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Abstract A wide class of well-posed operator equations can be solved in optimal computa-
tional complexity by adaptive wavelet methods. A quantitative bottleneck is the approximate
evaluation of the arising residuals that steer the adaptive refinements. In this paper, we con-
sider multi-tree approximations from tensor product wavelet bases for solving linear PDE’s.
In this setting, we develop a new efficient approximate residual evaluation. Other than the
commonly applied method, that uses the so-called APPLY routine, our approximate residual
depends affinely on the current approximation of the solution. Our findings are illustrated
by numerical results that show a considerable speed-up.
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1 Introduction: Adaptive wavelet Galerkin methods

For some countable set ∇, f∈ `2(∇), and an A∈L (`2(∇), `2(∇)) that is symmetric and co-
ercive, i.e., 〈Av,v〉`2(∇) & ‖v‖2

`2(∇) (v ∈ `2(∇)), consider the problem of finding the solution
u ∈ `2(∇) of Au = f.
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Such a problem arises from the equivalent formulation of an elliptic operator equation
as a well-posed bi-infinite matrix-vector problem. Indeed, for some real Hilbert space H, let
A ∈L (H,H ′) be such that (Av)(v) & ‖v‖2

H (v ∈ H), let f ∈ H ′, and let Ψ = {ψλ : λ ∈ ∇}
be a Riesz basis for H, where we have in mind Ψ to be a wavelet basis. Then Au = f is
equivalently formulated as Au = f, where A = (AΨ)(Ψ), u = u>Ψ and f = f (Ψ).

Recall that Ψ being a Riesz basis for H means that H ′ → `2(∇) : g 7→ [g(ψλ )]λ∈∇, or
equivalently, its adjoint `2(∇)→ H : v 7→ v>Ψ , is boundedly invertible.

The (idealized) adaptive wavelet-Galerkin method for solving Au = f reads as follows.
For Λ ⊂ ∇, let IΛ ∈L (`2(Λ), `2(∇)) be the extension with zeros, RΛ := I>

Λ
, fΛ := RΛ f,

and AΛ := RΛ AIΛ . Let µ ∈ (0,1) be some constant, and Λ0 ⊂ ∇.

for k = 0,1, . . . do
solve AΛk uΛk = fΛk
find the smallest Λk+1 ⊃Λk such that

‖RΛk+1(f−AIΛk uΛk)‖`2(Λk+1) ≥ µ‖f−AIΛk uΛk‖`2(∇)

enddo

This algorithm, with an additional recurrent coarsening step, was introduced in [9],
where in [18] it was demonstrated that this coarsening can be omitted. For µ being suf-
ficiently small, the algorithm was proven to converge optimally in the following sense: If,
for whatever s > 0, u belongs to the (unconstrained) non-linear approximation class,

{v ∈ `2(∇) : |v|A s := sup
N∈N0

Ns inf
{Λ⊂∇:#Λ=N}

‖v− IΛ RΛ v‖`2(∇) < ∞},

then the sequence of Galerkin solutions satisfies

sup
k
(#Λk)

s‖u− IΛk uΛk‖`2(∇)< ∞. (1)

The same statement is true when inside the algorithm, as well as in the definition of the
approximation classes, only Λ from some subset of P(∇) are considered, which subset of
“admissible” Λ should be closed under taking unions. The idea is to take this subset such
that on the one hand it allows a more efficient implementation of the adaptive algorithm,
whereas on the other hand the approximation classes become only “slightly” smaller. Ex-
amples of such a constrained approximation are given by tree or multi-tree approximation,
where the latter applies with tensor product approximation as will be discussed later. This
tree or multi-tree structure allows to switch in optimal computational complexity from the
wavelet representation to a locally finite single scale representation, or to do this in each
coordinate separately.

The above optimally converging adaptive wavelet Galerkin method is not an imple-
mentable algorithm, which is why we called it an idealized method. Indeed, already the
residuals that are used to steer the adaptivity are generally infinitely supported, and there-
fore not computable.

It was, however, shown that convergence with the best possible rate is maintained un-
der the following relaxations. The sequences (uΛk)k and (f−AIΛk uΛk)k of exact Galerkin
solutions and residuals can be read as (wΛk)k and (r(k))k when, for some sufficiently small
constant η > 0,

‖f−AIΛk wΛk − r(k)‖`2(∇) ≤ η‖f−AIΛk wΛk‖`2(∇), (2)

‖uΛk −wΛk‖`2(Λk) ≤ η‖r(k−1)‖`2(∇). (3)
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Moreover, instead of finding a truly smallest Λk+1 ⊃ Λk such that ‖RΛk+1 r(k)‖`2(Λk+1) ≥
µ‖r(k)‖`2(∇), it is sufficient when such a Λk+1⊃Λk is found with #(Λk+1\Λk) being minimal
up to some constant factor (actually, this condition can be relaxed further, see [27, Algorithm
3.7]).

Condition (2) can be realized by an inner loop in which f−AIΛk wΛk is approximated
within some absolute tolerance ε , that is halved in each iteration until ε ≤ η

1+η
‖r(k)‖`2(∇),

which implies (2).
Concerning (3), since for any Λ , the matrix AΛ is symmetric, positive definite, and well-

conditioned, uniformly in Λ , the arising Galerkin problems can be efficiently approximately
solved by the application of an iterative method, as the simple Richardson method. Such a
method requires the approximate evaluation of residuals restricted to the current set Λ , i.e.,
residuals of type RΛ (f−AIΛ wΛ ) = fΛ −AΛ wΛ , which task is easier than the approximation
of an infinite residual f−AIΛ wΛ required for (2).

For the resulting practical adaptive wavelet Galerkin method (AWGM), it was shown that
if for fixed, sufficiently small η > 0, and for s for which u ∈A s, for any wΛ ∈ `2(Λ),{

f−AIΛ wΛ can be approximated within any absolute tolerance

ε ≥ η‖f−AIΛ wΛ‖`2(∇) at cost O(ε−1/s +#Λ),
(4)

only dependent on the exact solution u or, equivalently, on the right-hand side f, then the
AWGM is of optimal computational complexity in the sense that

sup
k
(#opsk)

s‖u− IΛk wΛk‖`2(∇) < ∞,

where #opsk is the number of arithmetic operations used to compute wΛk . The task (4) is the
topic of the current paper.

Least-squares problems

Before focussing on task (4), we briefly discuss a more general setting. For real Hilbert
spaces H and K, let A ∈L (H,K′) be a homeomorphism onto its range, i.e., ‖Av‖K′ h ‖v‖H
(v ∈ H), meaning that in case this range is K′, A is boundedly invertible. Let Ψ = {ψλ :
λ ∈ ∇Ψ} and Ξ = {ξλ : λ ∈ ∇Ξ} be Riesz bases (of wavelet type) for H and K. Equipping
K′ with the (equivalent) norm ‖ f‖K′ := sup0 6=w∈K

| f (w)|
‖w‖`2(∇Ξ )

, where w = w>Ξ , for given

f ∈ K′ the problem of finding u = argminv∈H ‖ f −Av‖K′ (i.e., Au = f when A is invertible)
is equivalent to A>Au = A>f, where A = (AΨ)(Ξ), u = u>Ψ , and f = f (Ξ).

The matrix A>A is symmetric and coercive, so the adaptive wavelet Galerkin method
can be applied to solve these normal equations. The residual from (4) now reads as A>(f−
AIΛ wΛ ). The task of its approximate evaluation can be viewed as the concatenation of
two subtasks; first the approximate evaluation of the primal residual f−AIΛ wΛ , yielding
r

Λ̃
∈ `2(Λ̃) for some Λ̃ ⊂ ∇Ξ , and then the approximate evaluation of the dual residual

g−A>I
Λ̃

r
Λ̃

, where g happens to be zero.
Although both subtasks look similar, the second one is easier. Recalling that inside the

adaptive wavelet Galerkin method, it always suffices to evaluate residuals up to some, suf-
ficiently small, relative tolerance (cf. the lower bound on ε in (4)), and that ‖r

Λ̃
‖`2(Λ̃) .

‖u− IΛ wΛ‖`2(∇Ψ ) . ‖A>(f−AIΛ wΛ )‖`2(∇Ψ ), we infer that the second task is performed
by replacing the multiplication with A> by that with A>η , when, for some sufficiently small
η > 0, ‖A−Aη‖L (`2(∇Ψ ),`2(∇Ξ )) ≤ η . Under usual assumptions on the operator A and on
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the collections Ψ and Ξ , which already will be needed to perform the first subtask, such an
Aη exists which is sparse, dependent on η . We infer that the second task can be performed
in O(#Λ̃) operations. So we conclude that also in this more general setting of least squares
problems, the main task is the approximate evaluation of the primal residual satisfying (4).

To end this excursion into more general settings, we note that the adaptive wavelet
Galerkin method can also be applied to solve non-linear (least-squares) problems, see [27].

Residual evaluation using the APPLY-routine

Returning to the task (4), for the unconstrained approximation setting already in [10] an
approximate matrix-vector multiplication routine APPLY was developed for approximating
AIΛk wΛk . It consists of an approximation scheme for the individual columns of A with accu-
racies that are increasing as function of the modulus of the corresponding entry in the input
vector. The resulting approximate multiplication of A with the vector IΛk wΛk is therefore a
non-linear mapping on `2(Λk).

Generally, each column of A has infinitely many non-zero entries. Under standard con-
ditions on the wavelet bases and on the operator A, however, A is close to being a sparse
matrix in the sense that these entries, re-ordered by decreasing modulus, form a sequence
that rapidly tends to zero. Assuming a sufficient near-sparsity of A, depending on s from
(4), and that of wΛk , the latter in the sense that supk |IΛk wΛk |A s < ∞, the cost of this APPLY-
routine with prescribed absolute tolerance ε/2 is O(ε−1/s +#Λk).

Given a Hilbert space H and a Riesz basis Ψ , there is a maximum smax on the value of s
for which u∈A s can be generally expected. For large classes of singular integral operators,
and partial differential operators with smooth coefficients, for s ≤ smax the sufficient near-
sparsity of A has been verified for bases of wavelets that are sufficiently smooth, and have
sufficiently many vanishing moments. The condition supk |IΛk wΛk |A s < ∞ is a consequence
of u ∈ A s and the convergence inside the adaptive wavelet Galerkin method of (IΛk wΛk)k
towards u with rate s.

Usually, approximating f does not pose any problem. From the aforementioned near-
sparsity of A, it follows that if, for s ≤ smax, u ∈ A s, then f = Au ∈ A s, where in many
cases even f ∈A s̃ for some s̃ > s can be demonstrated. Membership of f ∈A s means that
there exists an fε with ‖f− fε‖`(∇Ξ ) ≤ ε/2, where supp fε ⊂ Λ with #Λ . ε−1/s, and in the
constrained approximation case, with Λ being admissible. Assuming that this fε can also be
constructed in O(ε−1/s) operations, which involves a quadrature issue, we conclude that (4)
is realized.

Alternative approaches

Although qualitatively fully satisfactory, quantitatively the approximate evaluation of the
residual by means of the application of the APPLY-routine turns out to be quite demanding
as has been observed by many researchers. Various attempts were made to improve the
efficiency of the APPLY-routine, or to avoid its use.

In [7,8,14], we considered the case of Ψ (and Ξ when K 6= H) to be a tensor product
of bases of univariate functions. The advantage of this tensor product setting is that dimen-
sion independent convergence rates are obtained. On the other hand, the application of such
bases requires that the operator equation is posed on a product domain. Recently, in [6],
it was demonstrated that also non-product domains can be considered by equipping them
by piecewise tensor product bases constructed via a domain decomposition technique. The
present work, however, will be restricted to product domains.
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In the aforementioned papers, tensor product bases were constructed such that for A
corresponding to a partial differential operator with constant coefficients, A = (AΨ)(Ψ) (or
A = (AΨ)(Ξ)) is truly sparse, and so can be applied exactly in linear complexity, yielding
an adaptive wavelet Galerkin method that is also quantitatively efficient.

This approach, however, is restricted to the use of specific wavelet bases. So far, for
operators of second order, we were able to construct them as globally C1, piecewise polyno-
mials of degree 4 (or higher), with relatively large supports. The bases are biorthogonal, i.e.,
not L2-orthogonal. The use of L2-orthogonal univariate wavelets has the important advan-
tage that the condition number of the resulting tensor product basis is bounded, uniformly
in the number of factors, i.e., in the space dimension.

Residual evaluation in this paper

In the current paper, we consider constrained tensor product approximation, with the con-
straint being that only approximations from spans of collections of tensor product wavelets
are considered with index sets that are multi-trees. The natural index set of a tensor product
basis is the Cartesian product of the index sets of the univariate bases that are the factors
in the product. A subset of this index set is a multi-tree when “frozen” in all but one of its
coordinates, it is a tree in the remaining “free” coordinate.

For Ψ = {ψ~λ
:~λ ∈ ∇Ψ}, Ξ = {ξ~λ :~λ ∈ ∇Ξ} being tensor product bases for H and

K, an A ∈ L (H,K′) that corresponds to a linear partial differential operator with poly-
nomial coefficients, and f = Au, let A := (AΨ)(Ξ), u = u>Ψ , and f := f (Ξ). Under the
assumption of the functions in Ψ to be sufficiently smooth (C1 for a second order oper-
ator), we will prove that for u ∈ A s, ΛΨ ⊂ ∇Ψ being a multi-tree, wΛΨ

∈ `2(ΛΨ ), and
ε ≥ η‖f−AIΛΨ

wΛΨ
‖`2(∇Ξ ), there exists a multi-tree ΛΞ ⊂ ∇Ξ , with #ΛΞ . #ΛΨ + ε−1/s,

such that (f−AIΛΨ
wΛΨ

)|ΛΞ
approximates f−AIΛΨ

wΛΨ
in `2(∇Ξ ) within tolerance ε .

Apart from the computation, or sufficiently accurate approximation of f|ΛΞ
, the evalu-

ation of this approximate residual requires the multiplication with A|ΛΞ×ΛΨ
. Thanks to the

multi-tree structure of both ΛΞ and ΛΨ , the application of this linear mapping can be per-
formed in O(#ΛΞ +#ΛΨ ) operations by using a generalization of an algorithm for matrix-
vector multiplication on sparse grids (e.g., see [3–5,30,31]). Because of the way in which
multi-trees are traversed, the idea of this algorithm is known as the unidirectional principle.
Generalizations to adaptive sparse grids can be found in e.g. [1–4,19,17,24]. A generaliza-
tion to multi-tree wavelet index sets as needed here, together with a formal proof of its linear
complexity can be found in [21].

The idea behind the construction of the approximate residual evaluation is as follows.
Firstly, for A and Ψ as above, where additionally Ψ consists of piecewise polynomials, there
exists an auxiliary tensor product basis Θ for K, with dual Θ̃ = {θ̃~λ :~λ ∈∇

Θ̃
}, such that for

any given multi-tree ΛΨ ⊂ ∇Ψ , there exists a multi-tree Λ
Θ̃
⊂ ∇

Θ̃
with #Λ

Θ̃
. #ΛΨ and

ℑA|span{ψ~λ :~λ∈ΛΨ }
⊂ span{θ̃~λ :~λ ∈Λ

Θ̃
}. (5)

In particular, we have A((IΛΨ
wΛΨ

)>Ψ) ∈ span{θ̃~λ :~λ ∈Λ
Θ̃
}.

Another consequence of (5) is that u ∈ A s implies that f (Θ) ∈ A s. So there exists a
multi-tree in ∇

Θ̃
, with cardinality O(ε−1/s), such that f can be approximated within tol-

erance ε in ‖ · ‖K′ by a linear combination fε of θ̃~λ
with ~λ from this multi-tree. By re-

defining Λ
Θ̃

as the union of the latter multi-tree and the previous Λ
Θ̃

, we conclude that
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fε −A((IΛΨ
wΛΨ

)>Ψ) ∈ span{θ̃~λ :~λ ∈ Λ
Θ̃
} approximates the residual within tolerance ε ,

where #Λ
Θ̃
. #ΛΨ + ε−1/s.

The second ingredient behind the construction is the proof of Θ̃(Ξ) being close to a
sparse matrix, in the sense that for arbitrary, fixed η > 0, for any multi-tree Λ

Θ̃
⊂ ∇

Θ̃
, there

exists a multi-tree ΛΞ ⊂ ∇Ξ with #ΛΞ . #Λ
Θ̃

and ‖Θ̃(Ξ)|∇Ξ \ΛΞ×Λ
Θ̃
‖L (`2(∇Θ̃

),`2(∇Ξ )) ≤ η .
So with fε := fε(Ξ), the approximation ( fε−A((IΛΨ

wΛΨ
)>Ψ))(Ξ)|ΛΞ

=(fε−AIΛΨ
wΛΨ

)|ΛΞ

to fε −AIΛΨ
wΛΨ

has a relative error of order η . By ‖ f − fε‖K′ h ‖f− fε‖`2(∇Ξ ), we arrive
at the estimate ‖(f−AIΛΨ

wΛΨ
)|∇Ξ \ΛΞ

‖`2(∇Ξ ) . ε +η‖(f−AIΛΨ
wΛΨ

)‖`2(∇Ξ ) as required.

Remark 1 In view of the use of tensor product bases and the unidirectional principle to eval-
uate the matrix-vector multiplication, our adaptive wavelet algorithm has similarities with
adaptive sparse grid methods. There are, however, also important differences. In general,
within adaptive sparse grid algorithms new degrees of freedom are added in neighborhoods
of those current degrees of freedom that correspond to the largest coefficients, e.g., see [1–
5,19,17,20,24,25,31]. This is due to the fact that in (most cases) adaptive sparse grids are
based on (infinite) tensor product collections that are not Riesz bases for the closures of their
spans. Consequently, the norm of the residual vector is not equivalent to the norm of the er-
ror, and so the residual cannot be used as a reliable and efficient a posteriori error estimator
to steer the adaptive process. Nevertheless, as shown in the above mentioned references,
this adaptive approach improves upon non-adaptive sparse grid methods in various practical
examples. However, other than with the adaptive wavelet algorithm, in general, convergence
and so in particular optimal convergence rates cannot be guaranteed.

Organization

The remainder of this paper is organized as follows: In Section 2, a general criterion is de-
rived for our approximate residual to realize (4). In Section 3, the conditions of this criterion
are verified in the setting of tensor product bases and an operator that corresponds to a par-
tial differential operator with polynomial coefficients. The results of various experiments
illustrating the performance of the new approximate residual evaluation are presented in
Section 4.

2 Approximate evaluation of the residual

We take up the issue outlined in the introduction, and present a method that realizes task (4).

Theorem 1 For some (real) Hilbert spaces H and K, let A ∈L (H,K′). Let

(A). Ξ = {ξλ : λ ∈ ∇Ξ} ⊂ K be such that ‖[g(ξλ )]λ∈∇Ξ
‖`2(∇Ξ ) h ‖g‖K′ (g ∈ K′), i.e., Ξ is a

frame for Ξ , e.g., a Riesz basis,
(B). Θ̃ = {θ̃λ : λ ∈ ∇

Θ̃
} ⊂ K′ be such that ‖z̃‖`2(∇Θ̃

) . ‖z̃>Θ̃‖K′ (z̃ ∈ `2(∇Θ̃
)),

(C). Ψ = {ψλ : λ ∈ ∇Ψ} ⊂ H.

We consider classes of “admissible” finite subsets of ∇Ξ , ∇
Θ̃

, and ∇Ψ , respectively,
which classes should be closed under taking unions, such that

(D). for any admissible ΛΨ ⊂∇Ψ , there exists an admissible Λ
Θ̃
⊂∇

Θ̃
such that A(span{ψλ :

λ ∈ΛΨ})⊂ span{θ̃λ : λ ∈Λ
Θ̃
}, and #Λ

Θ̃
. #ΛΨ ,
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(E). for any η > 0, and any admissible Λ
Θ̃
⊂ ∇

Θ̃
, there exists an admissible ΛΞ ⊂ ∇Ξ with

#ΛΞ . #Λ
Θ̃

, generally dependent on η , such that

‖[θ̃µ(ξλ )]λ∈∇Ξ \ΛΞ ,µ∈Λ
Θ̃
‖L (`2(∇Θ̃

),`2(∇Ξ )) ≤ η .

Now let u ∈ H be such that for some s > 0, for any ε > 0, there exists an admissible
ΛΨ ⊂ ∇Ψ with #ΛΨ . ε−1/s and infv∈span{ψλ :λ∈ΛΨ } ‖u− v‖H ≤ ε .

Then for f = Au, an arbitrary, fixed η > 0, and any admissible ΛΨ ⊂ ∇Ψ , wΛΨ
∈

span{ψλ : λ ∈ΛΨ}, and ε > 0, there exists an admissible ΛΞ ⊂ ∇Ξ with

‖[( f −AwΛΨ
)(ξλ )]λ∈∇Ξ

− [( f −AwΛΨ
)(ξλ )]λ∈ΛΞ

‖`2(∇Ξ )

. η‖[( f −AwΛΨ
)(ξλ )]λ∈∇Ξ

‖`2(∇Ξ )+(1+η)ε,
(6)

and #ΛΞ . #ΛΨ + ε−1/s (generally dependent on η), i.e., task (4) is realized.

Proof By the assumption on u, and f = Au with A ∈L (H,K′), Condition (D) implies that
there exists an admissible Λ

(1)
Θ̃
⊂ ∇

Θ̃
with #Λ

(1)
Θ̃
. ε−1/s, and an fε ∈ span{θ̃λ : λ ∈Λ

(1)
Θ̃
}

with ‖ f − fε‖K′ ≤ ε .
With Λ

(2)
Θ̃

denoting the set from (D) corresponding to ΛΨ , let Λ
Θ̃
= Λ

(1)
Θ̃
∪Λ

(2)
Θ̃

, and let
ΛΞ correspond to Λ

Θ̃
according to (E). Then we have #ΛΞ . #ΛΨ + ε−1/s, and

‖[( fε −AwΛΨ
)(ξλ )]λ∈∇Ξ \ΛΞ

‖`2(∇Ξ ) . η‖ fε −AwΛΨ
‖K′ ≤ η‖ f −AwΛΨ

‖K′ +ηε

by (E) and (B). The proof is completed by ‖[( fε− f )(ξλ )]λ∈∇Ξ \ΛΞ
‖`2(∇Ξ ) . ‖ fε− f‖K′ ≤ ε

by (A), and ‖ fε −AwΛΨ
‖K′ . ‖[( fε −AwΛΨ

)(ξλ )]λ∈∇Ξ
‖`2(∇Ξ ) again by (A).

Remark 2 For completeness, to show that with Theorem 1 indeed task (4) is realized, note
that (6) means that for some constant C > 0,

‖[( f −AwΛΨ
)(ξλ )]λ∈∇Ξ

− [( f −AwΛΨ
)(ξλ )]λ∈ΛΞ

‖`2(∇Ξ )

≤C[η‖[( f −AwΛΨ
)(ξλ )]λ∈∇Ξ

‖`2(∇Ξ )+(1+η)ε]. (7)

Now given η̄ , ε̄ > 0, set η = η̄

1+C , ε = ε̄

C(C+1)/(1+η). By substituting these η and ε into
the upper bound (7), for ε̄ ≥ η̄‖[( f −AwΛΨ

)(ξλ )]λ∈∇Ξ
‖`2(∇Ξ ) we find that this upper bound

is less or equal to ε̄ as required.

Remark 3 The verification of Conditions (D) and (E) in the next section gives information,
in any case qualitatively, how to construct Λ

(2)
Θ̃

from ΛΨ , and ΛΞ from Λ
Θ̃
= Λ

(1)
Θ̃
∪Λ

(2)
Θ̃

.

The construction of Λ
(1)
Θ̃

depends on the right-hand side at hand, which is, however, known

to the user. Fortunately, in many applications it suffices to take Λ
Θ̃
= Λ

(2)
Θ̃

.

Remark 4 Condition (B) is satisfied when there exists a Θ = {θλ : λ ∈ ∇
Θ̃
} ⊂ K with

Θ̃(Θ) = Id and ‖z>Θ‖K . ‖z‖`2(∇Θ̃
) (z ∈ `2(∇Θ̃

)) (so, in particular when Θ is a Riesz ba-

sis for K). Indeed, then ‖z̃‖`2(∇Θ̃
) = sup0 6=z∈`2(∇Θ̃

)

〈z̃,z〉`2(∇Θ̃
)

‖z‖`2(∇Θ̃
)
= sup0 6=z∈`2(∇Θ̃

)
(z̃>Θ̃)(z>Θ)
‖z‖`2(∇Θ̃

)
.

‖z̃>Θ̃‖K′ . Both Θ̃ and Θ are auxiliary collections that will not enter the computation.

Remark 5 In the proof of Theorem 1, in order to conclude that if u can be approximated in
H from spanΨ at rate s, then so can f in K′ from spanΘ̃ , we assumed that f = Au. In the
setting of least squares problems discussed in the introduction, the assumption that f = Au
requires that the problem is consistent in the sense that f ∈ ℑA. When this does not hold
true, an approximation rate s for the right-hand side has to be added as a separate condition.
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3 Application in the tensor product setting

We verify the conditions of Theorem 1 for A being a linear partial differential operator
having polynomial coefficients on a rectangular domain, and collections of tensor product
functions.

3.1 Assumptions and verification of Condition (D)

For some n ∈ N, and � := ∏
n
i=1(ai,bi) for some ai < bi ∈ Z∪{−∞,∞}, let A ∈L (H,K′),

where
H,K ↪→ L2(�)' L2(�)

′ ↪→ K′.

For some invertible diagonal matrices DΨ = (dΨ

~λ
)~λ , DΘ̃ = (dΘ̃

~λ
)~λ , and DΞ = (dΞ

~λ
)~λ , we

assume that the collections Ψ ⊂ H, Θ̃ , and Ξ are of type

DΨ
Ψ =⊗n

i=1Ψ
(i),Ψ (i) = {ψ(i)

λ
: λ ∈ ∇

Ψ (i)},dΨ

~λ
ψ~λ

:=
n⊗

i=1

ψ
(i)
λi

(~λ ∈ ∇Ψ :=
n

∏
i=1

∇
Ψ (i)),

DΘ̃
Θ̃ =⊗n

i=1Θ̃
(i), Θ̃ (i) = {θ̃ (i)

λ
: λ ∈ ∇

Θ̃ (i)}, dΘ̃

~λ
θ̃~λ

:=
n⊗

i=1

θ̃
(i)
λi

(~λ ∈ ∇
Θ̃

:=
n

∏
i=1

∇
Θ̃ (i)),

DΞ
Ξ =⊗n

i=1Ξ
(i), Ξ

(i) = {ξ (i)
λ

: λ ∈ ∇
Ξ (i)}, dΞ

~λ
ξ~λ

:=
n⊗

i=1

ξ
(i)
λi

(~λ ∈ ∇Ξ :=
n

∏
i=1

∇
Ξ (i)),

where Ψ (i),Θ̃ (i),Ξ (i) ⊂ L2(ai,bi) are collections of functions normalized in L2(ai,bi).
We assume that Ψ (i), Θ̃ (i), and Ξ (i) are local in the sense that

sup
λ∈∇

Ψ(i)

2|λ | diamsuppψ
(i)
λ

< ∞, (8)

sup
`∈N0

sup
x∈(ai,bi)

#{λ ∈ ∇
Ψ (i) : |λ |= `∧ suppψ

(i)
λ
∩B(x;2−`) 6= /0}< ∞, (9)

where |λ | ∈ N0 denotes the level of λ , and similarly for Θ̃ (i) and Ξ (i).
We assume that for 1≤ i≤ n, there exists another local collection Θ (i) ⊂ L2(ai,bi) that

is dual to Θ̃ (i). Consequently,
Θ := DΘ̃ ⊗n

i=1 Θ
(i)

is dual to Θ̃ .
We add the harmless assumptions that for all ` ∈ N0⋃

{λ∈∇
Ψ(i) :|λ |=`}

suppψ
(i)
λ

= (ai,bi), (10)

⋃
{λ∈∇

Ξ(i) :|λ |=`}
suppξ

(i)
λ

= (ai,bi), (11)

and, with S(i)
λ

:= suppθ
(i)
λ
∪ supp θ̃

(i)
λ

(λ ∈ ∇
(i)
Θ̃
),

⋃
{λ∈∇

Θ̃(i) :|λ |=`}
S(i)

λ
= (ai,bi). (12)
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Finally, we make the assumptions that for some p ∈ N0,

span{ψ(i)
λ

: λ ∈ ∇
Ψ (i) , |λ |= `}

⊂
{

g : (ai,bi)→ R : g|( j2−`,( j+1)2−`) ∈ Pp, j ∈ [ai2`,bi2`−1]∩Z
}

(13)

⊂ span{θ̃ (i)
λ

: λ ∈ ∇
Θ̃ (i) , |λ | ≤ `}, (14)

with the assumption (14) concerning the inclusion of all (discontinuous) piecewise polyno-
mials being crucial.

We call a collection Λ ⊂ ∇
Ψ (i) a tree, if whenever λ ∈ ∇

Ψ (i) with |λ | > 0 is in Λ , then

the support of ψ
(i)
λ

is covered by the supports of ψ
(i)
µ for some µ ∈ Λ with |µ| = |λ | − 1.

The definition of a tree Λ ⊂ ∇
Ξ (i) is similar, whereas for the definition of a tree Λ ⊂ ∇

Θ̃ (i) ,

supp θ̃
(i)
µ and supp θ̃

(i)
λ

should be read as S(i)µ and S(i)
λ

, respectively.
A collection Λ ⊂∇Ψ is called a multi-tree, and similar for Λ ⊂∇

Θ̃
or Λ ⊂∇Ξ , if when

“frozen” in any n− 1 coordinates it is a tree in the remaining coordinate. In the current
setting, as admissible subsets of ∇Ψ , ∇

Θ̃
, or ∇Ξ mentioned in Theorem 1, we consider

multi-trees.

Remark 6 The restriction to index sets that are multi-trees is harmless in the sense that it
still allows to approximate a wide class of functions, that includes solutions of PDEs, at
optimal, n-independent rates (cf. [6, Thm. 3.2]).

Proposition 1 In addition to the assumptions of A ∈ L (H,K′), Ψ ⊂ H, the collections
Ψ (i), Θ̃ (i) and its dual Θ (i) being local, and (10), (13), and (14), let, for some densely
embedded H̃ ⊂ H, A(H̃) ⊂ L2(�), and A|H̃ be a linear partial differential operator with
constant coefficients. Let spanΨ ⊂ H̃. Then for any multi-tree ΛΨ ⊂ ∇Ψ , there exists a
multi-tree Λ

Θ̃
⊂ ∇

Θ̃
with #Λ

Θ̃
. #ΛΨ and

A(span{ψ~λ
:~λ ∈ΛΨ})⊂ span{θ̃~µ :~µ ∈Λ

Θ̃
}, (15)

i.e., condition (D) from Theorem 1 is valid.

Proof With Ci := supµ∈∇
Θ̃(i)

2|µ| diamS(i)µ , given a multi-tree ΛΨ ⊂ ∇Ψ , we take

Λ
Θ̃

:= {~µ ∈ ∇
Θ̃

: ∃~λ ∈ΛΨ s.t. |~µ|= |~λ |∧d(suppψ
(i)
λi
,S(i)µi )≤Ci2−|µi| (∀i)},

where |~γ| := (|γ1|, . . . , |γn|), and for sets X ,Y ⊂ Rn, d(X ,Y ) := infx∈X ,y∈Y |x−y|. Note that in
view of (10), and since ΛΨ is a multi-tree, Λ

Θ̃
does not change when the condition |~µ|= |~λ |

reads as |~µ| ≤ |~λ |.
The assumptions of A|H̃ being a linear partial differential operator with constant coeffi-

cients, A(spanΨ) ⊂ L2(�), and (13)-(14) show that for~λ ∈ ∇Ψ , one has Aψ~λ
∈ span{θ̃~µ :

~µ ∈ ∇
Θ̃
, |~µ| ≤ |~λ |} and suppAψ~λ

⊆ suppψ~λ
.

Now let v ∈ span{ψ~λ
:~λ ∈ ΛΨ}, i.e., v = ∑~λ∈ΛΨ

v~λ ψ~λ
. From A being linear, and Θ

being dual to Θ̃ , we have

Av = ∑
{~µ∈∇

Θ̃
:‖|~µ|‖∞≤max~λ∈ΛΨ

‖|~λ |‖∞}
∑

~λ∈ΛΨ

v~λ 〈Aψ~λ
,θ~µ〉L2(�)θ̃~µ .
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Now let~µ 6∈Λ
Θ̃

. Then for all~λ ∈ΛΨ there exists an i with either |µi|> |λi| or |suppψ
(i)
λi

∩S(i)µi |= 0, and so 〈Aψ~λ
,θ~µ〉L2(�) = 0 from suppθ

(i)
µi ⊆S(i)µi . We conclude that (15) is valid.

To show that Λ
Θ̃

is a multi-tree, let ~µ ∈ Λ
Θ̃

, ~γ ∈ ∇
Θ̃

with, for some i, γ j = µ j for
j 6= i, and |γi| = |µi| − 1 and |S(i)µi ∩ S(i)γi | > 0. There exists a ~λ ∈ ΛΨ with |~µ| ≤ |~λ | and

d(suppψ
(i)
λi
,S(i)µi ) ≤ Ci2−|µi| forall i. We infer that d(suppψ

(i)
λi
,S(i)γi ) ≤ d(suppψ

(i)
λi
,S(i)µi ) +

diamS(i)µi ≤Ci2−|µi|+Ci2−|µi| =Ci2−|γi|, and so~γ ∈Λ
Θ̃

. Now apply (12).
By the locality of Θ̃ (i), Θ (i), and Ψ (i), the definition of Λ

Θ̃
shows that #Λ

Θ̃
. #ΛΨ ,

which completes the proof.

Example 1 With H = K = H1
0 (�), a model example of an A as in Proposition 1 is given by

(Au)(v) =
∫

Ω
∇u ·∇v+ωuv for some ω ≥ 0, and ω & 1 when � is unbounded (see [22]

for the application of adaptive wavelet schemes for such domains). With H̃ := H2(�)∩
H1

0 (�), integration by parts shows that A(H̃)⊂ L2(�) and A|H̃ =−∆+ωI. Note that for the
latter two properties it is essential that the boundary conditions on ∂� are of homogeneous
Dirichlet type.

Remark 7 If A|H̃ is a linear partial differential operator with polynomial coefficients, say of
maximal degree p̃, then the statement of Proposition 1 is still valid, assuming that (14) holds
for p reading as p+ p̃. We expect that for any fixed p+ p̃ suitable biorthogonal collections
(Θ (i),Θ̃ (i)) can be found such that this second inclusion is valid, cf. Remark 8.

If, for some fixed k ∈ N, (14) is valid with span{θ̃ (i)
λ

: |λ | ≤ `} reading as span{θ̃ (i)
λ

:
|λ | ≤ `−k}, i.e., if the coarsest scale in the (Θ (i),Θ̃ (i)) system is increased with k levels, then
the statement of Proposition 1 is still valid when the coefficients of the partial differential
operator are piecewise polynomial w.r.t. the partition �̄= ∪{α∈Zn:2−k(α+�̄)⊂�̄}2

−k(α + �̄).
It is tempting to combine both above generalizations, and to approximate general smooth

coefficients of a partial differential operator by piecewise polynomials. Yet, since for the
multi-trees ΛΨ and ΛΘ̃ from Proposition 1 it holds that #ΛΘ̃/#ΛΨ → ∞ when p̃ or k tend
to infinity, it is not clear whether this yields some useful results.

3.2 Further assumptions and verification of Conditions (A), (B), and (E) of Theorem 1

We will consider a space K of the following form. For 1 ≤ i ≤ n, for some mi ∈ N0 and
~σi = (σi,l ,σi,r) ∈ {0, . . . ,mi}2, let

Hmi
~σi
(ai,bi) := {v ∈ Hmi(ai,bi) :v(ai) = · · ·= v(σi,l−1)(ai) = 0,

v(bi) = · · ·= v(σi,r−1)(bi) = 0},

H s
i := [L2(ai,bi),H

mi
~σi
(ai,bi)]s/mi (s ∈ [0,mi]).

For some finite I ⊂∏
n
i=1[0,mi], let

K =
⋂
~q∈I

n⊗
i=1

H qi
i , (16)

equipped with the usual norm on an intersection space. Examples of applications will be
given in Subsection 3.3.
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We assume that

‖ ∑
µ∈∇

Θ̃(i)

zµ 2−|µ|sθ (i)
µ ‖2

H s
i
. ∑

µ∈∇
Θ̃(i)

|zµ |2 (1≤ i≤ n, s ∈ {0,mi}). (17)

Then, taking

(dΘ̃

~µ )−2 h ∑
q∈I

n

∏
i=1

4|µi|qi , (~µ ∈ ∇
Θ̃
), (18)

we infer that ‖z>Θ‖K . ‖z‖`2(∇Θ̃
), and so (B) is valid by Remark 4. (For (B), it suffices

when (18) holds with “h” reading as “&”, whereas for the proof of (E) the inequality “.”
will be used.)

Additionally, we impose the (mild) piecewise smoothness conditions

sup
i,µ∈∇

Θ̃(i)

2−|µ|/2‖θ̃ (i)
µ ‖L∞(ai,bi) < ∞, (19)

sup
i,µ∈∇

Θ̃(i)

2−3|µ|/2 sup
{ j∈Z:( j2−|µ|,( j+1)2−|µ|)∈(ai,bi)}

‖θ̃ (i)
µ ‖W 1

∞( j2−|µ|,( j+1)2−|µ|) < ∞, (20)

at the “dual” side, the Jackson estimate

inf
w∈span{θ (i)

µ :|µ|≤`}
‖u−w‖L2(ai,bi) . 2−`mi‖u‖Hmi (ai,bi) (u ∈ Hmi

~σi
(ai,bi)) (21)

at the “primal” side, and

‖ ∑
{µ∈∇

Θ̃(i) :|µ|=`}
z̃µ θ̃µ

(i)‖2
L2(ai,bi)

. ∑
{µ∈∇

Θ̃(i) :|µ|=`}
|z̃µ |2, (22)

uniformly for all ` ∈ N0.

Remark 8 Auxiliary biorthogonal collections (Θ (i),Θ̃ (i)) that are both local, satisfy (12),
(14), (17), (19), (20), (21), and (22) have been constructed in [7] for mi = 2, ~σi ∈ {0,1}2,
and p = 4, and so obviously for mi ≤ 2, ~σi ∈ {0,min(1,mi)}2, and p ≤ 4. (The case ~σi =
(1,1) considered in [7] is extended to ~σi ∈ {0,1}2 in [6, §7]). Instead of (17) and (22),
for s ∈ {0,mi}, {2−|µ|sθ (i)

µ : µ ∈ ∇
Θ̃ (i)} is even a Riesz basis for H s

i . We expect that such
(Θ (i),Θ̃ (i)) exist for any mi ∈ N0, ~σi ∈ {0, . . . ,mi}2 and p ∈ N0.

Concerning Ξ , we assume that

Ξ
(i) ⊂ Hmi

~σi
(ai,bi), (23)

so that Ξ ⊂ K, the Bernstein inequality

‖ · ‖Hmi (ai,bi) . 2`mi‖ · ‖L2(ai,bi) on span{ξ (i)
λ

: |λ |= `}, (24)

‖ ∑
{λ∈∇

Ξ(i) :|λ |=`}
zλ ξ

(i)
λ
‖2

L2(ai,bi)
. ∑
{λ∈∇

Ξ(i) :|λ |=`}
|zλ |2, (25)

uniformly for all ` ∈ N0,

(dΞ

~λ
)2 &∑

~q∈I

n

∏
i=1

4|λi|qi (~λ ∈ ∇Ξ ), (26)
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and ∫ bi

ai

ξ
(i)
λ

dx = 0 (i, λ ∈ ∇
Ξ (i) with |λ |> 0), (27)

the latter possibly with the exception of those λ for which d({ai,bi},suppξ
(i)
λ
). 2−|λ |.

Remark 9 If, for s ∈ {0,mi}, {2−|λ |sξ (i)
λ

: λ ∈ ∇
Ξ (i)} is a Riesz basis for H s

i , then (24)
and (25) are valid (even with “h”). Taking (dΞ

~λ
)2 h ∑~q∈I ∏

n
i=1 4|λi|qi , (26) is valid and Ξ

is a Riesz basis for K, so that in particular Condition (A) is valid. The condition (27) of
the functions to have at least one vanishing moment, with the exception of functions on the
coarsest level and possibly those with supports near the boundary, is a standard condition on
a wavelet basis.

Proposition 2 Assume (12), the locality of Ξ (i),Θ (i), and Θ̃ (i), and (17)–(27). Then, for any
η > 0, and any multi-tree Λ

Θ̃
⊂ ∇

Θ̃
, there exists a multi-tree ΛΞ ⊂ ∇Ξ with #ΛΞ . #Λ

Θ̃
,

generally dependent on η , such that

‖[〈ξ~λ , θ̃~µ〉L2(�)]~λ∈∇Ξ \ΛΞ ,~µ∈Λ
Θ̃

‖L (`2(∇Θ̃
),`2(∇Ξ )) ≤ η ,

i.e., condition (E) of Theorem 1 is valid.

Proof With Di := supλ∈∇
Ξ(i)

2|λ | diamsuppξ
(i)
λ

, for a multi-tree Λ
Θ̃
⊂ ∇

Θ̃
and ` ∈ N0, let

ΛΞ := {~λ ∈ ∇Ξ : ∃~µ ∈Λ
Θ̃

s.t. ∀i, |λi| ≤ |µi|+ `∧d(suppξ
(i)
λi
,S(i)µi )≤ Di2−|λi|}. (28)

Let~λ ∈ΛΞ with for some i, |λi|> 0, and let~µ ∈Λ
Θ̃

correspond to~λ as in the definition
of ΛΞ . From Λ

Θ̃
being a multi-tree, we infer that there exists a~ν ∈∇

Θ̃
with ν j = µ j for j 6= i,

|νi|= |µi|−1, d(suppξ
(i)
λi
,S(i)νi )≤ Di2−|λi|, and |S(i)νi ∩S(i)µi |> 0. Now for any γi ∈ ∇

Ξ (i) with

|γi| = |λi| − 1 and |suppξ
(i)
γi ∩ suppξ

(i)
λi
| > 0, we have d(suppξ

(i)
γi ,S

(i)
νi ) ≤ diamsuppξ

(i)
λi

+

d(suppξ
(i)
λi
,S(i)νi ) ≤ Di2−|γi|, showing that ~γ := (γ1, . . . ,γn) with γ j = λ j for j 6= i is in ΛΞ .

From (11), we conclude that ΛΞ is a multi-tree.
The locality of Ξ (i), Θ (i), and Θ̃ (i) shows that #ΛΞ . #Λ

Θ̃
, dependent on `.

In order to prove the last statement, with I~k,~k′ := [〈ξ~λ , θ̃~µ〉L2(�)]|~λ |=~k,|~µ|=~k′ , it is sufficient
to show that for sufficiently large `,

sup
~k

∑
{~k′:∃i s.t. ki>k′i+`}

‖I~k,~k′‖× sup
~k′

∑
{~k:∃i s.t. ki>k′i+`}

‖I~k,~k′‖ ≤ η . (29)

Indeed, for the corresponding block partitioning of [〈ξ~λ , θ̃~µ〉L2(�)]~λ∈∇Ξ \ΛΞ ,~µ∈Λ
Θ̃

, denoted

by [Î~k,~k′ ]~k,~k′ , one has that Î~k,~k′ is equal to I~k,~k′ possibly with some columns or rows being re-

moved. In particular, from supp θ̃
(i)
µi ⊆S(i)µi one has that Î~k,~k′ = 0 when ki ≤ k′i +` for all i. Now

an application of the Schur lemma shows that ‖[〈ξ~λ , θ̃~µ〉L2(�)]~λ∈∇Ξ \ΛΞ ,~µ∈Λ
Θ̃

‖L (`2(∇Θ̃
),`2(∇Ξ ))

is less or equal to the left hand side from (29).
With I(i)k,k′ := [〈ξ (i)

λ
, θ̃

(i)
µ 〉L2(ai,bi)]|λ |=k,|µ|=k′ , we have

I~k,~k′ = [1/dΞ

~λ
]|~λ |=~k ◦

n⊗
i=1

I(i)ki,k′i
◦ [1/dΘ̃

~µ ]|~µ|=~k′ ,
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and so by (18) and (26),

‖I~k,~k′‖.

√
∑~q∈I ∏

n
i=1 4k′iqi√

∑~q∈I ∏
n
i=1 4kiqi

n

∏
i=1
‖I(i)ki,k′i

‖. (30)

For k≥ k′, we split I(i)k,k′ into I(i,s)k,k′ and I(i,r)k,k′ , where the first matrix contains the “singular”

entries (I(i)k,k′)λ ,µ of I(i)k,k′ with (suppξ
(i)
λ
)◦∩2−k′Z 6= /0 or d({ai,bi},suppξ

(i)
λ
). 2−|λ | (cf. line

following (27)), and the second one contains the remaining “regular” entries.
The matrix I(i,s)k,k′ is sparse, uniformly in k,k′, and from (19) and the locality of Ξ (i), for

|λ |= k, |µ|= k′, we have

|〈ξ (i)
λ
, θ̃

(i)
µ 〉L2(ai,bi)| ≤ ‖ξ

(i)
λ
‖L1(ai,bi)‖θ̃

(i)
µ ‖L∞(ai,bi) . 2

1
2 (k
′−k). (31)

For the regular entries with |λ | = k, |µ| = k′, from (27), the locality of Ξ (i), and (20),
we have

|〈ξ (i)
λ
, θ̃

(i)
µ 〉L2(ai,bi)|.‖ξ

(i)
λ
‖L1(ai,bi)2

−k sup
j∈[ai2k′ ,bi2k′−1]∩Z

‖θ̃ (i)
µ ‖W 1

∞( j2−k′ ,( j+1)2−k′ )

. 2
3
2 (k
′−k).

(32)

Using, by the locality of Θ̃ (i) and Ξ (i), that the number of non-zeros per row and column of
I(i,r)k,k′ is O(1) or O(2k−k′), from the Schur lemma we infer that ‖I(i,r)k,k′ ‖. 2(k

′−k). We conclude
that

‖I(i)k,k′‖. 2
1
2 (k
′−k) (k ≥ k′). (33)

For v∈ span{θ̃ (i)
µ : µ ∈∇

Θ̃ (i) , |µ|= k′}, by the biorthogonality of Θ (i), Θ̃ (i) and (21), we
have

‖v‖(Hmi
~σi

(ai,bi))′
= sup

0 6=z∈H
mi
~σi

(ai,bi)

〈v,z〉L2(ai,bi)

‖z‖Hmi (ai,bi)
=

sup
0 6=z∈H

mi
~σi

(ai,bi)

inf
w∈span{θ (i)

µ :µ∈∇
Θ̃(i) ,|µ|<k′}

〈v,z−w〉L2(ai,bi)

‖z‖Hmi (ai,bi)
. 2−k′mi‖v‖L2(ai,bi).

Now from Ξ (i) ⊂ Hmi
~σi
(ai,bi), (24), (25), and (22), for k ≤ k′ we estimate

|〈I(i)k,k′ z̃,d〉|=
∣∣〈 ∑
|λ |=k

dλ ξ
(i)
λ
, ∑
|µ|=k′

z̃µ θ̃
(i)
µ

〉
L2(ai,bi)

∣∣
. ‖ ∑

|λ |=k
dλ ξ

(i)
λ
‖Hmi (ai,bi)2

−k′mi‖ ∑
|µ|=k′

z̃µ θ̃
(i)
µ ‖L2(ai,bi)

. 2kmi‖ ∑
|λ |=k

dλ ξ
(i)
λ
‖L2(ai,bi)2

−k′mi‖ ∑
|µ|=k′

z̃µ θ̃
(i)
µ ‖L2(ai,bi)

. 2(k−k′)mi‖d‖‖z̃‖,

or
‖I(i)k,k′‖. 2(k−k′)mi (k ≤ k′). (34)
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From (30),

√
∑~q∈I ∏

n
i=1 4k′iqi√

∑~q∈I ∏
n
i=1 4kiqi

≤ ∑~q∈I ∏
n
i=1 2(k

′
i−ki)qi , (33), and (34), we infer that

‖I~k,~k′‖. ∏
{i:ki≥k′i}

2
1
2 (k
′
i−ki).

We conclude that the left-hand side from (29) is O(2−
1
2 `), and so that (29) is valid when `

is sufficiently large, with which the proof is completed.

Remark 10 We assumed K to be the intersection of tensor products of Sobolev spaces of
univariate functions of nonnegative orders. Now consider the case that in (16) some qi is
negative. Then with (dΘ̃

~µ
)−2 as in (18),~k,~k′ can be selected with ki > k′i and k j ≤ k′j for j 6= i

such that

√
∑~q∈I ∏

n
i=1 4k′iqi√

∑~q∈I ∏
n
i=1 4kiqi

is arbitrarily close to 2(k
′
i−ki)qi . Thus, in order to bound ‖I~k,~k′‖ in

(30), for qi ≤− 1
2 the growth 2(k

′
i−ki)qi as function of ki−k′i is not compensated by the bound

‖I(i)ki,k′i
‖. 2

1
2 (k
′
i−ki) from (33). Since for discontinuous θ̃

(i)
λ

, as needed for (14), generally the
estimate (33) is sharp, we conclude that our assumptions on K seem hard to avoid.

Actually, the above reasoning shows that for qi ≤− 1
2 it cannot be expected that

[〈ξ~λ , θ̃~µ〉L2(�)]~λ∈∇Ξ ,~µ∈∇
Θ̃

∈L (`2(∇Θ̃
), `2(∇Ξ )). Assuming that ‖z>Ξ‖K . ‖z‖`2(∇Ξ ), this

means that it is not possible that ‖z̃>Θ̃‖K′ . ‖z̃‖`2(∇Θ̃
).

3.3 Examples

We give two examples of settings where K is the intersection of tensor products of univariate
Sobolev spaces of nonnegative orders.

Example 2 When the operator A results from a variational formulation of a second order
elliptic boundary value problem, e.g. Poisson’s equation, on � with homogeneous Dirichlet
boundary conditions, the natural spaces are

H = K = H1
0 (�) =H1

(1,1)(a1,b1)⊗L2(a2,b2)⊗·· ·⊗L2(an,bn) ∩
...

∩ L2(a1,b1)⊗·· ·⊗L2(an−1,bn−1)⊗H1
(1,1)(an,bn).

Example 3 With “spatial domain” �̃ = ∏
n
i=2(ai,bi), and −∞ < a1, b1 < ∞, for t ∈ (a1,b1)

a.e. let b(t; ·, ·) be a bilinear form on H1
0 (�̃)×H1

0 (�̃) such that for some constant λ0 and for
a.e. t ∈ (a1,b1),

|b(t;ω,ζ )|. ‖ω‖H1(�̃)‖ζ‖H1(�̃) (ω,ζ ∈ H1
0 (�̃)),

b(t;ω,ω)+λ0‖ω‖2
L2(�̃)

& ‖ω‖2
H1(�̃) (ω ∈ H1

0 (�̃)).

With B(t) ∈ L (H1
0 (�̃),H

−1(�̃)) defined by (B(t)ω)(ζ ) = b(t;ω,ζ ), given a right-hand
side g(t) and an initial datum h, we consider the parabolic problem of solving

du
dt (t)+B(t)u(t) = g(t) in H−1(�̃), u(a1) = h in L2(�̃).
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A well-posed simultaneous space-time variational formulation reads as finding u∈H :=
L2(a1,b1)⊗H1

0 (�̃)∩H1(a1,b1)⊗H−1(�̃) such that for all v = (v1,v2)∈K := L2(a1,b1)⊗
H1

0 (�̃)×L2(�̃),

(Au)(v) :=
∫ b1

a1

∫
�̃

∂u
∂ t (t,~x)v1(t,~x)+b(t;u(t,~x),v1(t,~x))dtd~x+

∫
�̃

u(a1,~x)v2(~x)d~x

=
∫ b1

a1

∫
�̃

g(t,~x)v1(t,~x)dtd~x+
∫
�̃

h(~x)v2(~x)d~x =: f (v).

This problem needs a little massage to fit in the setting that has been considered. The

space K is the Cartesian product of K1 := L2(a1,b1)⊗H1
0 (�̃) and K2 = L2(�̃), A =

[
A1
A2

]
,

and f =
[

g
h

]
. The task of the approximate evaluation of the (primal) (see §1) residual splits

into corresponding tasks for both equations. The first equation fits in the framework pre-
sented so far, and so this task can be performed assuming suitable tensor product collections
on H and K1, and assuming that the spatial differential operator B has coefficients that are
polynomials in t and~x.

Concerning the second equation, H and K2 are function spaces on the different domains
�= (a1,b1)× �̃ and �̃, which does not fit into the setting we have assumed from the very
beginning of this section. The operator A2, however, reads as Id◦R, with Id : L2(�̃)→ L2(�̃)
and R : H → L2(�̃) defined by (Rv)(t,x) = v(a1,x). It is known that R is bounded (e.g.
see [12, Ch.XVIII, §1, Th.1]), and its representation w.r.t. the collections Ψ = (DΨ )−1⊗n

i=1

Ψ (i)⊂H and⊗n
i=2Ψ

(i)⊂L2(�̃), i.e., (RΨ)(⊗n
i=2Ψ̃

(i))=
[
(dΨ

~λ
)−1ψ

(1)
λ1

(a1)∏
n
i=2 δλiµi

]
~λ ,~µ∈∇Ψ

,
has at most one non-zero in each column. Results concerning the sparse evaluation of
(Id⊗n

i=2 Ψ (i))(Ξ), with Ξ being some tensor product collection on K2 = L2(�̃), which
obviously can be derived in the framework that has been developed, now directly imply
corresponding results for the evaluation of (A2Ψ)(Ξ).

3.4 Cost of the approximate residual evaluation

In the main Theorem 1, for wΛΨ
∈ span{ψ~µ :~µ ∈ΛΨ}, we established an upper bound & ε

on the error in the approximate residual

[( f −AwΛΨ
)(ξ~λ )]~λ∈ΛΞ

, (35)

as well as the bound #ΛΞ . #ΛΨ +ε−1/s on the cardinality of ΛΞ . Below we show the same
bound for the number of arithmetic operations to compute this approximate residual, or an
approximation of it that keeps its error on the same level.

Recall the setting of A being a linear partial differential operator with constant or polyno-
mial coefficients, tensor product collections DΨΨ = ⊗n

i=1Ψ
(i), DΞ Ξ = ⊗n

i=1Ξ (i), for some
local Ψ (i) and Ξ (i). Then the bi-infinite system or stiffness matrix reads as

[(Aψ~µ)(ξ~λ )]~λ∈∇Ξ ,~µ∈∇Ψ

= (DΞ )−1[
∑
j∈J

n⊗
i=1

s ji(ξ
(i)
λi
,ψ

(i)
µi )
]
(DΨ )−1 (36)

for some finite index set J, and for bilinear forms s ji(·, ·) that are local, i.e., give zero when
the supports of both arguments have empty intersection.
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As shown in [21], building on the earlier work in the (adaptive) sparse grid setting (e.g.,
see [1–5,17,24,30,31]) for multi-trees ΛΨ ⊂∇Ψ and ΛΞ ⊂∇Ξ , the multiplication with each
of the matrices [

⊗n
i=1 s ji(ξ

(i)
λi
,ψ

(i)
µi )]~λ∈ΛΞ ,~µ∈ΛΨ

, and so with the matrix [(Aψ~µ)(ξ~λ )]~λ∈ΛΞ ,~µ∈ΛΨ

,
can be performed in O(#ΛΞ +#ΛΨ ) operations, although the matrix is generally not sparse.

Let us briefly sketch the two principal ideas behind the realization of the matrix-vector
multiplication in linear complexity. Firstly, in the univariate case, say with Ψ = Ξ and ΛΞ =
ΛΨ , the idea is first to apply a transformation from the multilevel representation to a locally
finite single-scale representation, then to do the matrix-vector multiplication in single-scale
coordinates, and finally to return to a multi-scale representation by applying the transposed
transformation. Thanks to the tree constraint on ΛΞ = ΛΨ , the basis transformations can be
performed in linear complexity, and so can the matrix-vector multiplication, since in single-
scale coordinates the matrix is sparse.

Secondly, to explain the generalization to the bivariate, and with that to the multivariate
case, we consider a simplified setting that essentially corresponds to pretending that for each
univariate wavelet basis, on each level there is only one wavelet. For i= 1,2, let S(i) ∈Rm×m.
For k ≤ m, let Ik : Rk→ Rm denote the extension with zeros, and Pk = I>k . Motivated by our
observations for the univariate case, just explained, assume that multiplication with Pk′S(i)Ik
can be performed in O(max(k,k′)) operations.

Now let Λ ⊆ {1, . . . ,m}2 be such that when frozen in either the first or second coordi-
nate, at any value, it is a set of the form {1, . . . ,k} for some k ≤ m, i.e., Λ is a “multi-tree”.
With IΛ : Rk×k → Rm×m denoting the extension with zeros, and PΛ = I>

Λ
, we are interested

in the matrix-vector multiplication with the matrix PΛ (S(1)⊗S(2))IΛ .
A straightforward matrix-vector multiplication, taking advantage of the tensor product

structure (S(1)⊗S(2) “as a whole” is a m2×m2 matrix), requires &m2 operations, assuming
that maxλ∈Λ λ1 = maxλ∈Λ λ2 = m. This is even true in the extremal case that Λ = {λ ∈
{1, . . . ,m}2 : min(λ1,λ2) = 1}. To solve this problem, the idea is to split S(1) as L(1)+U (1),
where L(1)

i j = S(1)i j when i > j, and zero elsewhere. By definition of U (1), L(1), and Λ being a
“multi-tree”, it holds that

(U (1)⊗Id)IΛ = IΛ PΛ (U (1)⊗Id)IΛ , PΛ (L(1)⊗Id) = PΛ (L(1)⊗Id)IΛ PΛ ,

from which we infer that

PΛ (S(1)⊗S(2))IΛ = PΛ ((U (1)+L(1))⊗S(2))IΛ

= PΛ (L(1)⊗Id)(Id⊗S(2))IΛ +PΛ (U (1)⊗Id)(Id⊗S(2))IΛ

= PΛ (L(1)⊗Id)(Id⊗S(2))IΛ +PΛ (Id⊗S(2))(U (1)⊗Id)IΛ

= PΛ (L(1)⊗Id)IΛ PΛ (Id⊗S(2))IΛ +PΛ (Id⊗S(2))IΛ PΛ (U (1)⊗Id)IΛ .

The matrix-vector multiplication with each of the three matrices PΛ (L(1)⊗Id)IΛ , PΛ (Id⊗
S(2))IΛ , and PΛ (U (1)⊗Id)IΛ requires O(#Λ) operations, and we conclude that so does this
way of multiplying PΛ (S(1)⊗S(2))IΛ with a vector.

Concerning the first term of the approximate residual (35), only in cases where an ana-
lytic expression of f (ψ~λ

) can be derived, the exact evaluation of [ f (ξ~λ )]~λ∈ΛΞ

can be com-
puted in O(#ΛΞ ) operations. In general quadrature is needed, which is a delicate issue with
tensor product approximation. With Φ being a tensor product of univariate single scale bases
such that span{ξ~λ :~λ ∈ ΛΞ} ⊂ spanΦ , it is not recommendable to compute [ f (ξ~λ )]~λ∈ΛΞ
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from [ f (φ)]φ∈Φ , or from an approximation of the latter by the application of numerical
quadrature. The reason is that for the smallest of such Φ , #Φ can be of the order of (#ΛΞ )

n.
Assuming a continuous f , the following procedure can be applied instead. Approxi-

mate f from the span of a collection Π = {π~µ :~µ ∈ ∇Π} of tensor product interpolets, i.e.
DΠ Π = ⊗n

i=1Π (i), for some invertible diagonal matrix DΠ , and collections of univariate
interpolets Π (i). A well-known example of a collection of univariate interpolets is given by
the continuous piecewise linear hierarchical basis. The duals of the univariate interpolets are
(uniformly) finite linear combinations of Dirac functionals, and so are the duals π̃~µ of the
tensor product interpolets. So any coefficient in the expansion f = ∑~µ∈∇Π

π̃~µ( f )π~µ can be
computed in O(1) operations. Assuming a sufficient (mixed) smoothness of f , and taking
interpolets of a sufficiently high order, for any ε > 0 there exists a multi-tree ΛΠ ⊂∇Π such
that ‖ f −∑~µ∈ΛΠ

π̃~µ( f )π~µ‖K′ ≤ ε , where #ΛΠ . ε−1/s̃ for some s̃≥ smax, e.g. see [5]. Here
recall that smax is defined as the best possible rate that can be expected for approximation in
H from spanΨ , so being an upper bound for s.

Now by replacing [ f (ξ~λ )]~λ∈ΛΞ

by
[

∑~µ∈ΛΠ
π̃~µ( f )〈ξ~λ ,π~µ〉L2(�)

]
~λ∈ΛΞ

in the approximate
residual computation, we make an additional error that, by Condition (A) of Theorem 1, is of
order ε . Its computation requires the multiplication with [

⊗n
i=1〈ξ

(i)
λi
,π

(i)
µi 〉L2(ai,bi)]~λ∈ΛΞ ,~µ∈ΛΠ

,
which can be performed in O(#ΛΞ + #ΛΠ ) operations by the application of the algorithm
from [21].

4 Numerical experiments

In this section, we illustrate our theoretical results by selected numerical experiments. A
crucial point is the construction of ΛΞ for the approximation (f−AIΛΨ

wΛΨ
)|ΛΞ

to the ex-
act residual f−AIΛΨ

wΛΨ
= ( f −A(w>

ΛΨ
Ψ))(Ξ). In particular, we investigate quantitative

properties of this multi-tree based residual approximation, and compare it to the standard ap-
proach for residual approximation being based on an APPLY routine. Moreover, we present
advantages of the usage of L2-orthonormal (multi-) wavelet bases in this context.

We consider Poisson’s equation with homogeneous Dirichlet boundary conditions as
discussed in Examples 1 and 2. With H = K = H1

0 (�), � = (0,1)n, for given f ∈ H ′, we
seek u ∈ H such that

(Au)(v) :=
∫
�

∇u ·∇v =
∫
�

f v (v ∈ H). (37)

For our convenience, we shall choose f ∈ H ′ later on as a constant function and the
spatial dimension n∈ {2,3}. Since f does not vanish at the boundary of�, we point out that
an adaptive (wavelet) method is required in order to obtain the best possible approximation
rate smax = p for piecewise polynomial wavelets of degree p (see [11]).

4.1 Representation of (37) in terms of L2-orthonormal multi-wavelet bases

To derive the equivalent `2-problem Au = f associated to (37), we use L2(0,1)-orthonormal
multi-wavelet bases Ψ (i) = {ψ(i)

λ
: λ ∈ ∇

Ψ (i)} ⊂ H2(�)∩H1
0 (�) for i ∈ {1, . . . ,n} so that

Ψ := (DΨ )−1
n⊗

i=1

Ψ
(i) = {ψ~λ

:= (dΨ

~λ
)−1⊗n

i=1 ψ
(i)
λi

:~λ ∈ ∇Ψ},
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where dΨ

~λ
:= |ψ(1)

λ1
⊗·· ·⊗ψ

(n)
λn
|H1(�), is a Riesz basis for H1

0 (�). Moreover, we set Ξ :=Ψ .
The construction of an L2(0,1)-orthonormal wavelet basis is based on a multiresolution

analysis (MRA) (Vj) j∈N0 where Vj, for integer p≥ 2, is given by

Vj := ∏
k∈[0,2 j−1]∩Z

Pp((2− jk,2− j(k+1))∩C1(0,1)∩H1
0 (0,1).

Following the guideline given in [15,16], a so called intertwining MRA (V̆j) j∈N0 with Vj ⊂
V̆j ⊂Vj+m for some m∈N can be constructed such that the single scale spaces V̆j are spanned
by uniformly local, globally C1, orthonormal scaling functions which are moreover piece-
wise polynomials of degree p. The corresponding wavelets ψ

(i)
λ
∈Ψ (i) for i ∈ {1, . . . ,n},

being finite linear combinations of these scaling functions, inherit these properties. More-
over, if ψ

(i)
λ

does not correspond to a boundary adapted wavelet, it has p + 1 vanishing
moments. A detailed description will be given in [29].

The choice of L2-orthonormal wavelet bases Ψ (i) (i ∈ {1, . . . ,n}) yields certain advan-
tages concerning quantitative properties of the AWGM which we detail next.

Efficient realization of matrix-vector products

As explained in Subsection 3.4, with A being a second-order differential operator with con-
stant, or polynomial coefficients, the application of the system matrix R

Λ̃
AIΛ can be real-

ized within O(#Λ̃ + #Λ) operations, when Λ̃ ,Λ ⊂ ∇Ψ are finite multi-trees, and the Ψ (i)

(i ∈ {1, . . . ,n}) are any univariate Riesz wavelet bases satisfying assumptions (8), (9), (10),
(13) (see [21]).

However, we observe that due to the L2(0,1)-orthonormality of the univariate wavelet
basis, the bi-infinite system matrix A from (37) has the form

(DΨ )−1[A(1)⊗Id(2)⊗·· ·⊗ Id(n)+ · · ·+ Id(1)⊗·· ·⊗Id(n−1)⊗A(n)](DΨ )−1, (38)

where, for i ∈ {1, . . . ,n}, Id(i) denotes a (bi-infinite) identity matrix indexed by ∇
Ψ (i) and

A(i) := [
∫ 1

0 ∂ψ
(i)
λ

∂ψ
(i)
µ ]λ ,µ∈∇

Ψ(i)
a univariate stiffness matrix.

Having an A of this special form is very advantageous when it comes to the application
of R

Λ̃
AIΛ for Λ̃ ,Λ ⊂ ∇Ψ being two finite multi-trees. Indeed, computing e.g. R

Λ̃
[A(1)⊗

Id(2)⊗·· ·⊗Id(n)]IΛ requires only the application of A(1) w.r.t. the first coordinate which can
be implemented efficiently (see [21]). We refer to such an operation as unidirectional. Thus,
the number of unidirectional operations for the multiplication with R

Λ̃
AIΛ is exactly n.

Conversely, choosing univariate basesΨ (i) that are only biorthogonal, we need to replace
Id(i) in (38) by univariate mass matrices M(i) := [

∫ 1
0 ψ

(i)
λ

ψ
(i)
µ ]λ ,µ∈∇

Ψ(i)
for i ∈ {1, . . . ,n}. In

this case, the application of R
Λ̃

AIΛ by means of unidirectional operations is more compli-
cated and relies on the splitting of A(i) and M(i) into upper and strict lower triangular block
matrices for i ∈ {1, . . . ,n} (see Subsection 3.4): for S(i) ∈ {A(i),M(i)} for i ∈ {1,2}, we split
S(1) into an upper and strict lower triangular matrix, S(1) =U (1)+L(1), so that we obtain:

R
Λ̃
[S(1)⊗S(2)]IΛ = R

Λ̃
[(L(1)⊗Id(2))(Id(1)⊗S(2))]IΛ +R

Λ̃
[(Id(1)⊗S(2))(U (1)⊗Id(2))]IΛ .

Observe that the application of R
Λ̃
[S(1)⊗S(2)]IΛ requires 2n = 22 = 4 unidirectional oper-

ations. For higher dimensions n > 2, the application of R
Λ̃

AIΛ is then realized by a recur-
sion requiring, however, O(n ·2n) unidirectional operations. Thus, compared to the case of
L2(0,1)-orthonormal bases, we have an additional factor of 2n.
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Remark 11 The usage of prewavelets as described in [17,23] can reduce the number of
unidirectional operations to O(n) as in this case, the strict lower triangular block matrix
associated to M(i) for i ∈ {1, . . . ,n} is zero.

Condition numbers

For the adaptive wavelet Galerkin method (AWGM), the condition number κ(A) of A is of
great importance. Firstly, it constitutes an upper bound for the condition number of AΛ

arising in Galerkin systems AΛ uΛ = fΛ to be approximately solved by an iterative linear
system solver. Secondly, mainly κ(A) determines how large we may choose the bulk chasing
parameter µ (cf. line after (3)) in order to guarantee optimal complexity.

In our case, κ(A) can be bounded independently of the spatial dimension n by means
of the Riesz constants c(i)min, c(i)max of the | · |H1(0,1) normalized univariate Riesz bases Ψ (i)

(i ∈ {1, . . . ,n}). More precisely, with

c(i)min ≤ ‖ ∑
λ∈∇

Ψ(i)

vλ ∂ψ
(i)
λ
‖2

L2

/
∑

λ∈∇
Ψ(i)

|vλ |2‖∂ψ
(i)
λ
‖2

L2
≤ c(i)max,

for all (2|λ |vλ )λ∈∇
Ψ(i)
∈ `2(∇Ψ (i)), it can be shown that κ(A) ≤ maxi c(i)max/c(i)min (cf., e.g.,

[7,13]). For the constructions of Ψ (i) for i ∈ {1, . . . ,n} used for the numerical experiments
below, we estimated these constants numerically and used the bounds c(i)min ≥ 0.3, c(i)max ≤ 2.1

for p = 2 and c(i)min ≥ 0.3, c(i)max ≤ 2.0 for p = 3.

4.2 Approximate residuals

Let us now come to the approximation of the exact residual fΛk −AIΛk wΛk where, as above,
wΛk ∈ `2(Λk) denotes an approximate Galerkin solution of AΛk uΛk = fΛk for k = 1,2, . . .
inside the adaptive wavelet Galerkin iteration.

The standard approach to approximate the exact (infinite) residual f−AIΛk wΛk is by
using a RHS and a APPLY routine that approximate f and AIΛk wΛk within prescribed absolute
tolerances. An APPLY based approximate residual evaluation then takes the form

r(k)APPLY(ε) := RHS[ε/2]−APPLY[wΛk ,ε/2]. (39)

As shown in [13], A is very close to a sparse matrix. Indeed, since ψ
(i)
λi
∈ C1(0,1) for

all λi ∈ ∇
Ψ (i) and i ∈ {1, . . . ,n}, it holds that ‖A−A j‖. 2−

3
2 j for all j ∈ N0 where A j are

sparse compressions of A having at most O(n j) non-zero entries per row and column (cf.
[13, Remark 3.4 & Theorem 3.5]), which can be computed exactly at unit cost.

For our simple choice of f in (37) being a constant function, an entry f~λ = f (ψ~λ
) of f

is only non-zero if all the indices λ1, . . . ,λn correspond to either scaling functions or to so
called boundary wavelets which both do not have vanishing moments. Moreover, any entry
f~λ can be computed exactly at unit cost.

From both observations it can be inferred, see e.g. [26, Sect. 3], that the cost of evaluat-
ing r(k)APPLY(ε) is O(ε−1/s|IΛk wΛk |

−1/s
A s +#Λk), even without any restriction on ε > 0. Know-

ing that for s > 0 for which u∈A s, one has supk |IΛk wΛk |A s . |u|A s < ∞, we conclude that
the condition (4) for being a valid approximate residual evaluation is satisfied.
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Restricting to sets Λk that are multi-trees, our focus is on the approximate residual eval-
uation of the form

r(k) := (f−AIΛk wΛk)|Λ̃k
, (40)

where Λ̃k ⊂∇Ψ (recall that Ξ =Ψ ) with #Λ̃k . #Λk +ε−1/s is a sufficiently large multi-tree
as in Theorem 1. Since it is difficult to extract from the proof of Theorem 1 reasonably sharp
quantitative information for the construction of Λ̃k, we do some experiments.

First of all, we take Λ̃k to be only dependent on Λk, which is justified since f has a
finite representation in the auxiliary collection Θ̃ (cf. Remark 3). For general sufficiently
smooth f , its representation w.r.t. Θ̃ will be that close to being sparse that also then it can
be expected that it is sufficient to select Λ̃k only dependent on Λk.

Our experiments are based on the construction Λ̃k := ∪n
j=1Λ̃

( j)
k where for j ∈ {1, . . . ,n}

Λ̃
( j)
k := {~λ ∈ ∇Ψ : ∃~µ ∈Λk s.t. ∀i ∈ {1, . . . ,n}, |λi| ≤ |µi|+δi, j · `

∧ d(suppψ
(i)
λi
,suppψ

(i)
µi )≤ Di2−|λi|}, (41)

where ` ∈ N and Di := supλ∈∇
Ψ(i)

2|λ | diamsuppψ
(i)
λ

for i ∈ {1, . . . ,n}. So, Λ̃
( j)
k is a (multi-

tree) extension of Λk by ` levels in the j-th coordinate direction. It can be shown that for all
j, Λ̃

( j)
k is a multi-tree and so is Λ̃k, being a union of multi-trees. Moreover, for the cardinality

of Λ̃k, we find that

#Λ̃k . n ·2` ·#Λk. (42)

Although not exactly of the same type, the construction of the extension Λ̃k of Λk is
similar to that of the extension ΛΞ of ΛΨ via Λ

Θ̃
from the proofs of Propositions 1 and 2.

The extension used here turns out to give quantitatively the best results.

4.3 Selected numerical results

We start with some remarks concerning the implementation and parameters of the AWGM.
Concerning the right-hand side f in (37), we choose f ≡ 20 for n = 2 and f ≡ 100 for

n= 3. We emphasize that the symmetry of the solution is not exploited here within the AWGM.
In view of (3), we compute an approximate Galerkin solution wΛk such that ‖fΛk −

AΛk wΛk‖`2(∇Ψ ) ≤ γ‖r(k−1)‖`2(∇Ψ ) by using the Conjugate Gradients (CG) method, where
we took γ = 0.1.

For computing Λk+1 ⊃ Λk such that ‖RΛk+1 r(k)‖`2(Λk+1) ≥ µ‖r(k)‖`2(∇Ψ ) and #(Λk+1 \
Λk) is minimal up to some constant factor, we choose µ = 0.7. This value of µ is not within
the range for which (quasi-) optimality of the AWGM can be shown theoretically (cf., e.g., [26,
Theorem 4.1]), but it yields better quantitative results than with admissible values of µ .

Finally, in order to keep the length of the multi-tree based residual as small as possible
(see (42)), we use `= 1 for the residuals r(k) defined in (40) in conjunction with (41).

The implementation of AWGM is obtained by using the C++-library LAWA ([28]). Numer-
ical results reported below were obtained on a PC with 2.83 GHz (Intel Core 2 Duo) and 8
GiB memory. Note that no parallelization techniques were used here and 4 GiB were suf-
ficient for the numerical results in 2d and 3d. Only for high accurate approximation of the
exact residual, 8 GiB of memory were required.
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Convergence

We start with investigating the approximate residual r(k) defined in (40) quantitatively. In
Figure 1, the convergence history of the approximate residual ‖r(k)‖`2(∇Ψ ) for all k = 1,2, . . .
encountered in the course of the AWGM is shown where we set Nk := #Λk. Observe that the
best possible (asymptotic) convergence rate being smax = p is attained by the AWGM quite fast
for n = 2. In the three-dimensional case, more degrees of freedom are required to see this
asymptotic rate. The fact that the asymptotic regime starts quite late for n = 3 is caused by
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Fig. 1 Convergence history of ‖r(k)‖`2(∇Ψ )/‖f‖`2(∇Ψ ) within the AWGM for polynomial degrees p ∈ {2,3} for
n = 2 (left) and n = 3 (right).

|u|A p being large. Note that the underlying problem has singularities in all 8 corners and
also along all 12 edges of the cube (0,1)3, see also the right part of Figure 2. In the left part of
Figure 2, we also show results of a (nearly) best N-term approximation. To this end, we first
computed a highly accurate approximation uε̄ to u (with ‖u−uε̄‖`2(∇Ψ )≤ ε̄ for ε̄ sufficiently
small). Secondly, we compared ‖uε̄ −wΛk‖`2(∇Ψ ) and ‖uε̄ −uε̄,Nk‖`2(∇Ψ ), (Nk := #Λk) and
uε̄,Nk is a best Nk-term approximation to uε̄ (here, the Nk largest coefficients in modulus).
We observe that the approximate (Galerkin) solutions wΛk are very close to corresponding
best N-term approximations. This illustrates both that the AWGM produces approximations
that are nearly as good as best N-term multi-tree approximations, and that, for this problem,
best N-term multi-tree approximations are nearly as good as unconstrained best N-term
approximations.

Next, we investigate numerically for which values of η the relative approximation er-
ror estimate (2) is valid. For this purpose we need a highly accurate approximation to the
exact residual which we realize by computing r(k)ex := r(k)APPLY(ε̄). Here, ε̄ is (once again) a
sufficiently small tolerance. In Figure 3 we show the quantity

‖r(k)ex − r(k)‖`2(∇Ψ )/‖r
(k)
ex ‖`2(∇Ψ ), (43)

as far as r(k)ex (requiring a very large amount of storage) was storable. Our choice r(k) is actu-
ally a good approximation of the exact residual f−AIΛk wΛk . In view of (2), asymptotically,
a value of η ≈ 0.175 is estimated numerically for p = 2 and η ≈ 0.125 for p = 3.
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Fig. 3 Relative error in r(k) (see (43)) for n = 2 (left) and n = 3 (right).

Efficiency of the new approximate residual

We also compared the multi-tree based residual r(k) with the APPLY based residual as defined
in (39). To this end, we selected εk such that ‖r(k)ex − r(k)APPLY(εk)‖`2(∇Ψ ) is close to ‖r(k)ex −
r(k)‖`2(∇Ψ ). To optimize the computation of r(k)APPLY(εk), we used the APPLY routine stated in
[26, Section 3] which, by our experiences, yields quantitatively the best results. Moreover,
the special form of A stated in (38) is exploited to keep the length as well as computation
time for r(k)APPLY(εk) as short as possible (see also [13]).

It is clear that for an efficient implementation of the AWGM, residuals of short length are
mandatory. So, first we compare the lengths of the supports for the two different type of ap-
proximate residuals. The corresponding results are shown in Figure 4. For spatial dimension
n = 2, we found for the relative length #suppr(k)/Nk ≈ 5 (Nk = #Λk), independent of the
polynomial degree p. For n = 3, we estimated #suppr(k)/Nk ≈ 10. The corresponding sup-
port sizes of the APPLY based residual approximation are much larger. As it can be seen from
Figure 4, for n = 2, the support length of the APPLY based approximate residual is about a
factor of 10 (p = 3) to 11 (p = 2) times larger than the corresponding support length of the
multi-tree based one. For n = 3, we find corresponding factors #suppr(k)APPLY/#suppr(k) of
approximately 8 (p = 3) and 9 (p = 2).
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Beyond support lengths of the approximate residuals, we also investigated the corre-
sponding computation times. Here, except for a multi-tree Λk of relatively small cardinality,
we observed for n = 2 that the computation of r(k) is a factor of about 14 (p = 3) to 16
(p = 2) times faster than the computation of r(k)APPLY(εk). Correspondingly, for spatial dimen-
sional n = 3, the computation of the multi-tree based approximate residual is approximately
9 (p = 3) to 10 (p = 2) times faster than the APPLY based one.
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Fig. 5 The residual approximation errors ‖r(k)ex − r(k)‖`2(∇Ψ ) (’New’) and ‖r(k)ex − r(k)APPLY(εk)‖`2(∇Ψ ) (’AP-
PLY’) are plotted against the corresponding computation times.
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Remark 12 It is possible to use larger values of ` (i.e., ` > 1) in (41) or alternative construc-
tions of Λ̃k, e.g.,

Λ̃k = {~λ ∈ ∇Ψ : ∃~µ ∈Λk s.t. ∀i, |λi| ≤ |µi|+ `∧ d(suppψ
(i)
λi
,suppψ

(i)
µi )≤ Di2−|λi|},

However, we observed that the corresponding residuals have much larger supports and, cor-
respondingly, higher computations times than r(k). At the same time, this effort did not pay
off in form of faster convergence of the AWGM.

Computation times

In Figure 6, we show the computation times for the application of RΛk AIΛk (required for
solving associated Galerkin systems) and for computing the residual r(k) for n = 3. These
show that also for higher number of degrees of freedoms (#Λk > 105), an efficient imple-
mentation of the AWGM is possible. Here, we benefit from the structure of A being due to the
discretization of (37) by L2-orthonormal wavelet bases as described in Section 4.1.
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