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Abstract. We consider a Fictitious Domain formulation of an elliptic partial

differential equation and approximate the resulting saddle-point system using

an inexact preconditioned Uzawa iterative algorithm. Each iteration entails the
approximation of an elliptic problems performed using adaptive finite element

methods. We prove that the overall method converges with the best possible

rate and illustrate numerically our theoretical findings.

1. Introduction

In many engineering applications the efficient numerical solution of partial differ-
ential equations on complex geometries is of paramount importance. In this respect,
one crucial issue is the construction of the computational grid. To face this problem,
one can basically resort to two different types of approaches. In the first approach,
a mesh is constructed on a sufficiently accurate approximation of the exact phys-
ical domain (see, e.g., isoparametric finite elements [Cia02], isogeometric analysis
[CHB09], or Arbitrary Lagrangian-Eulerian formulation [DGH82, HAC97, HLZ81]),
while in the second approach one embeds the physical domain into a simpler com-
putational mesh whose elements can intersect the boundary of the given domain.
Clearly, the mesh generation process is extremely simplified in the second approach,
while the imposition of boundary conditions requires extra work. The second ap-
proach is in particular useful when the domain changes during the computation,
such as in free-boundary and shape optimization problems.

Among the huge variety of methods sharing the philosophy of the second ap-
proach, let us mention here the Immersed Boundary methods (see, e.g., [Pes02]),
the Penalty Methods (see, e.g., [Bab73]), the Fictitious Domain/Embedding Do-
main Methods (see, e.g., [BW90, BG03]) and the Cut Element method (see, e.g.
[BH10, BH12]).

Following up on our earlier work [BBV16], we consider the Fictitious Domain
Method with Lagrange multiplier introduced in [Glo94, GG95] (see also [Bab72]
for the pioneering work inspiring this approach). In this approach, the physical
domain uΩ with boundary γ is embedded into a simpler and larger domain Ω (the
fictitious domain), the right-hand side is extended to the fictitious domain and the
boundary conditions on γ are appended through the use of a Lagrange multiplier.
The Fictitious Domain Method gives rise to a symmetric saddle point problem
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whose exact primary solution restricted to uΩ corresponds to the solution of the
original problem.

Even for smooth data, generally the solution of this saddle point problem is
non-smooth. Indeed, when posed on a non-smooth, non-convex domain, generally
already the solution of the original PDE will be non-smooth. Depending on the
extension of the data, the solution of the extended problem might even be more
singular. To achieve nevertheless the best possible convergence rate allowed by the
polynomial orders of the applied trial spaces, we will apply an adaptive solution
method.

Convergence and optimality of adaptive methods has been demonstrated for
elliptic problems, but much less is known for saddle point problems. Exceptions
are given by the special cases of mixed discretizations of Poisson’s problem (see
e.g [BM08, CHX09, CR11, HX12]), and the pseudostress-velocity formulation of
the Stokes problem (see [CGS13, HY18]), where optimal rates were established
by demonstrating that the finite element approximation for the flux or pseudo-
stress is near-best in the sense that it provides the quasi-orthogonality axiom from
[CFPP14].

In this work we focus on Fictitious Domain Method on a two-dimensional domain
with the application of piecewise constant trial spaces for the Lagrange multiplier
λ and continuous piecewise linears for the primary variable u. In the spirit of
the method no kind of alignment is assumed between the partitions of γ, and the
restriction to γ of the partitions of the fictitious domain. Following an idea from
[BMN02], we solve the saddle-point problem with a nested inexact preconditioned
Uzawa iteration (see Algorithm 8.4): an iterative scheme hinging upon three nested
loops. The outer loop adjusts the Galerkin approximation space for the Schur
complement equation that determines λ. The intermediate loop solves this Galerkin
system by a damped Richardson iteration. Each iteration of the latter involves
solving an elliptic problem on the fictitious domain whose solution is approximated
in the inner loop. For sufficiently smooth data, it holds that λ ∈ L2(γ). Therefore,
in view of the orders of the trial spaces there is no (qualitative) benefit in applying
locally refined partitions on γ for the approximation of λ. The arising ‘inner’
elliptic problems will be solved with an adaptive finite element method (afem). A
complication is that the forcing functional for these problems involves a weighted
integral on γ meaning that the data is not in L2(Ω). We apply the afem from
[CDN12] that allows for data in H−1(Ω). Since the Schur complement operator
of our saddle point problem is an operator of order −1, the Richardson iteration
requires a preconditioner. We will apply a biorthogonal wavelet preconditioner.
The overall method will be proven to converge with the best possible rate (see
Theorem 8.6).

At the end of this paper, it will be shown that our results apply verbatim to
the d-dimensional setting. A difference though is the following: the extension of
the original PDE to the fictitious domain yields a solution that is generally non-
smooth over the interface. As we will demonstrate this has the consequence that,
in three and more dimensions, best (isotropic) local refinements provide a rate that
is generally lower than for a smooth solution (in 3 dimensions, 1

4 vs. 1
3 ). This

problem can be cured by constructing a proper extension of the right-hand side to
the fictitious domain which will be studied in forthcoming work (cf. [Mom06]).
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The outline of the paper is as follows. In Sect. 2 we recall the Fictitious Domain
Method. In Sect. 3–6, we consider the solution of an abstract, infinite dimensional
symmetric saddle point problem by the Uzawa iteration. We discuss the reduction
of the saddle-point problem to its Schur complement (Sect. 3), preconditioning of
this Schur complement (Sect. 4), a posteriori error estimation (Sect. 5), and the
inexact preconditioned Uzawa iteration combined with a nested iteration technique
(Sect. 6). The inexactness of the iteration refers to the fact that the application of
the Schur complement is approximated by replacing the exact inverse of the ‘left
upper block operator’ by a call of an (adaptive) finite element solver.

The results in Sect. 3–6 provide a framework for the development of optimal
adaptive routines for solving general symmetric saddle point problems. In this
context, note that any problem argminu∈A ‖Bu− f‖B′ , where for Hilbert spaces A,
B, B : A → ranB ⊆ B′ is boundedly invertible and f ∈ B′, can be reformulated as

the well-posed symmetric saddle point problem

[
R B
B′ 0

] [
y
u

]
=

[
f
0

]
, with R being

the Riesz mapping on B (e.g. [CDW12]).
In Sect. 7, we consider the afem from [CDN12] for solving Poisson’s problem

with H−1(Ω) data. We show convergence and optimality of a variant that avoids
an inner loop for reducing data oscillation. In Sect. 8, we apply this afem for solving
the ‘inner’ elliptic problems in the inexact preconditioned Uzawa iteration applied
to the fictitious domain problem, and show that the overall method converges with
the best possible rate. In Sect. 9, we report on numerical experiments obtained with
our adaptive Fictitious Domain solver. Finally, general space dimensions and/or
higher order approximations will be discussed in Sect. 10.

In this work, by C . D we will mean that C can be bounded by a multiple of
D, independently of parameters which C and D may depend on. Obviously, C & D
is defined as D . C, and C h D as C . D and C & D.

For normed linear spaces A and B, L(A,B) will denote the space of bounded
linear mappings A→ B endowed with the operator norm ‖ · ‖L(A,B). The subset of
invertible operators in L(A,B) with inverses in L(B,A) will be denoted as Lis(A,B).

2. Fictitious domain method

On a two-dimensional domain uΩ ⊂ R2 with Lipschitz continuous boundary γ,
and uf ∈ L2(uΩ) ↪→ H−1(uΩ), g ∈ H1(γ) ↪→ H

1
2 (γ), we consider the Poisson problem

(2.1)

{
−∆uu = uf on uΩ,

uu = g on γ.

On a Lipschitz Ω ⊂ R2 with uΩ b Ω, f ∈ L2(Ω) being an L2-bounded extension of
uf , and the bilinear forms a(u, v) :=

∫
Ω
∇u ·∇v dx, b(v, λ) := −

∫
γ
vλ ds, we consider

the problem of finding (u, λ) ∈ H1
0 (Ω)×H− 1

2 (γ) such that

a(u, v) + b(v, λ) =

∫
Ω

fv dx (v ∈ H1
0 (Ω)),

b(u, µ) = −
∫
γ

gµ ds (µ ∈ H− 1
2 (γ)),

(2.2)

where
∫
γ
gµ ds should be read as the unique extension of the L2(γ)-scalar product

to the duality pairing on H
1
2 (γ)×H− 1

2 (γ). It is well-known that this saddle-point

defines a boundedly invertible mapping between H1
0 (Ω)×H− 1

2 (γ) and its dual, the
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main ingredient being the fact that inf{‖v‖H1(Ω) : v|γ = µ} defines an equivalent

norm on H
1
2 (γ) = (H−

1
2 (γ))′. Setting Ω̆ := Ω \ uΩ, and applying integration-by-

parts to both terms in a(u, v) =
∫

uΩ
∇u · ∇v dx +

∫
Ω̆
∇u · ∇v dx, one infers that

u|
uΩ = uu, being the solution of (2.1), that ŭ := u|Ω̆ solves −∆ŭ = f on Ω̆, ŭ = g on

γ, and ŭ = 0 on ∂Ω, and finally that λ = ∂ŭ
∂~n |γ −

∂uu
∂~n |γ , where ~n is the normal to γ

exterior to uΩ.
Since these Poisson problems on both Lipschitz domains uΩ and Ω̆ have forcing

terms in L2 and Dirichlet boundary data in H1, [Neč67, Ch. 5, Thm. 1.1] shows
that

(2.3) λ ∈ L2(γ), with ‖λ‖L2(γ) . ‖f‖L2(Ω) + ‖g‖H1(γ).

We are going to approximate the solution (u, λ) of (2.2) by functions from fi-
nite element spaces, where we consider the lowest order case by taking continuous
piecewise linears for the approximation for u, and piecewise constants for the ap-
proximation for λ.

Taking into account the two-dimensional domain and the orders of the finite
element spaces, the error measured in H1(Ω)-norm of the best approximation for

u can be expected to be generally at best of order N−
1
2 , where N denotes the

dimension of the finite element space on Ω. In view of (2.3), the error measured in

H−
1
2 (γ)-norm of the best approximation for λ from the space of piecewise constants

w.r.t. a quasi-uniform partition of γ intoN pieces is of orderN−
1
2 . Since apparently

no overall (qualitative) advantage can be obtained from the application of locally
refined partitions on γ, we will consider a sequence of uniform dyadically refined
partitions on γ.

3. Symmetric Saddle point problem

The variational problem that arises from the fictitious domain method is an
example of a symmetric saddle point problem, that in this and the following three
sections will be studied in an abstract setting.

Let U and � Hilbert spaces. For a bilinear, bounded, symmetric, and coercive a :

U×U→ R, a bilinear and bounded b : U×�→ R with inf0 6=µ∈� sup06=w∈U
b(w,µ)
‖w‖U‖µ‖� > 0

(‘inf-sup’ condition), given (f, g) ∈ U′ × �′ we consider the problem of finding

(u, λ) ∈ U× � that satisfies

(3.1) a(u, v) + b(v, λ) + b(u, µ) = f(v)− g(µ) ((v, µ) ∈ U× �).

It is well-known that under aforementioned conditions on a and b,

(u, λ) 7→ ((v, µ) 7→ a(u, v) + b(v, λ) + b(u, µ)) ∈ Lis(U× �, (U× �)′).

With A ∈ Lis(U,U′), B ∈ L(U,�′) defined by (Au)(v) = a(u, v), (Bu)(λ) =
b(u, λ), equivalent formulations of (3.1) are given by[

A B′

B 0

] [
u
λ

]
=

[
f
−g

]
,

and [
A B′

0 S

] [
u
λ

]
=

[
f

BA−1f + g

]
,
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where S := BA−1B′ ∈ L(�,�′) is the Schur complement operator. Obviously
S = S′, and furthermore, as demonstrated by the next lemma, S is coercive (so in
particular S ∈ Lis(�,�′)).

Lemma 3.1. It holds that (Sµ)(µ) = sup0 6=v∈U
b(v,µ)2

a(v,v) h ‖µ‖2� (µ ∈ �).

Proof. Let RU : U → U′ denote the Riesz map defined by (RUv)(w) = 〈w, v〉U.

Writing B̃′ = R−1
U B′, Ã = R−1

U A, we have

sup
0 6=v∈U

b(v, µ)2

a(v, v)
= sup

06=v∈U

(B′µ)(v)2

(Av)(v)
= sup

06=v∈U

〈v, B̃′µ〉2U
〈v, Ãv〉U

= sup
06=w∈U

〈w, Ã− 1
2 B̃′µ〉2U

〈w,w〉U
= 〈Ã− 1

2 B̃′µ, Ã−
1
2 B̃′µ〉U = 〈A−1B′µ,R−1

U B′µ〉U = (Sµ)(µ) (µ ∈ �).

The second statement follows from the coercivity of a, the boundedness of b, and
the inf-sup condition. �

As we reserved (u, λ) to denote the exact solution of the saddle point problem,
in the remainder of this section we fix three more notations (i)-(iii) that we use
throughout this paper.

(i). For a finite dimensional (or more generally, closed) subspace �σ ⊂ �, where

σ runs over a collection S, for χ ∈ � we let χσ ∈ �σ denote its Galerkin approxi-

mation defined by

(3.2) (Sχσ)(µ) = (Sχ)(µ) (µ ∈ �σ).

This χσ is the best approximation to χ from �σ w.r.t. to the ‘energy-norm’ µ 7→√
(Sµ)(µ).

(ii). Given a χ ∈ �, we let uχ ∈ U denote the solution of

(3.3) a(uχ, v) = f(v)− b(v, χ) (v ∈ U),

i.e., uχ = A−1(f −B′χ).
Notice that uλ = u. Furthermore, we note that given a �σ ⊂ �, the pair

(uλσ , λσ) ∈ U× �σ solves the semi-discrete saddle point problem

(3.4) a(uλσ , v) + b(v, λσ) + b(uλσ , µ) = f(v)− g(µ) ((v, µ) ∈ U× �σ).

Remark 3.2. Well-posedness of the original saddle-point problem implies this for
the semi-discrete one, uniform in σ ∈ S. In other words,

(u, λ) 7→ ((v, µ) 7→ a(u, v) + b(v, λ) + b(u, µ)) ∈ Lis(U× �σ, (U× �σ)′),

with both the norm of the operator and that of its inverse being uniformly bounded.

(iii). For a finite dimensional (or more generally, closed) subspace Uτ ⊂ U,

where τ runs over a collection T , for w ∈ U we let wτ ∈ Uτ denote its Galerkin

approximation defined by

(3.5) a(wτ , v) = a(w, v) (v ∈ Uτ ),

being the best approximation to w from Uτ w.r.t. v 7→
√
a(v, v).

Remark 3.3. Since we never solve any fully discrete saddle-point problem, i.e., a
system (3.1) in which the test- and trial space U × � is replaced by Uτ × �σ,
a Ladyzhenskaya-Babuška-Brezzi (LBB) condition ensuring stability of the latter
will never enter our considerations.
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4. Preconditioned Uzawa iteration

With Iσ : �σ → � being the trivial embedding, and I ′σ : �′ → �′σ its adjoint, the
Galerkin approximation λσ ∈ �σ for λ solves

(4.1) Sσλσ = I ′σ(BA−1f + g), where Sσ := I ′σSIσ ∈ Lis(�σ,�
′
σ).

At some occasions, Iσ will be omitted from the notation.
Although Sσ is a mapping between finite dimensional spaces, its matrix represen-

tation cannot be computed. Since on the other hand the application of Sσ can be
mimicked by approximating the application of A−1, for solving (4.1) we will resort
to an iterative method. In order to do so, we need a (uniform) ‘preconditioner’:
Let Mσ ∈ Lis(�σ,�′σ) be such that Mσ = M ′σ, and, for some constants r,R > 0

(4.2) r‖µ‖2� ≤ (Mσµ)(µ) ≤ R‖µ‖2� (µ ∈ �σ, σ ∈ S).

W.r.t. the scalar product (µ, χ) 7→ (Mσµ)(χ) on �σ × �σ, the operator M−1
σ Sσ :

�σ → �σ is symmetric, coercive, and uniformly boundedly invertible.
For solving (4.1), we consider the damped, preconditioned Richardson iteration

that, for given λ
(0)
σ ∈ �σ, produces (λ

(j)
σ )j≥0 ⊂ �σ defined by

λ(j+1)
σ : = λ(j)

σ + βM−1
σ I ′σ(BA−1f + g − SIσλ(j)

σ )

= λ(j)
σ + βM−1

σ I ′σ(Buλ
(j)
σ + g)(4.3)

(cf. (3.3)), in the latter form known as the (damped) preconditioned Uzawa iter-

ation. Taking a constant β ∈
(

0, 2
supσ∈S ρ(M

−1
σ Sσ)

)
, in each step of (4.3) the error

measured in the norm on �σ associated to either Sσ or Mσ is reduced by at least
the factor

(4.4) ρ := sup
σ∈S

ρ(I − βM−1
σ Sσ) < 1.

With the optimal choice

(4.5) β =
2

supσ∈S ρ(M−1
σ Sσ) + (supσ∈S ρ(MσS

−1
σ ))−1

,

it holds that ρ = κ−1
κ+1 where κ := supσ∈S ρ(M−1

σ Sσ) supσ∈S ρ(MσS
−1
σ ).

To reformulate (4.3) in coordinates, let Φσ be a basis for �σ. We set Fσ :
Rdim�σ → �σ : c 7→ c>Φσ, so that, equipping Rdim�σ h (Rdim�σ )′ with the stan-
dard Euclidean scalar product 〈 , 〉, its adjoint F ′σ : �′σ → Rdim�σ is the mapping

f 7→ f(Φσ). Setting λ
(j)
σ := F−1

σ λ
(j)
σ , i.e, λ

(j)
σ is the coordinate vector of λ

(j)
σ w.r.t.

Φσ, an equivalent formulation of (4.3) reads as

λ(j+1)
σ = λ(j)

σ + β(F ′σMσFσ)−1F ′σI ′σ(Buλ
(j)
σ + g)

= λ(j)
σ + βM−1

σ (Buλ
(j)
σ + g)(Φσ).

with preconditioner Mσ := F ′σMσFσ.

The analysis of a practical scheme where uλ
(j)
σ is replaced by a (Galerkin) ap-

proximation from a finite dimensional subspace of U is postponed to Sect. 6.

Example 4.1. With R� : �→ �′ being the Riesz map defined by (R�q)(r) = 〈r, q〉�,
the Riesz map R�σ : �σ → �′σ is given by I ′σRIσ. For the choice Mσ = R�σ (which
obviously satisfies (4.2)), for χ ∈ �, µ ∈ �σ we have

〈M−1
σ I ′σR�χ, µ〉� = (I ′σR�χ)(µ) = (R�χ)(µ) = 〈χ, µ〉�,
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i.e., M−1
σ I ′σR� = Qσ, being the �-orthogonal projector onto �σ. So with this choice

of Mσ, the second line in (4.3) reads as

λ(j+1)
σ := λ(j)

σ + βQσR
−1
� (Bu(j) + g).

This choice of Mσ seems only practically feasible when � is an L2-space.
In the setting of a stationary Stokes problem, it holds that U = H1

0 (Ω)n, � =
L2(Ω)/R, and R−1

� B = div. So with Mσ = R�σ , and writing R−1
� g simply as g, the

second line in (4.3) reads as λ
(j+1)
σ := λ

(j)
σ +βQσ(div u(j) +g). From ‖ div ·‖L2(Ω) ≤

‖∇ · ‖L2(Ω)n2 on U, one infers that in this case one can take β = 1, see [NP04].

Example 4.2. In the case of the fictitious domain method introduced in Sect. 2, we
have � = H−

1
2 (γ) so that a non-trivial preconditioner is required. Uniform precon-

ditioners of multi-level type of linear complexity even on locally refined partitions
have recently been proposed: Preconditioners of (additive) subspace correction type
were constructed for two- or three-dimensional domains uΩ in [FFPS17] or [FHPS18].
Within the framework of operator preconditioning ([Hip06]), preconditioners for
two- and three-dimensional domains are constructed in [SvV18, SvV19].

We now consider the special setting where uΩ ⊂ R2 and {0} = �σ0 ⊂ �σ1 ⊂ · · · ⊂
� is a sequence of spaces of piecewise constant functions w.r.t. to a sequence of
uniformly dyadically refined partitions σ1 ≺ σ2 ≺ · · · of γ = ∂uΩ, with σ1 = σ⊥ is
some fixed ‘bottom’ partition. In this case, we can follow [Osw98] and construct
a wavelet preconditioner based on a compactly supported and piecewise constant
wavelet basis for H−

1
2 (R/Z). All wavelets with ‘levels’ less or equal to i span

all piecewise constants w.r.t. a partition of [0, 1] into 2−(i−1)#σ⊥ equally-sized
subintervals. Lifting this basis to γ, the uniform preconditioner Mσi ∈ Lis(�σi ,�

′
σi)

is defined by M−1
σi = TiT

>
i , where Ti is the basis transformation from the wavelet

basis to the canonical single scale basis Φσi for �σi , which can be performed in
linear complexity (see, e.g., the appendix of [BBSV17] for more details). This is
the strategy adopted in the numerical experiments proposed in Section 9.

Relevant references for Uzawa iterations in possibly infinite dimensional settings
include [BPV97, DDU02, BMN02, Bac06, KS08, FP18]. At some places in the
literature, � is (implicitly) identified with its dual using the Riesz map. Although
appropriate for L2 type spaces, it may obscure the need for a preconditioner in
other cases.

5. A posteriori error estimation

The preconditioned Uzawa scheme yields some approximation χ ∈ �σ to λσ,
the latter being the Galerkin approximation to λ from �σ. To asses the quality of
both of these approximations we derive a posteriori error estimators for ‖λσ − χ‖�
and ‖λ− λσ‖�. It is natural to expect that such estimators depends on uχ or uλσ .
However, since only their approximation ũ is available, we derive instead estimators
in terms of ũ and show that they are reliable and efficient under the assumption
that the error in ũ is sufficiently small in a relative sense.
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Proposition 5.1. For σ ∈ S, let χ ∈ �σ and ũ ∈ U be approximations to λσ and
uχ, respectively. Then it holds that

‖λσ − χ‖� h ‖uλσ − uχ‖U h sup
0 6=µ∈�σ

b(uχ, µ) + g(µ)

(Mσµ)(µ)
1
2

,(5.1) ∣∣∣∣∣ sup
06=µ∈�σ

b(uχ, µ) + g(µ)

(Mσµ)(µ)
1
2

−
√
〈M−1

σ r, r〉

∣∣∣∣∣ . ‖uχ − ũ‖U,(5.2)

where r := (Bũ+ g)(Φσ), and furthermore that

‖λ− λσ‖� h ‖u− uλσ‖U h ‖Buλσ + g‖�′ ,(5.3) ∣∣‖Buλσ + g‖�′ − ‖Bũ+ g‖�′
∣∣ . ‖uλσ − ũ‖U.(5.4)

So if ‖u
χ−ũ‖U√
〈M−1

σ r,r〉
or ‖u

λσ−ũ‖U
‖Bũ+g‖�′

are sufficiently small, then ‖λσ−χ‖� h
√
〈M−1

σ r, r〉
or ‖λ− λσ‖� h ‖Bũ+ g‖�′ .

Remark 5.2. In applications, ũ will be a Galerkin approximation to uχ. For our
fictitious domain application, in Sect. 7.2 an a posteriori error estimator for ‖uχ −
ũ‖U or ‖uλσ − ũ‖U (modulo ‘data oscillation’) will be given to assess the smallness

of ‖uχ−ũ‖U√
〈M−1

σ r,r〉
or ‖u

λσ−ũ‖U
‖Bũ+g‖�′

.

Proof of Proposition 5.1. The validity of the first h-symbol in (5.1) follows from

sup
0 6=v∈U

a(uλσ − uχ, v)

‖v‖U
= sup

06=v∈U

b(χ− λσ, v)

‖v‖U
,

the boundedness and coercivity of a, and the boundedness and ‘inf-sup condition’
satisfied by b. The well-posedness, uniform in σ ∈ S, of the semi-discrete saddle-
point problem shows that

‖λσ − χ‖� + ‖uλσ − uχ‖U h sup
06=(v,µ)∈U×�σ

a(uλσ − uχ, v) + b(v, λσ − χ) + b(uλσ − uχ, µ)

‖v‖U + ‖µ‖�

= sup
06=µ∈�σ

g(µ) + b(uχ, µ)

‖µ‖�
h sup

06=µ∈�σ

g(µ) + b(uχ, µ)

(Mσµ)(µ)
1
2

by (4.2). The boundedness of b shows that∣∣∣∣∣ sup
06=µ∈�σ

g(µ) + b(uχ, µ)

(Mσµ)(µ)
1
2

− sup
06=µ∈�σ

g(µ) + b(ũ, µ)

(Mσµ)(µ)
1
2

∣∣∣∣∣ . ‖uχ − ũ‖U.
The proof of (5.2) is completed by

sup
0 6=µ∈�σ

g(µ) + b(ũ, µ)

(Mσµ)(µ)
1
2

= sup
06=µ∈�σ

(Bũ+ g)(µ)

(Mσµ)(µ)
1
2

µ=Fσm
= sup

06=m∈Rdim �σ

〈r,m〉
〈Mσm,m〉 1

2

= ‖M−
1
2

σ r‖.

Using the same arguments one infers the first h-symbol in (5.3) and

‖λ− λσ‖� + ‖u− uλσ‖U h ‖Buλσ + g‖�′ .

Now (5.4) is obvious. �
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6. Nested inexact preconditioned Uzawa iteration

Returning to the preconditioned Uzawa iteration (4.3), in order to arrive at an

implementable method we will allow for uλ
(j)
σ to be replaced by an approximation.

Furthermore, eventually aiming at a method of optimal computational complexity,
we will combine the preconditioned Uzawa iteration with the concept of nested
iteration: Let {0} = �σ0

⊂ �σ1
⊂ · · · ⊂ � be such that for some constants ζ > 1,

L = L(f, g) > 0 (with L(ξf, ξg) = |ξ|L(f, g)), it holds that

(6.1) ‖λ− λσi‖� ≤ Lζ−i.

We consider the nested inexact preconditioned Uzawa iteration that, with λ
(K)
σ0 =

λσ0 = 0, for i = 1, 2, · · · produces (λ
(j)
σi )0≤j≤K defined by

λ(j)
σi =

{
λ

(K)
σi−1 j = 0,

λ
(j−1)
σi + βM−1

σi I
′
σi(Bu

(i,j−1) + g) 1 ≤ j ≤ K,

where u(i,j−1) ∈ U is such that

(6.2) ‖uλ
(j−1)
σi − u(i,j−1)‖U ≤ Lζ−i.

In the next two sections, such u(i,j−1) will be found as Galerkin approximations

to uλ
(j−1)
σi w.r.t. adaptively generated partitions. Below, for K a sufficiently large

constant, we derive an upper bound for ‖λσi − λ
(K)
σi ‖� that is of the same order as

the upper bound for ‖λ− λσi‖� from (6.1).

Lemma 6.1. With β and ρ from (4.4), given a constant M >
β‖B‖L(U,�′)

(1−ρ)r , let

K = K(M) be a sufficiently large constant such that 1√
r

[
ρK
√
R((1 + ζ) + Mζ) +

1
1−ρ

β√
r
‖B‖L(U,�′)

]
≤M . Then, assuming (6.1) and (6.2), we have

‖λσi − λ(j)
σi ‖� ≤

1√
r

[
ρj
√
R((1 + ζ) +Mζ) + 1

1−ρ
β√
r
‖B‖L(U,�′)

]
Lζ−i

(
. Lζ−i

)
(i ≥ 1, 0 ≤ j ≤ K), and so in particular,

‖λσi − λ(K)
σi ‖� ≤MLζ−i (i ≥ 0).

Furthermore, for 1 ≤ j ≤ K

‖u− u(i,j−1)‖U ≤ ‖A−1B
′
‖L(�,U)

(
‖λ− λσi‖� + ‖λσi − λ(j−1)

σi ‖�
)

+ Lζ−i . Lζ−i.

Proof. For i ≥ 1, define ‖µ‖σi := (Mσiµ)(µ)
1
2 (µ ∈ Λσi). Then, for 1 ≤ j ≤ K,

‖λσi − λ(j)
σi ‖σi ≤ ρ‖λσi − λ

(j−1)
σi ‖σi + β√

r
‖B‖L(U,�′)Lζ

−i,

where to arrive at the last term we used (6.2) and that the norm on �′σi dual to
‖ · ‖σi is at most a factor 1/

√
r larger that the norm on �′σi dual to ‖ · ‖�. By (6.1)

and induction, we have

‖λσi − λ(0)
σi ‖σi = ‖λσi − λ(K)

σi−1
‖σi

≤
√
R(‖λσi − λ‖� + ‖λ− λσi−1

‖� + ‖λσi−1
− λ(K)

σi−1
‖�)

≤
√
R((1 + ζ) +Mζ)Lζ−i,
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and so for 0 ≤ j ≤ K,

‖λσi − λ(j)
σi ‖� ≤

1√
r
‖λσi − λ(j)

σi ‖σi
≤ 1√

r

[
ρj
√
R((1 + ζ) +Mζ) + 1

1−ρ
β√
r
‖B‖L(U,�′)

]
Lζ−i,

(6.3)

which completes the proof of the first two statements by definition of M .
The second statement follows from

‖u−u(i,j−1)‖U ≤ ‖u− uλ
(j−1)
σi ‖U + ‖uλ

(j−1)
σi − u(i,j−1)‖U

≤ ‖A−1B
′
‖L(�,U)

(
‖λ− λσi‖� + ‖λσi − λ(j−1)

σi ‖�
)

+ Lζ−i

together with (6.1) and (6.3). �

7. Inner elliptic solver

Inside the nested inexact preconditioned Uzawa iteration, we need to find a

sufficiently accurate approximation u(i,j−1) for uλ
(j−1)
σi , cf. (6.2). This uλ

(j−1)
σi is the

solution in U of the elliptic problem a(uχ, v) = f(v) − b(v, χ) (v ∈ U), cf. (3.3),

with χ reading as λ
(j−1)
σi . In the application of the fictitious domain method, this

problem reads as solving uχ ∈ H1
0 (Ω) that satisfies

(7.1)

∫
Ω

∇uχ · ∇v dx =

∫
Ω

fv dx+

∫
γ

χv ds (v ∈ H1
0 (Ω)).

Recall that Ω ⊂ R2, γ ⊂ Ω is a Lipschitz curve, and f ∈ L2(Ω). For the moment,
we consider this problem for some arbitrary, but fixed χ ∈ L2(Ω). The discussion

how to deal with the fact that χ = λ
(j−1)
σi varies with i and j will be postponed to

Sect. 8.
For solving (7.1) we will apply an adaptive linear finite element method. The

adaptive triangulations will be generated by newest vertex bisection.

7.1. Newest vertex bisection. We recall some properties of newest vertex bisec-
tion. Proofs can be found on several places in the literature, e.g. in [BDD04, Ste07].
Let τ⊥ be a fixed conforming ‘bottom’ triangulation of Ω. Let the assignment of
the newest vertices in τ⊥ be such that if for T, T ′ ∈ τ⊥ the edge T ∩T ′ is opposite to
the newest vertex in T , then it is opposite to the newest vertex in T ′. In [BDD04],
it was shown that such an assignment always exists.

The infinite family of triangulations that can be created from τ⊥ by newest
vertex bisection is uniformly shape regular (only dependent on τ⊥). The subset of
this family of triangulations that additionally is conforming will be denoted as T .
For τ, τ∗ ∈ T , we write τ � τ∗ (τ ≺ τ∗) if τ∗ is a (strict) refinement of τ . For
τ, τ∗ ∈ T , we will denote the smallest common refinement of τ and τ∗ as τ ⊕ τ∗. It
is a triangulation in T , and

#τ ⊕ τ∗ ≤ #τ + #τ∗ −#τ⊥.

For any collection ω of triangles, let N (ω) the set of vertices of T ∈ ω. For τ ∈ T
and z ∈ N (τ), let φz = φτ,z denote the continuous piecewise linear function w.r.t.
τ that satisfies φz(z

′) = δzz′ (z′ ∈ N (τ)). We denote by Γ(τ) the set of all edges
of τ that are not on ∂Ω. We set ωz = ωτ,z := suppφz, and let Γ(ωz) denote the
collection of edges of τ that are not on ∂ωz.

For τ ∈ T and M⊂ N (τ), we let

refine(τ,M)
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denote the procedure that produces the smallest triangulation in T in which for
any z ∈ M any τ 3 T ⊂ ωz has been replaced by at least four subtriangles. The
following theorem is an easy consequence of [BDD04, Thm. 2.4].

Theorem 7.1. Let (τk)k≥0 defined by τ0 = τ⊥ and τk+1 := refine(τk,Mk) for
some Mk ⊂ N (τk). Then

#τk −#τ⊥ .
k−1∑
j=0

#Mj .

7.2. A posteriori error estimation for the ‘inner’ elliptic problem. Stan-
dard a posteriori error estimation for the Poisson problem requires the forcing func-
tion to be in L2(Ω). Our problem (7.1) does not satisfy this condition because of its
second forcing term. We will therefore use results from [CDN12] about a posteriori
error estimation for general forcing functions in H−1(Ω), and their implementable
specializations to forcing functions of types v 7→

∫
Ω
hv dx and v 7→

∫
γ
hv ds where,

for some p > 1, h ∈ Lp(Ω) or h ∈ Lp(γ), respectively. In view of our application,
however, for simplicity we consider the case p = 2 only.

For τ ∈ T , we set Uτ := {w ∈ H1
0 (Ω): w|T ∈ P1(T )}. We let

solve(τ, f, χ)

denote the procedure that computes the Galerkin approximation uχτ from Uτ to the
solution uχ of (7.1) . For U ∈ Uτ , z ∈ N (τ), we set

j(U, τ, z) :=
( ∑
e∈Γ(ωτ,z)

|e|2J∇U · neK2
) 1

2

,

dΩ(f, τ, z) :=
(
|ωτ,z|

∫
Ω

|f |2φτ,z dx
) 1

2

,

dγ(χ, τ, z) :=
(
|ωτ,z|

1
2

∫
γ

|χ|2φτ,z ds
) 1

2

,

e(U, f, χ, τ, z) :=
(
j(U, τ, z)2 + dΩ(f, τ, z)2 + dγ(χ, τ, z)2

) 1
2

,

where J∇U · neK denotes the jump in the normal derivative of U over e, |e| :=
meas(e), and |ωτ,z| := maxτ3T⊂ωz meas(T ). For M⊂ N (τ) we set

J(U, τ,M) :=
( ∑
z∈M

j(U, τ, z)2
) 1

2

DΩ(f, τ,M) :=
( ∑
z∈M

dΩ(f, τ, z)2
) 1

2 ,

Dγ(χ, τ,M) :=
( ∑
z∈M

dγ(χ, τ, z)2
) 1

2 ,

D(f, χ, τ,M) :=
(
DΩ(f, τ,M)2 +Dγ(χ, τ,M)2

) 1
2 ,

E(U, f, χ, τ,M) :=
( ∑
z∈M

e(U, f, χ, τ, z)2
) 1

2 .(7.2)

In the last five notations, we will sometimes drop the argument M from the left
hand side in case it is equal to N (τ). In the last notation, sometimes we drop the
argument U at both sides in case it is equal to uχτ .
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Finally, we set

Err(f, χ, τ) :=
(
|uχ − uχτ |2H1(Ω) +D(f, χ, τ)2

) 1
2 ,

which is sometimes called the total error. At a number places it will be used that
uχτ is the best approximation to uχ from Uτ w.r.t. semi-norm | · |H1(Ω).

Remark 7.2. Since neighboring triangles in τ ∈ T have uniformly comparable sizes,
and the valence of any z ∈ N (τ) is uniformly bounded, it holds that |ωτ,z| h
meas(ωτ,z). In [CDN12] the last expression is taken as the definition of |ωτ,z|. We
have chosen for the current definition of |ωτ,z| because of its property that forM⊂
N (τ), T 3 τ∗ � refine(τ,M), z ∈M, and z∗ ∈ N (τ∗) with ωτ∗,z∗ ⊂ ωτ,z, it holds
that |ωτ∗,z∗ | ≤ 1

4 |ωτ,z|, which will be used to demonstrate Lemma 7.8. (In contrast,
note that under these premises, for z ∈ ∂Ω it is possible that meas(ωτ∗,z∗) =
meas(ωτ,z)).

Given τ ∈ T , U ∈ Uτ , f ∈ L2(Ω), and χ ∈ L2(γ), we let

estimate(U, f, χ, τ)

denote the procedure that computes (e(U, f, χ, τ, z))z∈N (τ).

In view of (7.1) setting h(v) :=
∫

Ω
fv dx+

∫
γ
χv ds, from applications of Sobolev’s

embedding theorem and Poincaré’s inequality one may infer that

(7.3) ‖h‖H−1(ωz) := sup
06=v∈H1

0 (ωz)

h(v)

|v|H1(ωz)
.
(
dΩ(f, τ, z)2 + dγ(χ, τ, z)2

) 1
2

(cf. [CDN12, Sect. 7.1]).
With the forcing term in (7.1) reading as an arbitrary h ∈ H−1(Ω), and denot-

ing the resulting solution simply by u, the following two lemmas were shown in
[CDN12]:

Lemma 7.3 ([CDN12, Lemma 3.2], localized upper bound). For τ � τ∗ ∈ T , it
holds that

|uτ∗ − uτ |H1(Ω) .
( ∑
z∈N (τ\τ∗)

j(uτ , τ, z)
2 + ‖h‖2H−1(ωz)

) 1
2

,

and so in particular

|u− uτ |H1(Ω) .
( ∑
z∈N (τ)

j(uτ , τ, z)
2 + ‖h‖2H−1(ωz)

) 1
2

.

Lemma 7.4 ([CDN12, Lemma 3.3], local lower bound). For τ ∈ T , z ∈ N (τ),
U ∈ Uτ , it holds that

j(U, τ, z) . |u− U |H1(ωz) + ‖h‖H−1(ωz).

Returning to our specific h(v) =
∫

Ω
fv dx+

∫
γ
χv ds, from (7.3) and the previous

two lemmas we infer the following two results:

Lemma 7.5 (localized upper bound). There exists a constant Cupp such that for
τ � τ∗ ∈ T , it holds that

|uχτ∗ − uχτ |H1(Ω) ≤ CuppE(f, χ, τ,N (τ \ τ∗)),
and so in particular,

|uχ − uχτ |H1(Ω) ≤ CuppE(f, χ, τ).
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Lemma 7.6 (global lower and upper bounds). There exists a constant clow > 0
such that for τ ∈ T

clowE(f, χ, τ) ≤ Err(f, χ, τ) ≤
√

(C2
upp + 1) E(f, χ, τ).

7.3. Contraction property. Further results about the a posteriori estimator es-
tablished in [CDN12] will be combined with standard arguments in adaptive finite
element theory to show that a weighted sum of the squared error in the Galerkin
solution and the squared error estimator contracts when employing bulk chasing.

Whereas the adaptive finite element method investigated in [CDN12] involves
an inner loop to reduce data oscillation, this loop will be avoided in our adaptive
method.

Lemma 7.7 (stability of the jump estimator). There exists a constant Cst such
that for τ ∈ T , U,W ∈ Uτ , it holds that

|J(U, τ)− J(W, τ)| ≤ Cst|U −W |H1(Ω).

Proof. Application of triangle inequalities shows that |J(U, τ)− J(W, τ)| ≤ J(U −
W, τ). Now the result follows from an application of Lemma 7.4 with ‘h’= 0, and
thus ‘u’= 0, and ‘U ’=U −W . �

The next lemma shows reduction of the estimator when employing bulk chasing
under the unrealistic assumption that the discrete solution does not change. This
assumption will be removed later.

Lemma 7.8. For τ ∈ T , M ⊂ N (τ), U ∈ Uτ , and T 3 τ∗ � refine(τ,M), it
holds that

E(U, f, χ, τ∗)2 ≤ E(U, f, χ, τ)2 − 1

2
E(U, f, χ, τ,M)2.

Furthermore, for T 3 τ∗ � τ , it holds that D(f, χ, τ∗) ≤ D(f, χ, τ).

Proof. For convenience of the reader we collect the arguments for these statement
from the proofs of [CDN12, Lemmas 4.1, 7.1, and Theorem 7.5].

Since the normal derivative of U exhibits jumps only on inter-element boundaries
of τ , and the latter belong to exactly two ωz’s for z ∈ N (τ), we have

J(U, τ∗)2 = 2
∑
e∈Γ(τ)

( ∑
{e∗∈Γ(τ∗) : e∗⊂e}

|e∗|2
)
J∇U · neK2.

On the other hand, we have

J(U, τ)2 = 2
∑
e∈Γ(τ)

|e|2J∇U · neK2.

For any e ∈ Γ(τ) we have
∑
{e∗∈Γ(τ∗) : e∗⊂e} |e∗|2 ≤ |e|2. Since for e ∈ Γ(ωz) for

some z ∈M,
∑
{e∗∈Γ(τ∗) : e∗⊂e} |e∗|2 ≤

1
2 |e|

2, one infers that

(7.4) J(U, τ∗)2 ≤ 1

2
J(U, τ∗,M)2 + J(U, τ∗,N (τ) \M)2.

Next we consider the data oscillation estimators. Since φτ,z =
∑
z∗∈N (τ∗) φτ,z(z

∗)φτ∗,z∗ ,∑
z∈N (τ) φτ,z(z

∗) = 1 for any z∗, φτ,z ≥ 0, and φτ,z(z
∗) 6= 0 only if ωτ∗,z∗ ⊂ ωτ,z,
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we have

DΩ(f, τ∗)2 =
∑

z∗∈N (τ∗)

|ωτ∗,z∗ |
∫

Ω

|f |2φτ∗,z∗ dx

=
∑

z∗∈N (τ∗)

∑
z∈N (τ)

φτ,z(z
∗)|ωτ∗,z∗ |

∫
Ω

|f |2φτ∗,z∗ dx

=
∑

z∈N (τ)

∑
{z∗∈N (τ∗) : ωτ∗,z∗⊂ωτ,z}

φτ,z(z
∗)|ωτ∗,z∗ |

∫
Ω

|f |2φτ∗,z∗ dx

≤1

4

∑
z∈M

|ωτ,z|
∫

Ω

|f |2
∑

z∗∈N (τ∗)

φτ,z(z
∗)φτ∗,z∗ dx

+
∑

z∈N (τ)\M

|ωτ,z|
∫

Ω

|f |2
∑

z∗∈N (τ∗)

φτ,z(z
∗)φτ∗,z∗ dx

=
1

4

∑
z∈M

|ωτ,z|
∫

Ω

|f |2φτ,z dx+
∑

z∈N (τ)\M

|ωτ,z|
∫

Ω

|f |2φτ,z dx

=
1

4
DΩ(f, τ,M)2 +DΩ(f, τ,N (τ) \M)2.

(7.5)

Notice that we used our definition of |ωτ∗,z∗ |, see Remark 7.2, to obtain the above
inequality.

Since exactly the same arguments show that

(7.6) Dγ(χ, τ∗)2 ≤ 1

2
Dγ(χ, τ,M)2 +Dγ(χ, τ,N (τ) \M)2,

and combining the latter with (7.4) and (7.5) completes the proof of the first state-
ment.

The second statement is an easy consequence of (7.5) and (7.6) for M = ∅. �

For (ez)z∈N (τ) ⊂ R and θ ∈ (0, 1], we let

M := mark((ez)z∈N (τ), θ)

denote the procedure that outputs a smallest M ⊂ N (τ) that satisfies the bulk
chasing condition

∑
z∈M e2

z ≥ θ2
∑
z∈N (τ) e

2
z.

Corollary 7.9 (contraction). Given a constant θ ∈ (0, 1], there exists constants
υ > 0 and α < 1 such that for τ ∈ T , M := mark((e(f, χ, τ, z)z∈N (τ), θ), and
T 3 τ∗ � refine(τ,M), it holds that

|uχ − uχτ∗ |2H1(Ω) + υE(f, χ, τ∗)2 ≤ α
(
|uχ − uχτ |2H1(Ω) + υE(f, χ, τ)2

)
.

Proof. This proof follows the arguments introduced in [CKNS08].
Applications of Lemma 7.7 and that of Young’s inequality show that for any

δ > 0,

E(f, χ, τ∗)2 ≤ (1 + δ)E(uχτ , f, χ, τ
∗)2 + (1 + δ−1)Cst|uχτ∗ − uχτ |2H1(Ω).

Using that E(uχτ , f, χ, τ
∗)2 ≤ (1 − 1

2θ
2)E(f, χ, τ)2 by Lemma 7.8, choosing δ such

that (1 + δ)(1− 1
2θ

2) = (1− 1
4θ

2), using that

|uχ − uχτ∗ |2H1(Ω) = |uχ − uχτ |2H1(Ω) − |u
χ
τ∗ − uχτ |2H1(Ω),
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and taking υ such that υ(1 + δ−1)Cst = 1, we find that

|uχ − uχτ∗ |2H1(Ω)+υE(f, χ, τ∗)2 ≤ |uχ − uχτ |2H1(Ω) + υ(1− 1

4
θ2)E(f, χ, τ)2

≤
(

1− θ2/4

1 + Cupp/υ

)(
|uχ − uχτ |2H1(Ω) + υE(f, χ, τ)2

)
by an application of Lemma 7.5. �

7.4. Convergence with the best possible rate. For s > 0 we define the ap-
proximation class As as the collection of w ∈ H1

0 (Ω) for which

|w|As := sup
N∈N

Ns min
{τ∈T : #τ−#τ⊥≤N}

|w − wτ |H1(Ω) <∞.

Classical estimates show that for s ≤ 1
2 , H1

0 (Ω) ∩ H1+2s(Ω) ⊂ As where it is
sufficient to consider uniform refinements of τ⊥. Obviously the class As contains
many more functions, which is the reason to consider adaptive methods in the first
place. As shown in [BDDP02], for s ∈ (0, 1

2 ], the Besov space B1+2s
τ,q (Ω) is contained

in As for any q > 0, τ > (s+ 1
2 )−1. Although As is non-empty for any s > 0 as it

contains Uτ for any τ ∈ T , even for C∞(Ω)-functions only for s ≤ 1
2 membership in

As is guaranteed. For that reason, it is no real restriction to consider only s ∈ (0, 1
2 ]

in the following.
Besides the approximated classes As, we need approximation classes for both

data terms of the inner elliptic problem (7.1). For f ∈ L2(Ω) and s > 0, we say
that f ∈ BsΩ when

|f |BsΩ := sup
N∈N

Ns min
{τ∈T : #τ−#τ⊥≤N}

DΩ(f, τ) <∞.

Similarly, for χ ∈ L2(γ), we say that χ ∈ Bsγ when

|χ|Bsγ := sup
N∈N

Ns min
{τ∈T : #τ−#τ⊥≤N}

Dγ(χ, τ) <∞.

The approximation classes BsΩ and Bsγ for the data should not be confused with
Besov spaces.

The next, crucial result shows that the data oscillation terms DΩ(f, τ) and
Dγ(χ, τ) can be reduced at rate 1

2 . Knowing this result, standard arguments intro-
duced in [Ste07] will show that the usual adaptive finite element method driven by
bulk chasing on the estimator E converges with the best possible rate s ∈ (0, 1

2 ].

Theorem 7.10 ([CDN12, Theorems 7.3 and 7.4]). Functions f ∈ L2(Ω) and χ ∈
L2(γ) are in B

1
2

Ω and B
1
2
γ , respectively, with |f |

B
1
2
Ω

. ‖f‖L2(Ω) and |χ|
B

1
2
γ

. ‖χ‖L2(γ),

only dependent on τ⊥ and, for the second case, the length of γ.

The next lemma will be the key to bound the minimal number of nodes needed
to satisfy the bulk chasing criterion, as it is realized by the routine mark. It shows
that when τ∗ is a sufficiently deep refinement of τ such that its total error is less
than or equal to a certain multiple of the total error on τ , then the set of vertices
of the triangles that were refined when going from τ to τ∗ satisfies the bulk chasing
criterion.

Lemma 7.11 (bulk chasing property). Setting

θ∗ := clow√
1+C2

upp

,
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for θ ∈ (0, θ∗) and any T 3 τ∗ � τ with

(7.7) Err(f, χ, τ∗)2 ≤
[
1− θ2

θ2
∗

]
Err(f, χ, τ)2,

it holds that

E(f, χ, τ,N (τ \ τ∗)) ≥ θE(f, χ, τ).

Proof. Noting that each T ∈ τ that contains a z ∈ N (τ) \ N (τ \ τ∗) is in τ∗, one
infers that

D(f, χ, τ)2 ≤ D(f, χ, τ,N (τ \ τ∗))2 +D(f, χ, τ∗)2.

Now from lemmas 7.5 and 7.6, and the assumption on τ∗, we obtain that

θ2(1 + C2
upp)E(f, χ, τ)2 ≤ θ2

θ2
∗
Err(f, χ, τ)2

≤ Err(f, χ, τ)2 − Err(f, χ, τ∗)2

≤ |uχτ∗ − uχτ |2H1(Ω) +D(f, χ, τ,N (τ \ τ∗))2

≤ (1 + C2
upp)E(f, χ, τ,N (τ \ τ∗))2

being the statement of the lemma. �

Corollary 7.12. For θ ∈ (0, θ∗), u
χ ∈ As for some s ∈ (0, 1

2 ], τ ∈ T , and
M = mark(e(f, χ, τ, z)z∈N (τ), θ), it holds that

(7.8) #M . Cs(uχ, f, χ)Err(f, χ, τ)−
1
s ,

where

(7.9) Cs(u
χ, f, χ) :=

(
|uχ|

1
s

As + ‖f‖
1
s

L2(Ω) + ‖χ‖
1
s

L2(γ)

)
.

Proof. Since uχ ∈ As, f ∈ B
1
2

Ω , χ ∈ B
1
2
γ , there exist τu, τf , τχ ∈ T such that

(7.10)

max
(
|uχ − uχτu |H1(Ω),DΩ(f, τf ),Dγ(χ, τχ)

)
≤
√

1
3

[
1− θ2

θ2
∗

]
Err(f, χ, τ) =: Ê,

and

#τu −#τ⊥ ≤ |u|
1
s

AsÊ
− 1
s , #τf −#τ⊥ ≤ |f |

1
2

B
1
2
Ω

Ê−
1
2 ,#τχ −#τ⊥ ≤ |χ|

1
2

B
1
2
γ

Ê−
1
2 .

Since the left hand sides of the last two inequalities are either 0 or ≥ 1, we also
have

(7.11) #τu−#τ⊥ ≤ |u|
1
s

AsÊ
− 1
s , #τf−#τ⊥ ≤ |f |

1
s

B
1
2
Ω

Ê−
1
s ,#τχ−#τ⊥ ≤ |χ|

1
s

B
1
2
γ

Ê−
1
s .

From (7.10) and the monotonicity of D(f, χ, τ) and |uχ − uχτ |H1(Ω) as function of
τ , it follows that τ∗ := τ ⊕ τu ⊕ τf ⊕ τχ satisfies (7.7). In view of the bulk chasing
property given by Lemma 7.11, and becauseM is a set of minimal cardinality that
realizes the bulk chasing criterion, we infer that

#M≤ #N (τ \ τ∗) . #(τ \ τ∗) ≤ #τ∗ −#τ

≤ #τu −#τ⊥ + #τf −#τ⊥ + #τχ −#τ⊥

where the third inequality is a consequence of the fact that each T ∈ τ \ τ∗ has
been bisected at least once. Now from (7.11), Theorem 7.10, and

(7.12) Ê−
1
s =

(√
1
3

[
1− θ2

θ2
∗

])− 1
s

Err(f, χ, τ)−
1
s h Err(f, χ, τ)−

1
s ,
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the proof is completed. 1 �

The next result guarantees that the nested sequence (τk)k produced by this
adaptive finite element method reduces the total error at the best possible rate.

Theorem 7.13 (convergence with optimal rate). Let θ ∈ (0, θ∗), and uχ ∈ As
for some s ∈ (0, 1

2 ]. Then with τk denoting the partition after k iterations of the
solve− estimate− mark− refine loop started with τ0 = τ⊥, it holds that

#τk −#τ0 . Cs(u
χ, f, χ)Err(f, χ, τk)−

1
s ,

where Cs(u
χ, f, χ) is given by (7.9).

Proof. With Mi denoting the set of nodes that are marked in N (τi), applications
of Theorem 7.1 and Corollary 7.12 yield

#τk −#τ⊥ .
k−1∑
i=0

#Mi . Cs(u
χ, f, χ)

k−1∑
i=0

Err(f, χ, τi)
− 1
s .

Hence, the equivalence between Err and E provided by Lemma 7.6 together with
the contraction property from Corollary 7.9 imply

#τk −#τ⊥ .Cs(u
χ, f, χ)

k−1∑
i=0

(√
|uχ − uχτi |2H1(Ω) + υE(f, χ, τi)2

)− 1
s

h Cs(u
χ, f, χ)

(√
|uχ − uχτk−1 |2H1(Ω) + υE(f, χ, τk−1)2

)− 1
s

.

By invoking Lemma 7.6 again, as well as the second statement of Lemma 7.8, we
arrive at

#τk −#τ⊥ . Cs(u
χ, f, χ)Err(f, χ, τk−1)−

1
s ≤ Cs(uχ, f, χ)Err(f, χ, τk)−

1
s . �

8. The adaptive finite element method as an inner solver in Uzawa

We have seen that for f ∈ L2(Ω), and fixed χ ∈ L2(γ), the adaptive finite
element method for solving (7.1) converges with the best possible rate. That is,
whenever uχ ∈ As for some s ∈ (0, 1

2 ], the Galerkin approximations converge to uχ

with rate s. Now we return to the sequence of problems (7.1), where χ runs over

the set of all intermediate approximations λ
(j−1)
σi of λ. These elliptic problems have

to be approximated inside the Uzawa iteration. We aim at showing that whenever
u = uλ ∈ As, the sequence of all approximations that we generate inside the nested
inexact preconditioned Uzawa iteration converge to u with this rate s.

Therefore, it is needed to optimally bound the number of cells selected by any call
of mark in terms of |u|As (and that of ‖f‖L2(Ω) and ‖g‖H1(γ)), instead of applying

the obvious bound involving |uχ|As . Indeed with χ running over the λ
(j−1)
σi , we do

not know whether these uχ ∈ As (let alone whether supχ |uχ|As . |u|As).
In the following Lemma 8.1 we will manage to achieve this goal for calls of mark

(and thus of refine, solve and estimate) that are made as long as the (total) error
in the current Galerkin approximation for uχ is bounded from below by a positive

1Noting that
(√

1
3

[
1− θ2

θ2∗

])− 1
s → ∞ if, and only if, θ → θ∗ or s → 0, we conclude that the

constant ‘hidden’ in the .-symbol in (7.12), and thus in (7.8), depends on the value of θ or s when
they tend to θ∗ or 0, respectively. Consequently, this holds true for all results that are going to
derived from Corollary 7.12.
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constant multiple of |u − uχ|H1(Ω) h ‖λ − χ‖
H−

1
2 (γ)

, cf. (8.1). Fortunately, when

this condition is violated, the approximation for uχ will be sufficiently accurate for
its use inside the Uzawa iteration so that there is no need for another call of mark.
The bound on the number of cells selected by mark from Lemma 8.1 will depend

on ‖χ‖L2(γ). In Lemma 8.5 it will be shown that for χ running over all λ
(j−1)
σi , the

norms ‖χ‖L2(γ) will be uniformly bounded by a multiple of ‖f‖L2(Ω) + ‖g‖H1(γ).

Lemma 8.1. Let θ ∈ (0, θ∗), and u ∈ As for some s ∈ (0, 1
2 ]. Then for χ ∈ L2(γ)

and τ ∈ T with

(8.1) Err(f, χ, τ) & |u− uχ|H1(Ω),

for M = mark(e(f, χ, τ, z)z∈N (τ), θ) it holds that

(8.2) #M . Cs(u, f, χ)Err(f, χ, τ)−
1
s .2

Proof. Since u ∈ As, f ∈ B
1
2

Ω , χ ∈ B
1
2
γ , there exist τu, τf , τχ ∈ T such that

(8.3) max
(
|u− uτu |H1(Ω),DΩ(f, τf ),Dγ(χ, τχ)

)
≤ Err(f, χ, τ),

and

#τu −#τ⊥ ≤ |u|
1
s

AsErr(f, χ, τ)−
1
s ,

#τf −#τ⊥ ≤ |f |
1
s

B
1
2
Ω

Err(f, χ, τ)−
1
2 ,

#τχ −#τ⊥ ≤ |χ|
1
s

B
1
2
γ

Err(f, χ, τ)−
1
2 .

(8.4)

Let τ∗ := τu ⊕ τf ⊕ τχ. Then by

|uχ − uχτ∗ |H1(Ω) ≤ |uχ − uτ∗ |H1(Ω) ≤ |u− uτ∗ |H1(Ω) + |u− uχ|H1(Ω),

|u − uχ|H1(Ω) . Err(f, χ, τ) by assumption, and τ 7→ D(·, ·, τ) being monotone
non-increasing by Lemma 7.8, we have Err(f, χ, τ∗) . Err(f, χ, τ).

Lemma 7.6 guarantees that√
|uχ − uχτ∗ |2H1(Ω) + νE(f, χ, τ∗)2 h Err(f, χ, τ∗).

Hence, the contraction property (Corollary 7.9) indicates that the left hand side
reduces by a constant factor α < 1 by each application of the cycle estimate −
mark− refine− solve. Therefore by applying a fixed, sufficiently large number of
those cycles shows that there exists a τ̆ ∈ T with #τ̆ . #τ∗ and

Err(f, χ, τ̆)2 ≤
[
1− θ2

θ2
∗

]
Err(f, χ, τ)2.

For τ̄ := τ ⊕ τ̆ , we have τ̄ � τ and Err(f, χ, τ̄)2 ≤ Err(f, χ, τ̆)2 ≤
[
1 −

θ2

θ2
∗

]
Err(f, χ, τ)2, so that from the bulk chasing property given by Lemma 7.11 com-

bined with the minimal cardinality property of the set M, it follows that

#M≤ #N (τ \ τ̄) . #(τ \ τ̄) ≤ #τ̄ −#τ ≤ #τ̆ −#τ⊥

. #τu −#τ⊥ + #τf −#τ⊥ + #τχ −#τ⊥ ≤ Cs(u, f, χ)Err(f, χ, τ)−
1
s ,

by (8.4), and Theorem 7.10. �

2Without the condition (8.1), Cs(u, f, χ) in (8.2) would have to be read as the undesirable
factor Cs(uχ, f, χ), cf. Lemma 7.12.
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Instead of adaptively solving the elliptic problems (7.1) for χ = λ
(j−1)
σi for each i

and j starting from τ⊥, we will use the final partition produced for the approxima-

tion of uλ
(j)
σi as the initial partition for the approximation for uλ

(j+1)
σi when j < K,

and for u
λ(0)
σi+1 otherwise.

We consider the following solve − estimate − mark − refine iteration, that
starts from some given initial triangulation τ0 ∈ T , thus not necessarily equal to
τ⊥, and that is completed by a stopping criterion.

Algorithm 8.2.
[τk, u

χ
τk

] = afem(τ0, f, χ, ε):
uχτ0 = solve(τ0, f, χ)
(e(f, χ, τ0, z))z∈N (τ0) = estimate(uχτ0 , f, χ)
k = 0
while CuppE(f, χ, τk) > ε do

Mk = mark((e(f, χ, τk, z))z∈N (τk), θ)
τk+1 = refine(τk,Mk)
uχτk+1

= solve(τk+1, f, χ)

(e(f, χ, τk+1, z))z∈N (τk+1) = estimate(uχτk+1
, f, χ)

k ← k + 1
enddo

In the following lemma, essentially it is shown that the approximations produced
by afem converge to uχ with a rate that is the best possible for approximating u
as long as the tolerance ε & |u− uχ|H1(Ω).

Lemma 8.3. Let θ ∈ (0, θ∗), u ∈ As for some s ∈ (0, 1
2 ], χ ∈ L2(γ), τ0 ∈ T , and

ε > 0 with

ε & |u− uχ|H1(Ω).

Let τ0 ≺ · · · ≺ τm ⊂ T denote the sequence of triangulations that is produced by
the call afem(τ0, f, χ, ε), and for 0 ≤ k ≤ m − 1, let Mk ⊂ N (τk) denote the sets
of nodes that were marked. Then

m−1∑
k=0

#Mk . Cs(u, f, χ)ε−1/s,

and |uχ − uχτm |H1(Ω) ≤ ε, where Cs(u, f, χ) is given by (7.9).

Proof. The last statement is valid by Lemma 7.5 because the algorithm terminates
as a consequence of Corollary 7.9.

For 0 ≤ k < m, Err(f, χ, τk) h CuppE(f, χ, τk) > ε & |u − uχ|H1(Ω), where the
strict inequality holds for otherwise the algorithm would have stopped at iteration
k. By Lemma 8.1, we deduce that #Mk . Cs(u, f, χ)Err(f, χ, τk)−

1
s . As in the

proof of Theorem 7.13, from Lemma 7.6 and Corollary 7.9 we infer that

m−1∑
k=0

#Mk . Cs(u, f, χ)Err(f, χ, τm−1)−
1
s ≤ Cs(u, f, χ)C

1
s
uppε

− 1
s . �

To use the results that were derived in the abstract setting discussed in Sect. 3,
recall that in our fictitious domain setting we have U = H1

0 (Ω), � = H−
1
2 (γ), and

{0} = �σ0
⊂ �σ1

⊂ · · · ⊂ � is the sequence of spaces of piecewise constant functions
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w.r.t. to uniform dyadically refined partitions σ1 ≺ σ2 ≺ · · · of γ. Since λ ∈ L2(γ)
with ‖λ‖L2(γ) . ‖f‖L2(Ω) + ‖g‖H1(γ), (6.1) reads as

‖λ− λσi‖H− 1
2 (γ)
≤ L2−i/2,

i.e., ζ =
√

2, and L = L(f, g) h ‖f‖L2(Ω) + ‖g‖H1(γ).
We are now ready to use the routine afem as an inner solver in the nested

inexact preconditioned Uzawa iteration. With constants β and K = K(M) as in
Lemma 6.1, it reads as follows:

Algorithm 8.4.
nested-inexact-preconditioned-Uzawa(f, g)

λ
(K)
σ0 := 0, τ0,K := τ⊥

for i = 1, 2, . . . do

λ
(0)
σi := λ

(K)
σi−1 , τi,0 := τi−1,K

for j = 1 to K do

[τi,j , u
λ(j−1)
σi
τi,j ] := afem(τi,j−1, f, λ

(j−1)
σi , Lζ−i)

λ
(j)
σi := λ

(j−1)
σi + βM−1

σi I
′
σi(Bu

λ(j−1)
σi
τi,j + g)

endfor

endfor

In order to remove the dependence on χ = λ
(j−1)
σi of the upper bounds derived

in Lemmas 8.1 and 8.3, we need uniform boundedness of the ‖λ(j)
σi ‖L2(γ):

Lemma 8.5. For the sequence ((λ
(j)
σi )1≤j≤K)i≥1 produced by the above algorithm

it holds that ‖λ(j)
σi ‖L2(γ) . L = L(f, g).

Proof. With Qσi denoting the L2(γ)-orthogonal projector onto �σi , we estimate

‖λ(j)
σi ‖L2(γ) ≤ ‖λ‖L2(γ) + ‖λ− λ(j)

σi ‖L2(γ)

≤ ‖λ‖L2(γ) + ‖λ−Qσiλ‖L2(γ) + ‖Qσiλ− λ(j)
σi ‖L2(γ)

≤ 2‖λ‖L2(γ) + ‖Qσiλ− λ(j)
σi ‖L2(γ)

. 2‖λ‖L2(γ) + 2i/2‖Qσiλ− λ(j)
σi ‖H− 1

2 (γ)

by the application of the inverse inequality ‖ · ‖L2(Ω) . 2i/2‖ · ‖
H−

1
2 (Ω)

on �σi (e.g.,

see [DFG+04, Thm. 4.6]). The proof is completed by ‖λ‖L2(Ω) . L = L(f, g) and

‖Qσiλ − λ
(j)
σi ‖H− 1

2 (γ)
≤ ‖(I − Qσi)λ‖H− 1

2 (γ)
+ ‖λ − λ(j)

σi ‖H− 1
2 (γ)
. L2−i/2, for the

second term using Lemma 6.1 together with (6.1). �

We are ready to prove that the sequence ((u
λ(j−1)
σi
τi,j )1≤j≤K)i≥1 converges to u with

the best possible rate:

Theorem 8.6. Let θ ∈ (0, θ∗), u ∈ As for some s ∈ (0, 1
2 ] and assume that K is

sufficiently large constant as specified in Lemma 6.1. Then for i ≥ 1,

(8.5)
max(‖λ− λ(j)

σi ‖H− 1
2 (γ)

, ‖u− u
λ(j−1)
σi
τi,j ‖H1(Ω))

‖f‖L2(Ω) + ‖g‖H1(γ)
. 2−i/2, (1 ≤ j ≤ K),
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and

(8.6) #τi,j−#τ⊥ .
(( |u|As
‖f‖L2(Ω) + ‖g‖H1(γ)

)1/s

+2
)( ‖u− uλ(j−1)

σi
τi,j ‖H1(Ω)

‖f‖L2(Ω) + ‖g‖H1(γ)

)−1/s

.

Proof. The first statements follow from (6.1) and Lemma 6.1 with u(i,j) = u
λ(j−1)
σi
τi,j

and ζ =
√

2.

With the number of triangulations created inside the afem(τi,j−1, f, λ
(j−1)
σi , L2−i/2)

denoted as mi,j−1, letM(i,j−1)
0 , . . . ,M(i,j−1)

mi,j−1−1 denote the sequence of marked cells

that is generated. Since ‖λ(j−1)
σi ‖L2(γ) . L by Lemma 8.5, and ‖u−uλ

(j−1)
σi ‖H1(Ω) h

‖λ− λ(j−1)
σi ‖

H−
1
2

(γ) ≤ L2−i/2, Lemma 8.3 shows that

mi,j−1−1∑
k=0

#M(i,j−1)
k .

(
|u|1/sAs + ‖f‖1/sL2(Ω) + L1/s

)
L−1/s(2i/2)1/s.

Now an application of Theorem 7.1, and the fact that, thanks to the optimal pre-
conditioning, K is a constant independent of i, show that

#τi,j −#τ⊥ .
j∑
̆=1

m(i,̆−1)−1∑
k=0

#M(i,̆−1)
k +

i−1∑
ı̆=1

K∑
̆=1

m(ı̆,̆−1)−1∑
k=0

#M(ı̆,̆−1)
k

.
( |u|1/sAs + ‖f‖1/sL2(Ω)

L1/s
+ 1
)

(2i/2)1/s

.
(
(L−1|u|As)1/s + 2

)
(L−1‖u− u

λ(j−1)
σi
τ ‖H1(Ω))

−1/s.

(8.7)

�

Remark 8.7. Theorem 8.6 shows that the sequence ((u
λ(j−1)
σi
τi,j )1≤j≤K)i≥1 converges

to u with the best possible rate, or equivalently, that #τi,j is of the best possible
order. The latter even holds true if we read #τi,j as the sum of the cardinality of τi,j
and that of all preceding ones starting from τ⊥. This follows from (8.7), 1 ≤ j ≤ K,
and supi≥1 max1≤j≤K mi,j−1 <∞. The latter is a consequence of the fact that the

argument τ = τi,j−1 in the call afem(τi,j−1, f, λ
(j−1)
σi , L2−i/2) is such that for j > 1,

|uλ
(j−2)
σi −u

λ(j−2)
σi
τ |H1(Ω) ≤ L2−i/2, and for j = 0, |uλ

(K)
σi−1−u

λ(K)
σi−1
τ |H1(Ω) ≤ L2−(i−1)/2,

and so, by the first inequality in (8.5), in both cases infU∈Uτ |u
λ(j−1)
σi − U |H1(Ω) .

2−i/2. As we have seen, this means that a uniformly bounded number of iterations
of solve− estimate− mark− refine suffices to obtain a Galerkin approximation

to uλ
(j−1)
σi that meets the tolerance L2−i/2.

The statement proven in this remark is the first step in a proof of optimal
computational complexity of a method in which the exact Galerkin solutions are
replaced by inexact ones, following the analysis given in [Ste07].

Remark 8.8. (Cost of subdividing γ). For the overall computational cost of the
method, the costs of the repeated updates of the approximate Lagrange multiplier
as well as their evaluations when used as right hand sides of the afem algorithm
need to be accounted for. Both are proportional to the dimension of the spaces
dim Λσi h 2i or equivalently to the cardinality of the underlying mesh #σi. In
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view of (8.5), we deduce that dim Λσi . L2‖u − u
λ(j−1)
σi
τi,j ‖−2

H1(Ω), which is smaller

than the estimate (8.6) derived for #τi,j (s ∈ (0, 1/2]). The overall computational
cost is therefore dominated by the approximation of u in afem.

9. Numerical Illustrations

9.1. A posteriori error estimation. To assess the performances of Algorithm 8.4,

we derive a-posteriori estimators for |u − u
λ(K−1)
σi
τi,K |H1(Ω) and ‖λ − λ(K−1)

σi ‖
H−

1
2 (γ)

,

and report on their values. Notice that we expect λ
(K)
σi to be more accurate than

λ
(K−1)
σi but we cannot get a computational estimate for the error in the former.

We start with |u − u
λ(K−1)
σi
τi,K |H1(Ω). From (5.3) in Proposition 5.1, it follows

that |u − uλσi |H1(Ω) h ‖g − uλσi ‖
H

1
2 (γ)

, with the Aronszajn-Slobodeckij norm

‖w‖2
H

1
2 (γ)

:= ‖w‖2L2(γ) + |w|2
H

1
2 (γ)

and |w|2
H

1
2 (γ)

:=
∫
γ

∫
γ
|w(ξ)−w(η)|2
|ξ−η|2 dξdη.

To be able to compute, or accurately approximate, the error estimator in linear
complexity, we localize the double integral. As shown by B. Faermann in [Fae00],
using that g − uλσi ⊥L2(γ) �σi it holds that ‖g − uλσi ‖

H
1
2 (γ)

h |g − uλσi | 1
2 ,σi,loc,

where |w|21
2 ,σi,loc

:=
∑
I∈σi |w|

2

H
1
2 (I∪IR)

and IR = IR(I) ∈ σi is the interval next to

I in clockwise direction.
By triangle-inequalities and the trace theorem, we arrive at

|u− u
λ(K−1)
σi
τi,K |H1(Ω) ≤ |u− uλσi |H1(Ω) + |uλσi − u

λ(K−1)
σi
τi,K |H1(Ω)

h |g − uλσi | 1
2 ,σi,loc + |uλσi − u

λ(K−1)
σi
τi,K |H1(Ω)

. |g − u
λ(K−1)
σi
τi,K | 1

2 ,σi,loc + |uλσi − u
λ(K−1)
σi
τi,K |H1(Ω).

(9.1)

Let Mσi be a preconditioner as in (4.2), Φσi be a basis for �σi , and r := 〈g −

u
λ(K−1)
σi
τi,K ,Φσi〉L2(γ). From (5.1)-(5.2) in Proposition 5.1 we have

|uλσi − u
λ(K−1)
σi
τi,K |H1(Ω) ≤ |uλσi − uλ

(K−1)
σi |H1(Ω) + |uλ

(K−1)
σi − u

λ(K−1)
σi
τi,K |H1(Ω)

.
√
〈M−1

σi r, r〉+ |uλ
(K−1)
σi − u

λ(K−1)
σi
τi,K |H1(Ω).

(9.2)

Finally, an application of Lemma 7.5 shows that

(9.3) |uλ
(K−1)
σi − u

λ(K−1)
σi
τi,K | ≤ E(u

λ(K−1)
σi
τi,K , f, λ(K−1)

σi , τi,K).

Combining (9.1), (9.2), (9.3), yields the computable upper bound

|u−u
λ(K−1)
σi
τi,K |H1(Ω) ≤

. |g − u
λ(K−1)
σi
τi,K | 1

2 ,σi,loc︸ ︷︷ ︸
Eouter:=

+

√
〈M−1

σi r, r〉︸ ︷︷ ︸
EUzawa:=

+ E(u
λ(K−1)
σi
τi,K , f, λ(K−1)

σi , τi,K)︸ ︷︷ ︸
Einner:=

.
(9.4)

Notice that when EUzawa + Einner . Eouter, it even holds that

|u− u
λ(K−1)
σi
τi,K |H1(Ω) h Eouter + EUzawa + Einner.
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Indeed, this follows from the estimate

(9.5) Eouter = |g − u
λ(K−1)
σi
τi,K | 1

2 ,σi,loc ≤
√

2 |g − u
λ(K−1)
σi
τi,K |

H
1
2 (γ)
. |u− u

λ(K−1)
σi
τi,K |H1(Ω)

by the trace theorem.

Remark 9.1. Concerning the terminology, recall that in Lemma 7.6 we have seen

that the inner Galerkin error |uλ
(K−1)
σi −u

λ(K−1)
σi
τi,K |H1(Ω) is equivalent to Einner up to the

data oscillation term D(f, λ
(K−1)
σi , τi,K). Furthermore, (5.1)-(5.2) in Proposition 5.1

show that if Einner/EUzawa is sufficiently small, then ‖λσi−λ
(K−1)
σi ‖

H−
1
2 (γ)

h |uλσi−

uλ
(K−1)
σi |H1(Ω) h EUzawa, which thus is properly called the Uzawa error. Similarly,

if additionally EUzawa/Eouter is sufficiently small, then Eouter h |g− uλσi | 1
2 ,σi,loc h

|u− uλσi |H1(Ω) h ‖λ− λσi‖H− 1
2 (γ)

being the outer Galerkin error.

Proceeding with the estimate of ‖λ−λ(K−1)
σi ‖

H−
1
2 (γ)

, the Galerkin orthogonality

w.r.t. the energy inner product (χ, µ) 7→ (Sµ)(χ) yields

‖λ− λ(K−1)
σi ‖

H−
1
2 (γ)

h ‖λ− λσi‖H− 1
2 (γ)

+ ‖λσi − λ(K−1)
σi ‖

H−
1
2 (γ)

h |u− uλσi |H1(Ω) + |uλσi − uλ
(K−1)
σi |H1(Ω)

. Eouter + EUzawa + Einner.

Recalling (9.5), we obtain

Eouter . |u− u
λ(K−1)
σi
τi,K |H1(Ω) ≤ |u− uλ

(K−1)
σi |H1(Ω) + |uλ

(K−1)
σi − u

λ(K−1)
σi
τi,K |H1(Ω)

. ‖λ− λ(K−1)
σi ‖

H−
1
2 (γ)

+ Einner,

and infer that if EUzawa . Eouter and Einner/Eouter is sufficiently small, then

‖λ− λ(K−1)
σi ‖

H−
1
2 (γ)

h Eouter + EUzawa + Einner.

Remark 9.2. It is tempting to circumvent the somewhat cumbersome computa-
tion of the localized Aronszajn-Slobodeckij semi-norm | · | 1

2 ,σi,loc by the following

approach: For w ∈ L1(γ), let Pσiw be the continuous piecewise linear function
on γ w.r.t. the partition σi defined on each of its vertices ν as the average of
w over the union of the two elements of σi that contain ν. Using that Pσi lo-
cally preserves constants, standard techniques show that ‖Pσi‖L(L2(γ),L2(γ)) . 1,

‖Pσi‖L(H1(γ),H1(γ)) . 1, ‖I − Pσi‖L(H1(γ),L2(γ)) . 2−i, and as a consequence,

‖Pσi‖L(H
1
2 (γ),H

1
2 (γ))

. 1 and ‖I − Pσi‖L(H1(γ),H
1
2 (γ))

. 2−i/2. Using the orthogo-

nality g − uλσi ⊥L2(γ) �σi , we arrive at

|u− uλσi |H1(Ω) h ‖g − uλσi‖H 1
2 (γ)

= ‖(I − Pσi)(g − uλσi )‖H 1
2 (γ)

. 2−i/2‖g − u
λ(K−1)
σi
τi,K ‖H1(γ) + ‖uλσi − u

λ(K−1)
σi
τi,K ‖

H
1
2 (γ)

,

which, in view of (9.1), yields

max
(
|u− u

λ(K−1)
σi
τi,K |H1(Ω), ‖λ− λ(K−1)

σi ‖
H−

1
2 (γ)

)
. Ẽouter + EUzawa + Einner,
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where Ẽouter := 2−i/2‖g − u
λ(K−1)
σi
τi,K ‖H1(γ).

The approach of estimating the H
1
2 (γ)-norm of a residual by a weighted H1(γ)-

norm was introduced in [CMS01] and is often used in the BEM community. In the
current context, however this turns out not to be appropriate. In our experiments
the modified estimator greatly overestimates the error and it even does not reduce

when the iterations proceed. The reason is that the trace of u
λ(K−1)
σi
τi,K is piecewise

polynomial w.r.t. an irregular partition of γ, that moreover is locally much finer
than σi.

9.2. Setting. We explore the convergence and optimality properties of the nested
inexact preconditioned Uzawa algorithm (Algorithm 8.4). We consider the L-shaped
domain uΩ = (−1, 1)2 \ (−1, 0)2, set g = 0 and choose uf ∈ L2(uΩ) such that the
solution u to (2.1) in polar coordinates (r, φ) centered at (0, 0) reads

uu(r, φ) = h(r)r2/3 sin(2/3(φ+ π/2)),

where

h(r) =
w(3/4− r)

w(r − 1/4) + w(3/4− r)
with w(r) =

{
r2 if r > 0
0 else.

The fictitious domain formulation (2.2) is obtained by embedding uΩ in the square
domain Ω = (−1.5, 1.5)2 and by letting uf to be the zero extension of f ∈ L2(Ω).
Note that in that case, the solution (u, λ) of (2.2) satisfies u|Ω\uΩ = 0 and

λ =
∂uu

∂~n

∣∣
γ

=
2

3
h(r) r−1/3 ∈ Hs(γ), s <

1

6
.

Recall that the approximations of u are continuous piecewise linear polyno-
mials w.r.t. locally refined partitions of Ω while the approximations of λ con-
sist of piecewise constant polynomials w.r.t uniform dyadically refined partitions
σ⊥ = σ1 ≺ σ2 ≺ · · · of γ, where #σi = 2i+2.

9.3. Performances of the Wavelet Preconditioner. We start by assessing the
efficiency of the wavelet preconditioner M−1

σi introduced in Example 4.2. It is an
approximate inverse of Sσi ∈ Lis(�σi ,�

′
σi) and its quality is characterized by a

uniform bound on

(9.6) κ := sup
i
ρ(M−1

σi Sσi) sup
i
ρ(MσiS

−1
σi ) = sup

i
κ(M−1

σi Sσi),

where for an invertible C, κ(C) is the spectral condition number defined by κ(C) :=
ρ(C)ρ(C−1). The equality in (9.6) follows from the nesting �σi ⊂ �σi+1

and the
multi-level character of the preconditioner.

Unfortunately, the exact computation of κ(M−1
σi Sσi) is impossible because the

evaluation of Sσi requires the inverse of the infinite dimensional A ∈ Lis(U,U′).
Instead, we monitor the computable quantity κ(M−1

σi Sσiτi), where for a partition
τi ∈ T of Ω, Sσiτi is an approximation of Sσi . We propose to define Sσiτi :=
BσiτiA

−1
τi B

′
σiτi , where Bσiτi ∈ L(Uτi ,�

′
σi) and Aτi ∈ Lis(Uτi ,U

′
τi) are defined by

(Bσiτiw)(µ) = b(w, µ) (w ∈ Uτi , µ ∈ �σi) and (Aτiw)(v) = a(w, v) (w, v ∈ Uτi),
respectively. Given σi, we know that Sσiτi → Sσi ∈ Lis(�σi ,�

′
σi) when the diameter

of the largest element in τi tends to zero. Furthermore, Sσiτi is uniformly spectrally
equivalent to Sσi under a uniform LBB condition. To achieve the latter, we perform
refinements until the triangles T ∈ τi intersecting the boundary γ have diameters
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smaller than 3 times the length of the elements in σi, see [GG95]. At this point,
we emphasize that the validity of the LBB condition is enforced only to assess
the performances of the wavelet preconditioner but is not required for the nested
inexact Uzawa algorithm.

The results are collected in Table 1. In the first two columns, we report the
number of elements in σi and τi, while the third and fourth column show the
condition numbers of the Schur complement and its preconditioned version, respec-
tively. The last two columns contains the spectral radius of the preconditioned
Schur complement and that of its inverse. As predicted, the condition number of
the unpreconditioned matrices increases by a factor 2 when the level i of refine-
ment is increased by 1. In contrast, the efficiency of the wavelet preconditioner is
confirmed (fourth column) by the nearly constant values of the condition number
of the preconditioned Schur complements. The fact that these condition numbers
even decrease with an increasing #σi is an artifact caused by the replacement of
A−1 by A−1

τi .

It is worth noting that from the quantities ρ(M−1
σi Sσiτi) and ρ(MσiS

−1
σiτi) re-

ported in Table 1, it is possible to obtain an estimate for the optimal parameter β
defined by (4.5). In fact, we observe that ρ(M−1

σi Sσiτi) + ρ(MσiS
−1
σiτi)

−1 ≈ 0.8 so
from now on we set β = 2/0.8.

Table 1. Spectral condition numbers of the preconditioned and
unpreconditioned approximate Schur complement. κS = κ(Sσiτi),
κM−1S = κ(M−1

σi Sσiτi), ρS = ρ(Sσi), ρM−1S = ρ(M−1
σi Sσi),

ρS−1 = ρ(S−1
σi ), ρMS−1 = ρ(MσiS

−1
σi ).

#σi #τi κS κM−1S ρM−1S ρMS−1

8 1741 6.71 6.71 0.563 11.9
16 2010 13.5 6.44 0.575 11.2
32 4770 28.0 6.04 0.587 10.3
64 11326 57.8 5.83 0.593 9.83
128 23398 118 5.74 0.596 9.64
256 46134 238 5.69 0.597 9.54
512 85460 489 5.67 0.598 9.48
1024 156092 980 5.65 0.598 9.46

9.4. Performances of the Nested Inexact Uzawa Algorithm. We now in-
vestigated the performances of the nested inexact preconditioned Uzawa iteration
(Algorithm 8.4). The routine afem given in Algorithm 8.2 serves as an inner solver
in Algorithm 8.4 and is driven by the a posteriori error estimator E , see (7.2).
Apart from data oscillation terms, it consists of the square root of the sum of
weighted norms of jumps of normal derivatives of the current approximation for u
over the edges of the partition of Ω. The numerical observations in [CV99] indicate

that, ignoring the data oscillations, E is approximately a factor 3
√

2 larger than
the error it estimates (the factor

√
2 stems from the fact that unlike in [CV99]

our estimator each jump is counted twice). Therefore, in the following we scale E
by a factor

√
2/6 and set the constant Cupp = 1. Note that the same scaling is

applied to the quantity Einner defined in (9.4). In addition, we set the constant
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L = L(f, g) = L̄ (‖f‖L2(Ω) + ‖g‖H1(γ)) with L̄ = 0.1, K = 6, ζ =
√

2, θ = 0.1 and
recall that β defined in (4.5) is set to β = 2/0.8 (see Section 9.3).

Figure 1 displays the meshes τ0,K = τ⊥ (initial mesh), σ0 = ∅ together with the
adaptively or uniformly refined meshes τi,K , σi obtained at the first, third and fifth
outer iteration i = 1, 3, 5 of Algorithm 8.4.

Remark 9.3. To illustrate the point made in Remark 3.3 about not imposing the
LBB condition, we observe that for the mesh corresponding to i = 5 in Figure 1,
the triangle that covers the lower-right corner of the L-shaped domain contains 7
elements of the boundary mesh σ5. This implies infµ∈�σ5

supv∈Uτ5,K
b(v, µ) = 0, so

that the fully discrete saddle point problem on Uτi,K × �σi is even singular, and in
particular that the LBB condition does not hold.

Figure 2 shows the approximations u
λ(K−1)
σi
τi,K at the third and sixth outer iterations

i = 3, 6, while Figure 3 provides a comparison between the approximation λ
(K−1)
σi

and the L2(γ)-orthogonal projection of the exact solution λ onto �σi for i = 3

and 6. In Figure 4 the traces of the numerical solution u
λ(K−1)
σi
τi,K on the boundary γ

are depicted for i = 1, 3, 5, 6 in red and compared to the (zero) trace of the exact
solution.

In Figure 5, for i = 1, . . . , I := 10, we report the errors |u − u
λ(K−1)
σi
τi,K |H1(Ω)

and ‖λ − λ
(K−1)
σi ‖H−1/2(γ), and compare them to the estimators. We observe a

remarkable agreement between the errors and the estimators. In addition, note
that Eouter and Einner exhibit rates of decay comparable with the ones of the errors,
whereas EUzawa is in all cases much smaller than the other indicators, displaying
a plateau whenever K > 2 inner iterations are performed. For completeness, we
mention that the computation of the norm ‖ · ‖H−1/2(γ) is approximated by first

building the L2(γ)-orthogonal projection µ of the error λ− λ(K−1)
σi onto �σI+2

and

then employing (4.2) to get ‖λ− λ(K−1)
σi ‖H−1/2(γ) '

√
(MσI+2

µ)(µ).

In Table 2, we report the rates of convergence for the errors |u − u
λ(K−1)
σi
τi,K |H1(Ω)

and ‖λ − λ(K−1)
σi ‖H−1/2(γ) with respect to #τi,K and #σi, respectively. The rates

are computed after excluding the first three iterations of the algorithms. The
convergence rate of the H1(Ω)-error for u is always close to the expected value 0.5
while the convergence rate of the H−1/2(γ)-error for λ is 0.69. The latter is in
agreement with the theoretical rate 2

3 expected since λ ∈ Hs(γ) for any s < 1
6 .

Finally, in the last two columns we report the number of elements of τI,K and σI
at the last iteration I = 10.

In Table 3, we report the rates of convergence of the estimators Eouter, EUzawa

and Einner. The rates observed for Eouter are closer to the theoretical value 2
3 when

K increases. The rates obtained for Einner always matche (up to the third significant

digit) the theoretical rate expected for |u − u
λ(K−1)
σi
τi,K |H1(Ω). Finally, the low rates

exhibited by EUzawa are explained by the appearance of plateaux for larger values
of i when K > 3 inner iterations are performed.

We conclude this section with one additional table focusing on the behavior of the
inner adaptive solver. Recall that in Algorithm 8.4 a fixed number of inner iterations
j = 1, ..,K is performed within each outer iteration i = 1, .., I. Each of these inner
iterations lead to bulk mesh refinement (Algorithm 8.2) whenever CuppE(f, χ, τk) >
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Figure 1. Meshes τi,K , σi for i = 0, 1, 3, 5 produced with K = 6,

ζ =
√

2, and θ = 0.1.

Lζ−i. In Table 4, for each outer iteration i, we report the number of times that
the bulk mesh refinement is performed and observe that the refinements are never
performed after the second inner iteration.

Table 2. Computed rates of convergence of eu := |u −

u
λ(K−1)
σi
τi,K |H1(Ω) and eλ := ‖λ − λ

(K−1)
σi ‖H−1/2(γ) w.r.t. #τi,K and

#σi, for different values of K (I = 10, θ = 0.1 and ζ =
√

2).

eu eλ #τI,K #σI
K = 2 0.56 0.70 1344310 4096
K = 3 0.55 0.69 1372266 4096
K = 6 0.56 0.69 1411114 4096
K = 9 0.56 0.69 1411274 4096
K = 15 0.56 0.69 1411254 4096
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Figure 2. Approximations u
λ(K−1)
σi
τi,K for i = 3 (left) and i = 6

(right) produced with K = 6, ζ =
√

2, θ = 0.1.
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Figure 3. Comparison between λ
(K−1)
σi (blue) and the L2(γ)-

orthogonal projection of λ onto �σi(green) for i = 3 (left) and
i = 6 (right).

Table 3. Computed rates of convergence of the error estimators
Eouter, EUzawa and Einner, respectively, for different values of K
(I = 10, θ = 0.1 and ζ =

√
2).

Eouter EUzawa Einner

K = 2 0.58 0.70 0.50
K = 3 0.59 0.71 0.50
K = 6 0.63 0.67 0.50
K = 9 0.63 0.38 0.50
K = 15 0.63 0.10 0.50

10. General d-dimensional domains and/or higher finite element
spaces

So far we considered the case of d = 2 space dimensions, and lowest order
approximation, i.e., continuous piecewise linears for u, piecewise constants for λ.
We now discuss the case of general d ≥ 2, and general polynomial orders.
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Figure 4. Traces u
λ(K−1)
σi
τi,K |γ (red) and u|γ(= 0) (green) for i =

1, 3, 5, 6, obtained with K = 6, ζ =
√

2, and θ = 0.1.

Table 4. Number of inner iterations at which bulk mesh refine-
ment is activated, for different values of K (I = 10, θ = 0.1 and

ζ =
√

2).

i 1 2 3 4 5 6 7 8 9 10
K = 2 2 0 1 1 1 1 1 1 1 1
K = 3 2 0 1 1 1 1 2 0 0 1
K = 6 2 0 1 1 1 1 1 1 1 1
K = 9 2 0 1 1 1 1 1 1 1 1
K = 15 2 0 1 1 1 1 1 1 1 1

First we address the question for which s > 0, membership of u in As can be
expected when u is approximated from families of continuous piecewise polynomials
of order p ≥ 2. Since generally λ 6= 0, the normal derivative of u has a generally
non-zero jump over the (d−1)-dimensional manifold γ, generally being not-aligned
with any mesh. Assuming that apart from this jump, the solution u is smooth,
the question of approximability of u in H1(Ω) is equivalent to the question of
approximability in L2(Ω) of a piecewise smooth function, say a piecewise constant

one w.r.t. the partition of Ω into uΩ and Ω \ uΩ, from families of discontinuous
polynomials of order p − 1. Taking cells of diameter h that intersect γ, regardless
of the order p the squared L2(Ω)-norm of the latter approximation error is h hd

times the number of those cells, being of the order (1/h)d−1. We infer that in terms
of the total number N of elements in the mesh, which satisfies N & (1/h)d−1, and
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Figure 5. Errors |u−u
λ(K−1)
σi
τi,K |H1(Ω) (left) and ‖λ−λ(K−1)

σi ‖H−1/2(γ)

(right), and estimators for ζ =
√

2, θ = 0.1, and K = 2 (top),
K = 3 (middle) and K = 15 (bottom).

with a proper refinement towards γ, even satisfies N h (1/h)d−1, it holds that the

L2(Ω)-norm of this error is
√
h h N−

1
2(d−1) . We conclude that generally at best

u ∈ A
1

2(d−1) .
On the other hand, if the solution uu of our original PDE, posed on uΩ, is approxi-

mated from families of continuous piecewise polynomials of order p w.r.t. (isotropic)
partitions of uΩ, then under appropriate (Besov) smoothness conditions, uu can be
approximated at rate p−1

d .
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Remark 10.1. Other than for d = 2, for d > 2 and arbitrary Lipschitz domains these
Besov smoothness conditions are not automatically valid for sufficiently smooth
data, in which case this rate p−1

d can only be realized by proper anisotropic refine-
ments.

Since for d > 2 or p > 2, it holds that 1
2(d−1) < p−1

d , we conclude that for

those (d, p) a price to be paid for the application of the Fictitious Domain Method
instead of the usual finite element method is that generally it results in a reduced
best approximation rate.

Remark 10.2. This deficit of the Fictitious Domain Method might be tackled by
considering anisotropic refinements allowing for a more accurate approximation of
γ, by enriching the local finite element space on elements that intersect γ, or, as
we will study in future work, by constructing an extension of uf on uΩ to f on Ω
that yields a multiplier λ that is small or preferably zero, and thus avoids the
discontinuity in the normal derivative of u over γ.

Knowing that the solution u of the Fictitious Domain Method is at best in

A
1

2(d−1) , the straightforward generalization to d-dimensions of the adaptive solution
method that we have developed for d = 2 yields the best possible approximation
rate. Indeed, assuming f ∈ L2(Ω) and g ∈ H1(γ), it holds that λ ∈ L2(γ) and

so its approximation in H−
1
2 (γ) by piecewise constants w.r.t. to uniform meshes

converges with rate 1
2(d−1) . A direct generalization of [CDN12, Thms. 7.3-4] from 2

to d dimensions shows that f ∈ L2(Ω) and χ ∈ L2(γ) are in the data approximation

classes B
1
d

Ω and B
1

2(d−1)

Ω , respectively (cf. Thm. 7.10). Now the generalization of
Thm. 7.13 to d-dimensions shows that whenever u ∈ As for some s ∈ (0, 1

2(d−1) ],

the sequence of approximations produced by our nested inexact preconditioned
Uzawa algorithm converges with this rate s.

Concluding we can say that in any dimension our adaptive method solves the
fictitious domain formulation with the best possible rate. On the other hand,
without constructing a very special extension of uf , for d > 2 (or p > 2) this rate
is generally lower that the best possible rate with which the original PDE can be
solved with standard finite elements, i.e., w.r.t. to partitions of the original domain.
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