<∞.

Finally, for convenience we assume that for all ℓ ∈ N0 and j ∈ Iℓ, 〈1, φℓ,j〉L2(I) 6= 0
and

(2.9) sup
ℓ∈N0

sup
{i,j∈Iℓ:|i−j|≤1}

|〈1, φℓ,i〉L2(I)|
|〈1, φℓ,j〉L2(I)|

<∞.

In all examples that we know of, |〈1, φℓ,i〉L2(I)| h 2−ℓ/2 so that (2.9) is satisfied.
Collections of primal and dual scaling functions and wavelets that satisfy all

conditions mentioned in this section can be found in [DKU99, DS98, Pri06, Dij09].
An example taken from [Dij09] will be given at the end of Section 4.

As a consequence of the boundedness (2.3), the biorthogonality (2.1) and the
localness (2.2), the collections

Φℓ, Φ̃ℓ, Ψℓ, Ψ̃ℓ are Riesz systems, uniformly in ℓ,

meaning that the corresponding mass matrices and their inverses are bounded uni-
formly in ℓ. For completeness, let us recall the short argument, say for Φℓ. By the
boundedness and localness of the primal scaling functions, ‖∑

i∈Iℓ
ciφℓ,i‖2

L2(I)
.

∑

i∈Iℓ
|ci|2. Writing u =

∑

i∈Iℓ
ciφℓ,i, by the boundedness of the dual scaling func-

tions, |ci| = |〈u, φ̃ℓ,i〉L2(I)| . ‖u‖L2(supp φ̃ℓ,i)
. From the localness of the dual scaling

functions, we conclude that
∑

i∈Iℓ
|ci|2 . ‖u‖2

L2(I)
.

Now we set Ψ−1 = Φ0, Ψ̃−1 = Φ̃0, use λ as a shorthand notation for the double
index (ℓ, i), set |λ| := ℓ, and define

∇ :=
⋃

ℓ∈N0∪{−1}

(ℓ, Iℓ),

and finally,

Ψ = {ψλ : λ ∈ ∇}, Ψ̃ = {ψ̃λ : λ ∈ ∇}.
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It is well-known (e.g. [Dah96, DS99, Coh03]) that as a consequence of the bounded-
ness of the biorthogonal primal and dual wavelets and of the Jackson and Bernstein
estimates,

{2−|λ|sψλ : λ ∈ ∇} is a Riesz basis for Hs(I), s ∈ [0, γ),(2.10)

{2−|λ|sψ̃λ : λ ∈ ∇} is a Riesz basis for Hs
0,{1}(I), s ∈ [0, γ̃),(2.11)

where

(2.12) Hs
0,{1}(I) =

{

Hs(I) ∩H1
0,{1}(I) when s ≥ 1,

[L2(I), H
1
0,{1}(I)]s when s ∈ [0, 1].

By duality, these results extend to Sobolev spaces with negative smoothness indices.
By interpreting v ∈ L2(I) as a functional by means of v(u) = 〈u, v〉L2(I), we have

that for s ∈ (−γ̃, 0], {2−|λ|sψλ : λ ∈ ∇} is a Riesz basis for (Hs
0,{1}(I))

′, and for

s ∈ (−γ, 0], {2−|λ|sψ̃λ : λ ∈ ∇} is a Riesz basis for (Hs(I))′.

Remark 2.1. With an appropriate generalization of the Jackson and Bernstein as-
sumptions, these results for the Sobolev spaces measuring smoothness in L2(I) can
be generalized to Sobolev or Besov spaces measuring smoothness in Lp(I) for p 6= 2.
Such results are particularly relevant in the context of nonlinear approximation.

3. A new pair of biorthogonal multi-resolution analyses by
integration/differentiation

For λ ∈ ∇, on I we define

(3.1) ψ+
λ := x 7→ 2|λ|

∫ x

0

ψλ(y)dy, ψ̃−
λ := −2−|λ| ˙̃

ψλ.

and set Ψ+ := {ψ+
λ : λ ∈ ∇} and Ψ̃− := {ψ̃−

λ : λ ∈ ∇}, and for ℓ ∈ N0 ∪ {−1},
Ψ+
ℓ := {ψ+

λ : |λ| = ℓ}, Ψ̃−
ℓ := {ψ̃−

λ : |λ| = ℓ}.

Proposition 3.1. Ψ+ and Ψ̃− are local in the sense of (2.2).

Proof. The localness of Ψ̃− follows from the localness of Ψ̃. Assumption (2.8)

together with S(Ψℓ) ⊥L2(I) S(Φ̃ℓ−1), shows that all ψλ that vanish in some 2−|λ|

neighbourhood of 1 have zero mean. From the localness of Ψ, now the localness of
Ψ+ follows. �

Proposition 3.2. (Ψ+, Ψ̃−) are biorthogonal Riesz bases for L2(I).

Proof. Since the ψ̃λ’s vanish at 1 by assumption, and the ψ+
λ ’s vanish at 0 by

definition, integration by parts shows that for λ, µ ∈ ∇,

〈ψ+
λ , ψ̃

−
µ 〉L2(I) = 〈ψ+

λ ,−2−|µ| ˙̃
ψµ〉L2(I) = 2−|µ|〈ψ̇+

λ , ψ̃µ〉L2(I)

= 2|λ|−|µ|〈ψλ, ψ̃µ〉L2(I) = δλ,µ,

i.e., (Ψ+, Ψ̃−) are biorthogonal.
The mapping g 7→ ġ is boundedly invertible from H1

0,{1}(I) to L2(I) with inverse

f 7→ (x 7→ −
∫ 1

x
f(y)dy). So {2−|λ|ψ̃λ : λ ∈ ∇} being a Riesz basis for H1

0,{1}(I)

(cf. (2.11)) is equivalent to {2−|λ| ˙̃
ψλ : λ ∈ ∇} being a Riesz basis for L2(I). We

conclude that Ψ̃− is a Riesz basis for L2(I), and by biorthogonality, so is Ψ+. �
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Figure 1. Schematic relation between Ψ, Ψ̃, Ψ+ and Ψ̃−

Since standard arguments lead to the statements of the following two proposi-
tions, we have omitted the proofs.

Proposition 3.3. The following Jackson estimates are valid for Ψ+ and Ψ̃−:

inf
v∈span{ψ+

λ
:|λ|≤ℓ}

‖u− v‖L2(I) . 2−ℓ(d+1)‖u‖Hd+1(I) (u ∈ H1
0,{0}(I) ∩Hd+1(I)),

(3.2)

inf
v∈span{ψ̃−

λ
:|λ|≤ℓ}

‖u− v‖L2(I) . 2−ℓ(d̃−1)‖u‖Hd̃−1(I) (u ∈ H d̃−1(I)).

(3.3)

Proposition 3.4. The following Bernstein estimates are valid for Ψ+ and Ψ̃−:

For s ∈ [0, γ + 1), Ψ+
λ ⊂ H1

0,{0}(I) ∩Hs(I) with

(3.4) ‖ · ‖Hs(I) . 2ℓs‖ · ‖L2(I) on span{ψ+
λ : |λ| ≤ ℓ}.

For s ∈ [0, γ̃ − 1), Ψ̃−
λ ⊂ Hs(I) with

‖ · ‖Hs(I) . 2ℓs‖ · ‖L2(I) on span{ψ̃−
λ : |λ| ≤ ℓ}.

From Propositions 3.2, 3.3 and 3.4, we conclude that

{2−|λ|sψ+
λ : λ ∈ ∇} is a Riesz basis for Hs

0,{0}(I), s ∈ [0, γ + 1),(3.5)

{2−|λ|sψ̃−
λ : λ ∈ ∇} is a Riesz basis for Hs(I), s ∈ [0, γ̃ − 1),(3.6)

where

(3.7) Hs
0,{0}(I) :=

{

Hs(I) ∩H1
0,{0}(I) when s ≥ 1,

[L2(I), H
1
0,{0}(I)]s when s ∈ [0, 1].

By duality, these results extend to Sobolev spaces with negative smoothness indices
in a way similar as indicated at the end of Sect. 2.

In Figure 1, the relation between Ψ, Ψ̃, Ψ+ and Ψ̃− is illustrated.

Remark 3.5. As outlined in the introduction, Ψ, Ψ̃, Ψ+, Ψ̃− related as in Figure 1,
and such that all are Riesz bases for L2(I) do not exist for Ψ̃ ⊂ H1

0 (I) or Ψ+ ⊂ H1
0 (I).

Yet, some additional boundary conditions can be incorporated. For example, Ψ
can be taken from H1

0 (I). In this case, (3.5) can be shown for s ∈ [0, 3
2 ). Since the

derivatives of all ψ+
λ vanish at the boundary, instead of the Jackson estimate (3.2)
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of order d + 1, in this case only a Jackson estimate of order 3
2 is valid. Without

going into details, we note that this can be compensated by building approximations
from the spans of wavelet sets to which additional wavelets with supports near the
boundary are added (possibly adaptively).

4. Scaling functions and two-level transforms

In view of the definition of the wavelets ψ+
λ and ψ̃−

λ , an obvious definition of the

collections of corresponding primal and dual scaling functions Φ+
ℓ = [φ+

ℓ,i
]i∈Iℓ

and

Φ̃
−

ℓ = [φ̃
−

ℓ,i
]i∈Iℓ

is by means of

φ+

ℓ,i
:= x 7→ 2ℓ

∫ x

0

φℓ,i(y)dy, φ̃
−

ℓ,i
:= −2−ℓ

˙̃
φℓ,i.

Here we underlined the symbols to distinguish them from later alternatively defined
scaling functions. By linearity of integration and differentiation, indeed

span{φ+

ℓ,i
: i ∈ Iℓ} = span{ψ+

λ : |λ| ≤ ℓ}

and similarly at the dual side. Furthermore, since the φ̃ℓ,i’s vanish at 1, and the

φ+

ℓ,i
’s vanish at 0,

〈φ+

ℓ,i
, φ̃

−

ℓ,j
〉L2(I) = 〈φ+

ℓ,i
,−2−ℓ ˙̃φℓ,j〉L2(I) = 2−ℓ〈φ̇+

ℓ,i
, φ̃ℓ,j〉L2(I) = 〈φℓ,i, φ̃ℓ,j〉L2(I) = δi,j ,

i.e., we have biorthogonality of these primal and dual scaling functions.
The disadvantage of the above definition of the scaling functions is that the

primal scaling functions are not locally supported. Therefore, with

cℓ,i := 〈1, φℓ,i〉L2(I),

which was assumed to be nonzero (in (2.9)), and the convention that any φℓ,i, φ̃ℓ,i,

φ+

ℓ,i
or φ̃

−

ℓ,i
for i 6∈ Iℓ is zero, we now define new scaling functions Φ+

ℓ = [φ+
ℓ,i]i∈Iℓ

and Φ̃−
ℓ = [φ̃−ℓ,i]i∈Iℓ

by means of

(4.1)















φ+
ℓ,i := x 7→ 2ℓ

∫ x

0

φℓ,i(y) −
cℓ,i
cℓ,i+1

φℓ,i+1(y)dy = φ+

ℓ,i
− cℓ,i
cℓ,i+1

φ+

ℓ,i+1
,

φ̃−ℓ,i := −2−ℓ
∑

p≤i

cℓ,p
cℓ,i

˙̃
φℓ,p =

∑

p≤i

cℓ,p
cℓ,i

φ̃
−

ℓ,p
.

Since compared to the earlier definition, the new definition comprises a basis trans-
formation, the new primal and dual scaling functions span the correct spaces.

Proposition 4.1. The collections of scaling functions Φ+
ℓ and Φ̃−

ℓ defined by (4.1)

are biorthogonal, and ∪ℓΦ+
ℓ and ∪ℓΦ̃−

ℓ are local and bounded in the sense of (2.2)
and (2.3), respectively.

Proof. Because φ+
ℓ,iφ̃ℓ,p (i, p ∈ Iℓ) vanish at {0, 1}, biorthogonality of (Φ+

ℓ , Φ̃
−
ℓ )

follows from

〈φ+
ℓ,i, φ̃

−
ℓ,j〉L2(I) = 〈φ+

ℓ,i,−2−ℓ
∑

p≤j

cℓ,p
cℓ,j

˙̃
φℓ,p〉L2(I)

= 〈φℓ,i −
cℓ,i
cℓ,i+1

φℓ,i+1,
∑

p≤j

cℓ,p
cℓ,j

φ̃ℓ,p〉L2(I) = δi,j

by distinguishing between the cases j < i, j = i and j > i.
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Because of the Jackson assumption (2.5), in any case for ℓ sufficiently large,
the supports of the φℓ,i cover [0, 1]. Now from the ordering assumption (2.4),

we infer that for such ℓ the supports of φℓ,i and φℓ,i+1 overlap. From
∫ 1

0 φℓ,i(y) −
cℓ,i

cℓ,i+1
φℓ,i+1(y)dy = 0, and the localness of ∪ℓΦℓ, we conclude the localness of ∪ℓΦ+

ℓ .

By (2.4), we have
∑

p≤i cℓ,pφ̃ℓ,p =
∑

p∈Iℓ
cℓ,pφ̃ℓ,p on [0, inf supp φ̃ℓ,i]. By (2.8),

the latter function is equal to 1 outside a 2−ℓ neighbourhood of 1. From the localness
of ∪ℓΦ̃ℓ, we conclude that of ∪ℓΦ̃−

ℓ .
From (2.9) and the localness and boundedness of ∪ℓΦℓ, an application of Hölder’s

inequality shows the boundedness of ∪ℓΦ+
ℓ .

From (2.7) and the boundedness of ∪ℓΦ̃ℓ, we have ‖ ˙̃
φℓ,i‖L2(I) . 2ℓ. Now by

(2.9), (2.4), the localness of ∪ℓΦ̃ℓ and the fact that φ̃−ℓ,i vanishes left from some 2−ℓ

neighbourhood of supp φ̃ℓ,i, we conclude the boundedness of ∪ℓΦ̃−
ℓ . �

Remark 4.2. Note that Ψ+
−1 = Φ+

0 6= Φ+
0 and Ψ̃−

−1 = Φ̃
−

0 6= Φ̃−
0 . Redefining Ψ+

−1

as Φ+
0 or Ψ̃−

−1 as Φ̃−
0 would destroy the relation Ψ̇+

−1 = 1
2Ψ−1 or ˙̃Ψ−1 = − 1

2 Ψ̃−
−1,

respectively.

Finally in this section, we discuss the refinement relations at primal and dual
side. For ℓ ∈ N0, let Mℓ be the matrix with

[Φ⊤
ℓ Ψ⊤

ℓ ] = Φ⊤
ℓ+1Mℓ.

Biorthogonality shows that

Mℓ =
〈

Φ̃ℓ+1,

[

Φℓ
Ψℓ

]

〉

L2(I)
.

Since Φℓ+1 and Φℓ∪Ψℓ are Riesz systems, uniformly in ℓ, that span the same space,
Mℓ is boundedly invertible, uniformly in ℓ. Again biorthogonality shows that

[Φ̃⊤
ℓ Ψ̃⊤

ℓ ] = Φ̃⊤
ℓ+1M

−⊤
ℓ .

The localness of ∪ℓΦℓ, Ψ, ∪ℓΦ̃ℓ, Ψ̃ shows that both Mℓ and its transposed inverse
M−⊤

ℓ are sparse, uniformly in ℓ. By linearity of integration and differentiation, we
have that

(4.2) [(Φ+
ℓ )⊤ (Ψ+

ℓ )⊤] = 1
2 (Φ+

ℓ+1)
⊤Mℓ, [(Φ̃

−

ℓ )⊤ (Ψ̃−
ℓ )⊤] = 2(Φ̃

−

ℓ+1)
⊤M−⊤

ℓ .

Let

M+
ℓ :=

〈

Φ̃−
ℓ+1,

[

Φ+
ℓ

Ψ+
ℓ

]

〉

L2(I)
.

As a consequence of the biorthogonality of Ψ+ and Ψ̃−, and that of Φ+
ℓ and Φ̃−

ℓ ,

and the localness and boundedness of ∪ℓΦ+
ℓ , Ψ+, ∪ℓΦ̃−

ℓ and Ψ̃−, the matrices M+
ℓ

and its transposed inverse (M+
ℓ )−⊤ are bounded and sparse, uniformly in ℓ. It

holds that

(4.3) [(Φ+
ℓ )⊤ (Ψ+

ℓ )⊤] = (Φ+
ℓ+1)

⊤M+
ℓ , [(Φ̃−

ℓ )⊤ (Ψ̃−
ℓ )⊤] = (Φ̃−

ℓ+1)
⊤(M+

ℓ )−⊤.

Now we split

Mℓ = [Mℓ,0 Mℓ,1],
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and define the #Iℓ × #Iℓ matrix Tℓ by

(4.4) Tℓ :=

















1 − cℓ,1

cℓ,2

1 − cℓ,2

cℓ,3

. . .
. . .

1 − cℓ,#Iℓ−1

cℓ,#Iℓ

1

















.

Note that Φ+
ℓ = TℓΦ

+
ℓ and Φ̃+

ℓ = T−⊤
ℓ Φ̃

+

ℓ . Comparing the first equation in (4.2)
with (4.3) now reveals that

M+
ℓ =

1

2
T−⊤
ℓ+1[Mℓ,0T

⊤
ℓ Mℓ,1].

The remarkable aspect of this relation is that although T−⊤
ℓ+1 is clearly not sparse,

as we have seen M+
ℓ is, uniformly in ℓ, and so is its inverse.

Remark 4.3. Let us consider the case that instead of on the interval I, we work on
the real line R, and that for θ ∈ {φ, ψ, φ̃, ψ̃},

θℓ,i(x) = 2ℓ/2θ(2ℓx− i).

Then our definitions give that for η ∈ {φ+, ψ+, φ̃−, ψ̃−}
ηℓ,i(x) = 2ℓ/2η(2ℓx− i),

where

φ+(x) =

∫ x

0

φ(y) − φ(y − 1)dy, ψ+(x) =

∫ x

0

ψ(y)dy,

φ̃−(x) = −
∑

p∈N0

˙̃
φ(x + p), ψ̃− = − ˙̃

ψ.

As a consequence, it holds that

φ̇+(x) = φ(x) − φ(x− 1), ψ̇+ = ψ,

φ̃−(x+ 1) − φ̃−(x) =
˙̃
φ(x), ψ̃− = − ˙̃

ψ.

As already noted in the introduction, up to harmless differences, these relations
between a pair of stationary biorthogonal multi-resolution analyses characterized
by (φ, ψ, φ̃, ψ̃), and a new pair constructed by integration/differentiation were found
by Lemarié-Rieusset in [LR92]. We conclude that our procedure is a generalization
of the one from [LR92] to pairs of non-stationary multi-resolution analyses and
bounded intervals.

Example 4.4. With dξ, d,d̃ξ̃ being the biorthogonal generators of the stationary

multi-resolution analyses from [CDF92], and with d = 2, d̃ = 4, in this example

we take φℓ,i and φ̃ℓ,i from the span of {dξ[ℓ,j] := 2ℓ/2dξ(2
ℓ · −j)|I : j ∈ Z} or

{d,d̃ξ̃[ℓ,j] := 2ℓ/2d,d̃ξ̃(2
ℓ ·−j)|I : j ∈ Z}, respectively, in such a way that all conditions

imposed in Section 2 are satisfied.
We apply the general construction of biorthogonal wavelets on the interval from

[Dij09], which differs from that of [DKU99, DS98] in that the resulting primal
scaling functions span the standard spline space of order d with respect to a uniform

partition of I, with an appropriate multiplicity of the knots at the endpoints to
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meet prescribed homogeneous Dirichlet boundary conditions. Any freedom in the
construction at the dual side was employed to minimize the condition numbers of
the resulting wavelet bases, which numbers, in particular for larger d, are indeed
(much) smaller than those that can be found in the literature, including those from
[Pri06].

For d = 2, d̃ = 4, and with the specific boundary conditions needed in the current
setting (no boundary conditions at the primal side, and homogeneous Dirichlet
boundary conditions of order 1 at the right boundary point at the dual side),
this construction yields Φℓ = {2ξ[ℓ,j] : j ∈ Z, 2ξ[ℓ,j] 6= 0} with cardinality #Iℓ =

2ℓ + d − 1. Applying the natural left-to-right ordering of the basis functions, the
coefficients of the φ̃ℓ,i in terms of the non-zero 2,4ξ̃[ℓ,j] are given, columnwise, by

the following (2ℓ + d+ 2d̃− 3) × (2ℓ + d− 1) matrix






































100 − 280
3

178
3 −15

50 − 265
6

80
3 − 13

2

20 − 47
3

26
3 −2

5 − 29
12

7
6 − 1

4

1

1

1
. . .

1

1

1

− 1
448 − 67

672
1007
1344 − 365

112

− 1
32 − 67

48
911
96 − 365

8

− 25
224 − 2011

336
25175
672 − 9125

56

− 279
224 − 3685

336
55385
672 − 20075

56







































.

The primal, and so the dual wavelets are determined by the (2ℓ+1 +d−1)× (2ℓ+1 +
d− 1) refinement matrix (cf. (4.2))

Mℓ :=
1√
2













































1 − 35
32

15
32

1
2

1
2

875
768 − 45

256
3
64

1 − 241
384 − 105

128
3
32

1
2

1
2 − 53

256
345
256 − 1

4
3
64

1 41
192 − 31

64 − 19
32

3
32

1
2

1
2

67
768 − 53

256
45
32 − 1

4

. . .

1 − 5
128

9
128 − 19

32 − 19
32

1
2

. . . − 5
256

9
256 − 1

4
45
32

3
64

3
32 − 19

32
3
32. . . 1

2
3
64 − 1

4 − 1
4

1341
28672 − 23

28672

1 3
32 − 19

32
1341
14336 − 23

14336
1
2

1
2

3
64

45
32 − 7305

28672
881

86016

1 − 19
32 − 4323

7168
475

21504
1
2

1
2

. . . − 1
4

41193
28672 − 1819

28672

1 3
32 − 7505

14336 − 6407
43008

1
2

1
2

3
64 − 11885

28672
64885
86016

1 − 1095
3584 − 8395

3584













































.

Having specified (Φℓ)ℓ, (Ψℓ)ℓ, (Φ̃ℓ)ℓ, (Ψ̃ℓ)ℓ, the new collections of biorthogonal

scaling functions and wavelets (Φ+
ℓ )ℓ, (Ψ+

ℓ )ℓ, (Φ̃−
ℓ )ℓ, (Ψ̃−

ℓ )ℓ are fully determined by

the definitions (3.1) and (4.1). The coefficients cℓ,i =
∫

I
φℓ,i are equal to 2−ℓ/2,

except for the left and rightmost scaling functions, for which they read as 1
22−ℓ/2.

Since the φℓ,i are splines of order d with respect to a uniform partition of I with

stepsize 2−ℓ, the φ+
ℓ,i are in the span of {3ξ[ℓ,j] : j ∈ Z, 3ξ[ℓ,j] 6= 0}. Knowing

that d,d̃
˙̃
ξ = d+1,d̃−1ξ̃(· + 1 − d mod 2) − d+1,d̃−1ξ̃(· − d mod 2), we conclude that
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the φ̃−ℓ,i are in the span of {3,3ξ̃[ℓ,j] : j ∈ Z, 3,3ξ̃[ℓ,j] 6= 0}. Applying the natural

left-to-right ordering of the basis functions, the coefficients of the φℓ,i or φ+
ℓ,i in

terms of the non-zero 3ξ[ℓ,j] or 3,3ξ̃[ℓ,j] are given by the (2ℓ + d) × (2ℓ + d− 1) and

(2ℓ + d+ 1 + 2(d̃− 1) − 3) × (2ℓ + d− 1) matrices























− 1
2
1
2

1

1

1
. . .

1

1

1

−1 1























,



































50 − 145
6

17
2

30 − 27
2

9
2

15 − 23
4

7
4

5 − 11
12

1
4

1

1

1
. . .

1

1
1

448
137
1344

79
224

111
28

13
448

1781
1344 − 1661

224
771
28

9
112

523
112 − 1305

56
495
7

127
112

685
112 − 2175

56
825
7



































,

respectively.
From the coefficients cℓ,i and the matrix Mℓ we obtain the (2ℓ+1 + d − 1) ×

(2ℓ+1 + d− 1) refinement matrix M+
ℓ that determines the primal and dual wavelet

collections Ψℓ and Ψ̃−
ℓ . It reads as

M+
ℓ =

1√
2













































1
2 − 35

16
15
16

3
8

1
4

455
384

15
128

3
32

1
8

3
4 − 9

128 − 195
128

9
32

3
4

1
4 − 31

64
75
64 − 7

32
3
32

1
4

3
4 − 11

192
13
64 − 45

32
9
32

3
4

1
4

15
128 − 27

128
45
32 − 7

32

. . .
1
4

3
4

5
128 − 9

128
7
32 − 45

32
3
4

. . . − 9
32

45
32

3
32

1
4 − 3

32
7
32

9
32

1
4 − 9

32 − 7
32

1341
14336 − 23

14336. . . 3
4 − 3

32 − 45
32

4023
14336 − 69

14336
3
4

1
4

45
32 − 1641

7168
337

21504
1
4

3
4

. . . 7
32 − 10287

7168
429
7168

3
4

1
4 − 9

32
20619
14336 − 961

14336
1
4

3
4 − 3

32
5609
14336 − 15697

43008
1
2

1
4 − 1569

3584
4099
3584

1 − 333
224 − 537

224













































.

In Figure 2, for ℓ = 4, a number of scaling functions φℓ,i, φ
+
ℓ,i, and wavelets ψℓ,i

ψ+
ℓ,i are illustrated. One may observe that ψ̇+

ℓ,i is (a multiple of) ψℓ,i, and that all

φ+
ℓ,i and ψ+

ℓ,i vanish at the left boundary point. All ψ+
ℓ,i have 3 vanishing moments.

The ψℓ,i have 4 vanishing moments, except for the two right-most ones that are
orthogonal to x 7→ (1 − x)k for k ∈ {1, 2, 3}, but not to constant functions, caused

by the fact that S(Φ̃ℓ) satisfies homogeneous Dirichlet boundary conditions of order
1 at the right boundary.

5. Divergence-free wavelets

For Σ ⊂ ∂� with positive measure, and for s ≥ 0, let

Hs
0,Σ(�) :=

{

Hs(�) ∩H1
0,Σ(�) when s ≥ 1,

[L2(�), H1
0,Σ(�)]s when s ∈ [0, 1].
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0 1

0 1

0 1

0 1

Figure 2. Some scaling functions φ4,i (upper left), φ+
4,i (lower

left), and wavelets ψ4,i (upper right), ψ+
4,i (lower right). (Some

basis functions are dotted to distinguish them from others with
whom they have an overlapping support)

Figure 3. Γ1 and Γ̃1 for n = 3.

For 1 ≤ k ≤ n, let

Γk = [0, 1]k−1 × {0} × [0, 1]n−k, Γ̃k =

n
⋃

m=1,m 6=k

[0, 1]m−1 × {1} × [0, 1]n−m,

see Figure 3 for an illustration. Then, following arguments as in [GO95, Example
3], for s ≥ 0 we have

Hs
0,Γk

(�) =Hs⊗L2⊗· · ·⊗L2∩ · · · ∩L2⊗· · ·⊗
↓ kth pos.

Hs
0,{0}⊗· · ·⊗L2∩ · · · ∩L2⊗· · ·⊗L2⊗Hs,

Hs
0,Γ̃k

(�) =Hs
0,{1}⊗L2⊗· · ·⊗L2∩· · ·∩L2⊗· · ·⊗

↓ kth pos.
Hs⊗· · ·⊗L2∩· · ·∩L2⊗· · ·⊗L2⊗Hs

0,{1},

where the spaces on the right are spaces of functions on the unit interval. As shown
in [GO95], from these characterizations, and (2.10), (2.11), (3.5), (3.6), we have the
following result.
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Proposition 5.1. For 0 ≤ s < γ and 0 ≤ s̃ < γ̃ − 1,

{

(

n
∑

m=1

4|λm|)−s/2ψλ1 ⊗ · · · ⊗ ψ+
λk

⊗ · · · ⊗ ψλn
: λ ∈ ∇ := ∇n

}

,

{

(
n

∑

m=1

4|λm|)−s̃/2ψ̃λ1 ⊗ · · · ⊗ ψ̃−
λk

⊗ · · · ⊗ ψ̃λn
: λ ∈ ∇

}

are Riesz bases of Hs
0,Γk

(�) and Hs̃
0,Γ̃k

(�), respectively. For s = s̃ = 0, the collec-

tions are biorthogonal.

Remark 5.2. Before proceeding to vector-valued wavelets, in this remark we briefly
discuss the rates of approximation that can be realized with the anisotropic wavelet

bases from Proposition 5.1. With ψ
(k)
λ := ψλ1 ⊗ · · · ⊗ ψ+

λk
⊗ · · · ⊗ ψλn

, and, for

L ∈ N and β ≥ 1, with the (optimized) sparse grid index set ∇L,β := {λ ∈
∇ : β‖|λ|‖1 + (1 − β)‖|λ|‖∞ ≤ L}, where |λ| := (|λ1|, . . . , |λn|), it is known that
#∇L,1 h 2LLn−1 and #∇L,β h 2L when β > 1. Furthermore, it is known that

inf
v∈span{ψ

(k)
λ

:λ∈∇L,1}

‖u− v‖L2(�) . L
n−1

2 2−dL‖∂d1 · · ·∂dnu‖L2(�)

and that for 0 < s < γ, β ∈ (1, d
d−s), and q > β(d− s),

inf
v∈span{ψ

(k)
λ

:λ∈∇L,β}

‖u− v‖Hs
0,Γk

(�) . 2−(d−s)L

√

√

√

√

n
∑

m=1

‖∂q1 · · ·∂dm · · · ∂qnu‖2
L2(�),

cf. [GK00]. So assuming sufficient smoothness of certain mixed derivatives of the
function u to be approximated, the error in Hs

0,Γk
(�) of the best approximation

from the span of N suitably selected anisotropic wavelets is of order N−(d−s) (up
to log-terms when s = 0), with the rate d− s thus being independent of the space
dimension n.

What is more, as shown in [Nit06], the regularity conditions on u for obtain-
ing this rate d − s can be largely reduced when the approximation is sought from
the span of the best possible set of N wavelets depending on u (nonlinear ap-

proximation), instead of the aforementioned sparse grid index sets. When solving
well-posed operator equations using wavelets, the rate of approximation of these so-
called best N -term approximations can be realized with adaptive wavelet schemes
([CDD01, CDD02, GHS07, SS08]).

Finally, with isotropic wavelet contructions, it is well-known that the best pos-
sible rate reads as d−s

n . Analogous observations are valid at the dual side.

Setting for λ ∈ ∇, 1 ≤ k ≤ n, the vector-valued wavelets

ψ(k)

λ
:= ψλ1 ⊗ · · · ⊗ ψ+

λk
⊗ · · · ⊗ ψλn

ek,(5.1)

ψ̃
(k)

λ
:= ψ̃λ1 ⊗ · · · ⊗ ψ̃−

λk
⊗ · · · ⊗ ψ̃λn

ek,

as an immediate consequence of Proposition 5.1, we have

Corollary 5.3. For 0 ≤ s < γ and 0 ≤ s̃ < γ̃ − 1,

{

(

n
∑

m=1

4|λm|)−s/2ψ(k)

λ
: 1 ≤ k ≤ n, λ ∈ ∇

}

,
{

(

n
∑

m=1

4|λm|)−s̃/2ψ̃
(k)

λ
: 1 ≤ k ≤ n, λ ∈ ∇

}
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are Riesz bases for

Hs
0,Γ1

(�) × · · · × Hs
0,Γn

(�), Hs̃
0,Γ̃1

(�) × · · · × Hs̃
0,Γ̃n

(�),

respectively. For s = s̃ = 0, the collections are biorthogonal.

In order to construct divergence-free wavelets, now we are going to apply basis
transformations. For any λ ∈ ∇, let us select an orthogonal Aλ ∈ R

n×n with its
nth row given by

(5.2) Aλ
n•

= α⊤ where α (= αλ) := [2|λ1| · · · 2|λn|]⊤/(

n
∑

m=1

4|λm|)
1
2 .

The fact that necessarily the first n − 1 rows of Aλ are orthogonal to α⊤ will be

the key why the wavelets ψ
(1)
λ , . . . ,ψ

(n−1)
λ defined below are divergence-free. The

mutual orthogonality of the rows of Aλ gives the stability of the transformation
and therefore that of the resulting basis. An example of such a matrix Aλ is given
by the Householder transformation

(5.3) Aλ = Id − 2(α− en)(α − en)⊤
(α− en)⊤(α− en)

,

that for n = 2, 3 reads as

[

−α2 α1

α1 α2

]

,







1 − α2
1

1−α3
− α1α2

1−α3
α1

− α1α2

1−α3
1 − α2

2

1−α3
α2

α1 α2 α3






,

respectively.
We use the matrices Aλ to orthogonally transform the bases from Corollary 5.3:

We define Ψ = {ψ(k)
λ : λ ∈ ∇, 1 ≤ k ≤ n}, Ψ̃ = {ψ̃(k)

λ : λ ∈ ∇, 1 ≤ k ≤ n} by
setting for any λ ∈ ∇,









ψ
(1)
λ
...

ψ
(n)
λ









:= Aλ









ψ(1)

λ
...

ψ(n)

λ









,









ψ̃
(1)
λ
...

ψ̃
(n)
λ









:= Aλ









ψ̃
(1)

λ
...

ψ̃
(n)

λ









.

We will need some Sobolev spaces of vector valued functions, other than those
that are simply Cartesian products of Sobolev spaces of scalar functions. Setting

(5.4) Γ :=
n
⋃

k=1

Γk, Γ̃ := ∂�\Γ ,

we define

H(div; �) :=
{

u ∈ L2(�)n : div u ∈ L2(�)},
H0,Γ(div; �) :=

{

u ∈ H(div; �) : u · n = 0 on Γ},
H0,Γ(div0; �) :=

{

u ∈ H0,Γ(div; �) : div u = 0}.(5.5)

Since n = −ek on Γk, it holds that u · n = 0 on Γ if and only if uk = 0 on Γk
(1 ≤ k ≤ n). So, in particular,

(5.6)

n
∏

k=1

H1
0,Γk

(�) = {u ∈ H1(�)n : u · n = 0 on Γ}.
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We are going to show that Ψdf =
{

ψ
(k)
λ : 1 ≤ k ≤ n− 1, λ ∈ ∇

}

is a Riesz basis

for H0,Γ(div0; �). In order to do so, it is not sufficient to show that these ψ
(k)
λ

are in H0,Γ(div0; �). Instead, we have to show that any u ∈ H0,Γ(div0; �) has a

convergent expansion in terms of these ψ
(k)
λ , with the ℓ2 norms of the sequence of

coefficients being equivalent to ‖u‖L2(�).

Proposition 5.4. (a). For 0 ≤ s < γ and 0 ≤ s̃ < γ̃ − 1,

{

(

n
∑

m=1

4|λm|)−s/2ψ
(k)
λ : 1 ≤ k ≤ n, λ ∈ ∇

}

,
{

(

n
∑

m=1

4|λm|)−s̃/2ψ̃
(k)
λ : 1 ≤ k ≤ n, λ ∈ ∇

}

are Riesz bases for

Hs
0,Γ1

(�) × · · · × Hs
0,Γn

(�), Hs̃
0,Γ̃1

(�) × · · · × Hs̃
0,Γ̃n

(�),

respectively. Furthermore 〈Ψ, Ψ̃〉L2(�)n = Id.

(b). For u ∈ H0,Γ(div; �),

〈u, ψ̃(n)
λ 〉L2(�)n = 〈div u, ψ̃λ1 ⊗ · · · ⊗ ψ̃λn

〉L2(�)/(

n
∑

m=1

4|λm|)
1
2 .

It holds that Ψ ⊂ H0,Γ(div; �), with

divψ
(k)
λ =

{

0 for 1 ≤ k ≤ n− 1,

(
∑n

m=1 4|λm|)
1
2ψλ1 ⊗ · · · ⊗ ψλn

for k = n.

(c). For q ∈ H1
0,Γ̃

(�),

〈grad q,ψ
(k)
λ 〉L2(�)n

=

{

0 for 1 ≤ k ≤ n− 1,

(
∑n

m=1 4|λm|)
1
2 〈q, ψλ1 ⊗ · · · ⊗ ψλn

〉L2(�)n for k = n.

It holds that

ψ̃
(n)
λ = −grad ψ̃λ1 ⊗ · · · ⊗ ψ̃λn

/(
n

∑

m=1

4|λm|)
1
2 ∈ gradH1

0,Γ̃
(�).

Proof. (a). This part is a consequence of Corollary 5.3. Biorthogonality of the col-
lections from Corollary 5.3 is preserved because Aλ is orthogonal. The remainder
follows from the fact that the scaling factors (

∑n
m=1 4|λm|)−s/2 and (

∑n
m=1 4|λm|)−s̃/2

in the statement of Corollary 5.3 are independent of k.
(b). Since for u ∈ H0,Γ(div; �) and 1 ≤ m ≤ n, umn ·emψ̃λ1 ⊗· · ·⊗ ψ̃λn

vanishes
on ∂�, integration by parts and the definition of the nth row of Aλ show that

〈u, ψ̃(n)
λ 〉L2(�)n =

n
∑

m=1

Aλ
nm〈u, ψ̃λ1 ⊗ · · · ⊗ ψ̃−

λm
⊗ · · · ⊗ ψ̃λn

em〉L2(�)n

= −
n

∑

m=1

Aλ
nm2−|λm|〈u, ψ̃λ1 ⊗ · · · ⊗ ˙̃

ψλm
⊗ · · · ⊗ ψ̃λn

em〉L2(�)n

= 〈div u, ψ̃λ1 ⊗ · · · ⊗ ψ̃λn
〉L2(�)/(

n
∑

m=1

4|λm|)
1
2 .
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Since Ψ+ ⊂ H1
0,{0}(I), for all k and λ we have ψ(k)

λ
∈ H0,Γ(div; �), and so

Ψ ⊂ H0,Γ(div; �). By definition of Aλ,

divψ
(k)
λ =

n
∑

m=1

Aλ
kmdivψ(m)

λ
=

(

n
∑

m=1

Aλ
km2|λm|

)

ψλ1 ⊗ · · · ⊗ ψλn

=

{

0 for 1 ≤ k ≤ n− 1,

(
∑n

m=1 4|λm|)
1
2ψλ1 ⊗ · · · ⊗ ψλn

for k = n.

(c). Since qψ
(k)
λ · n = 0 on ∂�, 〈grad q,ψ

(k)
λ 〉L2(�)n = 〈q, divψ

(k)
λ 〉L2(�) by

integration by parts, and so the expression for 〈grad q,ψ
(k)
λ 〉L2(�)n follows from

(b). The last statement follows by definition of ψ̃
(n)
λ . �

Proposition 5.4(a) shows that any u ∈ L2(�)n has a unique expansion u =
∑

λ∈∇

∑n
k=1 c

(k)
λ ψ

(k)
λ with ‖u‖2

L2(�)n h
∑

λ∈∇

∑n
k=1 |c

(k)
λ |2. If u is in the subspace

H0,Γ(div0; �), then Part (b) shows that c
(n)
λ = 0. Since moreover, for 1 ≤ k ≤ n−1,

divψ
(k)
λ = 0, we conclude that

{

ψ
(k)
λ : 1 ≤ k ≤ n− 1, λ ∈ ∇

}

is a Riesz basis for
H0,Γ(div0; �), which is the first statement from the following corollary. Taking into
account (5.6), in the same way the second statement of this corollary is deduced.
The last statement follows from Proposition 5.4(c).

Corollary 5.5. The collection

Ψdf =
{

ψ
(k)
λ : 1 ≤ k ≤ n− 1, λ ∈ ∇

}

,

and, if γ > 1, its properly scaled version

Ψdf
H1 =

{

(

n
∑

m=1

4|λm|)−1/2ψ
(k)
λ : 1 ≤ k ≤ n− 1, λ ∈ ∇

}

are Riesz bases for H0,Γ(div0; �) and H0,Γ(div0; �) ∩H1(�)n, respectively.

The collection Ψ̃gr = {ψ̃(n)
λ : λ ∈ ∇

}

is a Riesz basis for gradH1
0,Γ̃

(�) equipped

with ‖ · ‖L2(�)n .

Remark 5.6. Although for k 6= m and any λ ∈ ∇, ψ
(k)
λ ⊥L2(�)n ψ

(m)
λ , be-

ing a consequence of ψ(k)

λ
⊥L2(�)n ψ(m)

λ
and the orthogonality of Aλ, generally

H0,Γ(div0; �) 6⊥L2(�)n span {ψ(n)
λ : λ ∈ ∇}, the reason being that generally

ψ
(k)
λ 6⊥L2(�)n ψ

(m)
µ for λ 6= µ ∈ ∇.

Remark 5.7. From Remark 5.2, we deduce that for u ∈ H0,Γ(div0; �),

inf
v∈span{ψ

(k)
λ

:λ∈∇L,1, 1≤k≤n−1}

‖u− v‖L2(�)n . L
n−1

2 2−dL

√

√

√

√

n
∑

ℓ=1

‖∂d1 . . . ∂dnuℓ‖2
L2(�)

and, for β ∈ (1, d
d−1) and q > β(d − 1),

inf
v∈span{ψ

(k)
λ

:λ∈∇L,β , 1≤k≤n−1}

‖u− v‖H1(�)n . 2−(d−1)L

√

√

√

√

n
∑

m,ℓ=1

‖∂q1 · · · ∂dm · · ·∂qnuℓ‖2
L2(�),
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assuming u is such that the right hand sides are bounded. Similarly for u ∈
gradH1

0,Γ̃
(�),

inf
v∈span{ψ̃

(n)
λ

:λ∈∇L,1}

‖u− v‖L2(�)n . L
n−1

2 2−d̃L

√

√

√

√

n
∑

ℓ=1

‖∂d̃1 . . . ∂d̃nuℓ‖2
L2(�),

assuming u is such that the right hand side is bounded. So, possibly up to log fac-
tors, we obtain rates d, d−1 or d̃ using these anisotropic divergence-free or gradient
wavelet bases. With corresponding isotropic constructions, the rates would read as
d
n , d−1

n or d̃
n , respectively. As in Remark 5.2, the required regularity conditions on

u can be largely reduced when nonlinear approximation is applied.

Remark 5.8. The construction of anisotropic divergence-free wavelet bases (on R
n)

was first proposed in [DP06], by Deriaz and Perrier. For n = 2, our construction
is equal to that from [DP06, DP09]. For n ≥ 3, the constructions are different in
the sense that our mappings Aλ are well-conditioned, even orthogonal, uniformly
in λ ∈ ∇, so that the transformation from the bases from Corollary 5.3 to that of
Proposition 5.4(a) is a boundedly invertible, even orthogonal, mapping on ℓ2(∇).
As a consequence, we obtain divergence-free wavelets or “gradient wavelets” that
are Riesz bases.

Example 5.9. For Ψ and Ψ+ from Example 4.4 and n = 2, in Figure 4 some
divergence-wavelets from the collection Ψdf defined in Corollary 5.5 are illustrated.
Note that the normal components of these wavelets vanish at the left boundary (as
they will vanish at the bottom boundary), but not at the top and right boundaries.

6. Helmholtz decomposition

Since H0,Γ(div0; �) is a closed subspace of L2(�)n, we have

L2(�)n = H0,Γ(div0; �) ⊕ H0,Γ(div0; �)⊥.

From Ψdf and Ψ̃gr being Riesz bases for H0,Γ(div0; �) and gradH1
0,Γ̃

(�), biorthog-

onality shows that gradH1
0,Γ̃

(�) ⊂ H0,Γ(div0; �)⊥. On the other hand, since Ψ̃

is a Riesz basis for L2(�)n, any u ∈ H0,Γ(div0; �)⊥ ⊂ L2(�)n has an expansion

u =
∑

λ∈∇

∑n
k=1 c

(k)
λ ψ̃

(k)
λ . From Ψdf being a Riesz basis for H0,Γ(div0; �) and

biorthogonality, we infer that for all λ ∈ ∇ and 1 ≤ k ≤ n− 1, c
(k)
λ = 0, and thus

that H0,Γ(div0; �)⊥ ⊂ gradH1
0,Γ̃

(�) and so we conclude

Corollary 6.1.

L2(�)n = H0,Γ(div0; �) ⊕⊥L2(�)n gradH1
0,Γ̃

(�)

known as a Helmholtz decomposition.

In view of computing a Helmholtz decomposition of a given u ∈ L2(�)n, we

realize that we do not have a dual basis for Ψdf ∪ Ψ̃gr available. Indeed, note that

{ψ̃(k)
λ : 1 ≤ k ≤ n−1, λ ∈ ∇

}

∪{ψ(n)
λ : λ ∈ ∇

}

is not such a basis. Since orthonor-

mal bases for H0,Γ(div0; �) and gradH1
0,Γ̃

(�) are given by 〈Ψdf ,Ψdf〉−
1
2

L2(�)nΨdf
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Figure 4. Some divergence free wavelets on � with n = 2, con-
structed using the univariate wavelets Ψ and Ψ+ from Example 4.4

and 〈Ψ̃gr, Ψ̃gr〉−
1
2

L2(�)nΨ̃gr, the Helmholtz decomposition of u is given by

u = 〈u,Ψdf〉L2(�)n〈Ψdf ,Ψdf〉−1
L2(�)nΨdf + 〈u, Ψ̃gr〉L2(�)n〈Ψ̃gr, Ψ̃gr〉−1

L2(�)nΨ̃gr.

In order to have the Helmholtz decomposition in terms of primal basis functions
only, simply use that the second term is equal to u minus the first term, i.e., that
it is equal to

〈u, Ψ̃〉L2(�)nΨ − 〈u,Ψdf〉L2(�)n〈Ψdf ,Ψdf〉−1
L2(�)nΨdf .

An alternative way to arrive at the above formulas is by realizing that in the
Helmholtz decomposition u = u1 + u2, u1 is the best approximation to u from
H0,Γ(div0; �) in the L2(�)n-norm , i.e., that 〈Ψdf ,u − u1〉L2(�)n = 0. Writing

u1 = ~u⊤
1 Ψdf , i.e., ~u1 is the coefficient vector of u1 with respect to the basis Ψdf ,

one arrives at

(6.1) 〈Ψdf ,Ψdf〉L2(�)n~u1 = 〈Ψdf ,u〉L2(�)n .

Since 〈Ψdf ,Ψdf〉L2(�)n is symmetric positive definite (and boundedly invertible),
this system can be iteratively solved with e.g. conjugate gradients. Of course in
practical computations, the infinite vectors have to be truncated. This can be done



DIVERGENCE-FREE WAVELET BASES ON THE HYPERCUBE January 26, 2010 21

by computing a Galerkin approximation from the span of a predefined finite subset
of Ψdf , or by running an adaptive wavelet scheme on (6.1).

Remark 6.2. An alternative scheme for computing the Helmholtz decomposition in
wavelet coordinates (in R

n), i.e., for solving (6.1), was proposed in [DP09]. This
scheme was shown to be convergent for some (globally supported) wavelets, but
turned out to be divergent for some other wavelet collections.

Finally in this section, we give expressions of div and curl operators in terms
of wavelet coordinates, as well as corresponding norm equivalences. Apart from
applications in solving equations involving grad-div or curl-curl operators (cf.
[Urb02, Ch. 3]), these results allow to verify whether functions are div- or curl-
free by computing wavelet coefficients. Our expressions improve upon those from
[Urb02] in the sense that for u ∈ H0,Γ(div; �), without computing div u, they give
an expression for div u in terms of a basis for L2(Ω) (instead of in terms of an
overcomplete system). The same remark applied to the curl operator.

Proposition 6.3. (a). On H0,Γ(div; �), we have

div u =
∑

λ∈∇

〈u, ψ̃(n)
λ 〉L2(�)ndivψ

(n)
λ ,

and

‖divu‖2
L2(�) h

∑

λ∈∇

(

n
∑

m=1

4|λm|
)

|〈u, ψ̃(n)
λ 〉L2(�)n |2.

(b). In two dimensions, on H0,Γ̃(rot; �) := {u ∈ H(rot; �) : u × n = 0 on Γ̃},
we have

rotu = −
∑

λ∈∇

〈u,ψ(1)
λ 〉L2(�)2rot ψ̃

(1)
λ

and

‖rotu‖2
L2(�)2 h

∑

λ∈∇

(4|λ1| + 4|λ2|)|〈u,ψ(1)
λ 〉L2(�)2 |2.

(c). In three dimensions, on H(curl; �), we have

curl u =
∑

λ∈∇

2
∑

k=1

〈u,ψ(k)
λ 〉L2(�)3curl ψ̃

(k)
λ

and

‖curl u‖2
L2(�)3 h

∑

λ∈∇

(4|λ1| + 4|λ2| + 4|λ3|)

2
∑

k=1

|〈u,ψ(k)
λ 〉L2(�)3 |2.

Proof. (a). Since Ψ⊗ · · · ⊗Ψ, Ψ̃⊗ · · · ⊗ Ψ̃ are biorthogonal Riesz bases for L2(�),
Proposition 5.4(b) shows that for u ∈ H0,Γ(div; �),

div u =
∑

λ∈∇

〈div u, ψ̃λ1 ⊗ · · · ⊗ ψ̃λn
〉L2(�)ψλ1 ⊗ · · · ⊗ ψλn

=
∑

λ∈∇

〈u, ψ̃(n)
λ 〉L2(�)ndivψ

(n)
λ
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and

‖divu‖2
L2(�) h

∑

λ∈∇

|〈div u, ψ̃λ1 ⊗ · · · ⊗ ψ̃λn
〉L2(�)|2

=
∑

λ∈∇

(

n
∑

m=1

4|λm|
)

|〈u, ψ̃(n)
λ 〉L2(�)n |2.

(b). Since Ψ+ ⊗ Ψ+ and Ψ̃− ⊗ Ψ̃− are biorthogonal Riesz bases for L2(�), we

have rotu =
∑

λ∈∇
〈rotu, ψ+

λ1
⊗ψ+

λ2
〉L2(�)ψ̃

−
λ1
⊗ψ̃−

λ2
as well as the norm equivalence

‖rotu‖2
L2(�) h

∑

λ∈∇
|〈rotu, ψ+

λ1
⊗ ψ+

λ2
〉L2(�)|2.

Using that (u × n)(ψ+
λ1

⊗ ψ+
λ2

) vanishes at ∂�, integration by parts shows that

〈rotu, ψ+
λ1

⊗ ψ+
λ2
〉L2(�) = −〈u,

[

−∂2

∂1

]

ψ+
λ1

⊗ ψ+
λ2
〉L2(�)2 . Straightforward calcu-

lations show that for any Aλ ∈ R
2×2 that satisfies (5.2),

[

−∂2

∂1

]

ψ+
λ1

⊗ ψ+
λ2

=

±
√

4|λ1| + 4|λ1|ψ
(1)
λ and ±

√
4|λ1| + 4|λ1| ψ̃−

λ1
⊗ ψ̃−

λ2
= rot ψ̃

(1)
λ , with which the proof

is easily completed.

(c). We define the biorthogonal Riesz bases Σ = {σ(k)
λ : λ ∈ ∇, k ∈ {1, 2, 3}},

Σ̃ = {σ̃(k)
λ : λ ∈ ∇, k ∈ {1, 2, 3}} for L2(�)3 by

σ
(k)
λ :=







ψλ1 ⊗ ψ+
λ2

⊗ ψ+
λ3

e1 k = 1,

ψ+
λ1

⊗ ψλ2 ⊗ ψ+
λ3

e2 k = 2,

ψ+
λ1

⊗ ψ+
λ2

⊗ ψλ3e3 k = 3,
σ̃

(k)
λ :=











ψ̃λ1 ⊗ ψ̃−
λ2

⊗ ψ̃−
λ3

e1 k = 1,

ψ̃−
λ1

⊗ ψ̃λ2 ⊗ ψ̃−
λ3

e2 k = 2,

ψ̃−
λ1

⊗ ψ̃−
λ2

⊗ ψ̃λ3e3 k = 3,

Then with Zλ :=





0 −2|λ3| 2|λ2|

2|λ3| 0 −2|λ1|

−2|λ2| 2|λ1| 0



 = −(Zλ)⊤, an easy calculation shows

that

curl









ψ̃
(1)

λ

ψ̃
(2)

λ

ψ̃
(3)

λ









= Zλ







σ̃
(1)
λ

σ̃
(2)
λ

σ̃
(3)
λ






, curl







σ
(1)
λ

σ
(2)
λ

σ
(3)
λ






= −Zλ







ψ(1)

λ

ψ(2)

λ

ψ
(3)

λ






.

For λ ∈ ∇, we set






σ
(1)
λ

σ
(2)
λ

σ
(3)
λ






:= Aλ







σ
(1)
λ

σ
(2)
λ

σ
(3)
λ






,







σ̃
(1)
λ

σ̃
(2)
λ

σ̃
(3)
λ






:= Aλ







σ̃
(1)
λ

σ̃
(2)
λ

σ̃
(3)
λ






.

Then

curl







ψ̃
(1)
λ

ψ̃
(2)
λ

ψ̃
(3)
λ






= AλZλ(Aλ)⊤







σ̃
(1)
λ

σ̃
(2)
λ

σ̃
(3)
λ






, curl







σ
(1)
λ

σ
(2)
λ

σ
(3)
λ






= −AλZλ(Aλ)⊤







ψ
(1)
λ

ψ
(2)
λ

ψ
(3)
λ






.

Any orthogonal Aλ ∈ R
3×3 that satisfies (5.2) is of the form Aλ =





Q
0
0

0 0 1



Aλ
p ,

where Aλ
p ∈ R

3×3 is some orthogonal matrix that satisfies (5.2), and Q ∈ R
2×2 is
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orthogonal. Taking Aλ
p to be the Householder transformation from (5.3) for n = 3,

a direct calculation shows that

−AλZλ(Aλ)⊤ =
√

4|λ1| + 4|λ2| + 4|λ3|





Q̂
0
0

0 0 0



 ,

where Q̂ ∈ R
2×2 is some orthogonal matrix, and thus







〈u, curlσ
(1)
λ 〉L2(�)3

〈u, curlσ
(2)
λ 〉L2(�)3

〈u, curlσ
(3)
λ 〉L2(�)3






=

√

4|λ1| + 4|λ2| + 4|λ3|





Q̂
0
0

0 0 0











〈u,ψ(1)
λ 〉L2(�)3

〈u,ψ(2)
λ 〉L2(�)3

〈u,ψ(3)
λ 〉L2(�)3






.

From these calculations and by integration by parts we conclude that for u ∈
H(curl; �),

curl u =
∑

λ∈∇

3
∑

k=1

〈curl u,σ
(k)
λ 〉L2(�)3σ̃

(k)
λ =

∑

λ∈∇

3
∑

k=1

〈curl u,σ
(k)
λ 〉L2(�)3σ̃

(k)
λ

=
∑

λ∈∇

3
∑

k=1

〈u, curlσ
(k)
λ 〉L2(�)3σ̃

(k)
λ =

∑

λ∈∇

2
∑

k=1

〈u,ψ(k)
λ 〉L2(�)3curl ψ̃

(k)
λ ,

as well as

‖curl u‖2
L2(�)3 h

∑

λ∈∇

3
∑

k=1

|〈curl u,σ
(k)
λ 〉L2(�)3 |2

=
∑

λ∈∇

3
∑

k=1

|〈curl u,σ
(k)
λ 〉L2(�)3 |2 =

∑

λ∈∇

3
∑

k=1

|〈u, curlσ
(k)
λ 〉L2(�)3 |2

=
∑

λ∈∇

(4|λ1| + 4|λ2| + 4|λ3|)

2
∑

k=1

|〈u,ψ(k)
λ 〉L2(�)3 |2. �
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