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Adaptive wavelet algorithms for solving operator equations have been shown to converge with the best
possible rates in linear complexity. For the latter statement all costs are takeninto account, i.e., also the
cost of approximating entries from the infinite stiffness matrix with respectto the wavelet basis using suit-
able quadrature. A difficulty is the construction of a suitable wavelet basis on the generally non-trivially
shaped domain on which the equation is posed. In view of this, recently corresponding algorithms have
been proposed that require only a wavelet frame instead of a basis. Byemploying an overlapping de-
composition of the domain, where each subdomain is the smooth parametricimage of the unit cube, and
by lifting a wavelet basis on this cube to each of the subdomains, the union ofthese collections defines
such a frame. A potential bottleneck within this approach is the efficient approximation of entries cor-
responding to pairs of wavelets from different collections. Indeed, such wavelets are piecewise smooth
with respect to mutually non-nested partitions. In this paper, considering partial differential operators and
spline wavelets on the subdomains, we propose an easy implementable quadrature scheme to approxi-
mate the required entries, which allows the fully discrete adaptive frame algorithm to converge with the
optimal rate in linear complexity.

Keywords: Adaptive algorithms, boundary value problems, optimal computationalcomplexity, frames,
wavelets, splines, matrix compression, numerical integration

1. Motivation and Background

For some separable Hilbert spaceH, a boundedly invertible operatorL : H → H ′, and ag ∈ H ′, we
consider the problem of findingu∈ H such that

Lu = g.

We assume that we are given aframeΨ = {ψλ : λ ∈ Λ} for H, i.e., a countable collection inH such
that for some constantsAΨ ,BΨ > 0,

AΨ‖ f‖2
H ′ 6 ‖[ f (ψλ )]λ∈Λ‖

2
ℓ2(Λ) 6 BΨ‖ f‖2

H ′ , ( f ∈ H ′) (1.1)
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or, equivalently, closspanΨ = H and

B−1
Ψ ‖v‖2

H 6 inf
{v∈ℓ2(Λ):∑λ∈Λ vλ ψλ =v}

‖v‖2
ℓ2(Λ) 6 A−1

Ψ ‖v‖2
H , (v∈ H). (1.2)

The frame operatorF : H ′ → ℓ2(Λ) : f 7→ [ f (ψλ )]λ∈Λ has dualF ′ : ℓ2(Λ) → H : v 7→ ∑λ∈Λ vλ ψλ . We
haveℓ2(Λ) = RanF⊕⊥KerF ′, andΨ is called a(Riesz) basisfor H when KerF ′ = {0}, or, equivalently,
RanF = ℓ2(Λ).

Writing the solution of (1.1) asu = ∑λ∈Λ uλ ψλ for someu ∈ ℓ2(Λ), u is a solution of

Mu = g, (1.3)

whereM = [(Lψλ ′)(ψλ )]λ ,λ ′∈Λ , andg = [g(ψλ )]λ∈Λ . The, generally, bi-infinite stiffness matrixM is
bounded with‖M‖ℓ2(Λ)→ℓ2(Λ) 6 BΨ‖L‖H→H ′ , KerM = KerF ′, M|RanF : RanF → RanF is boundedly

invertible with‖M|−1
RanF‖ℓ2(Λ)→ℓ2(Λ) 6 A−1

Ψ ‖L−1‖H ′→H , and forg, that is in RanF , we have‖g‖ℓ2(Λ) 6

B
1
2
Ψ‖g‖H ′ .

In Cohen et al. (2001, 2002); Gantumur et al. (2007) or Stevenson (2003); Dahlke et al. (2004, 2006)
for the basis or (true) frame case, respectively, adaptive iterative schemes have been proposed for solving
(1.3). Under some conditions, these schemes were shown to beoptimal in the following sense: Let for
somes> 0, some solutionu of (1.3) be in

A
s = A

s
∞ = {v ∈ ℓ2(Λ) : |v|A s := sup

N
Ns‖v−vN‖ℓ2(Λ) < ∞},

wherevN denotes abest N-term approximationfor v, i.e., a vector with #suppvN 6 N, that has distance
to v not larger than any vector with this support length. Note that the positionsof the non-zero coef-
ficients ofvN generally depend onv, meaning that here we are dealing withnonlinear approximation.

Membership ofu ∈ A
s means that for anyε > 0, thereexistsa uε with #suppuε 6 ⌈ε−1/s|u|1/s

A s⌉ and
‖u−uε‖ℓ2(Λ) 6 ε. For bases or frames that are commonly used in this setting, this membership is re-
lated to smoothness ofu in a scale ofBesov spaces, being a much weaker notion of smoothness than that
in the standard scale of Sobolev spaces. This is the motivation to consider nonlinear approximation and
adaptive schemes. Nowsupposethat M can be sufficiently well approximated by computable sparse
matrices, in the sense that for somes∗ > s it is s∗-computable. This means that

for each j∈ N0, one can construct a matrixM∗
j having in each columnO(2 j) non-zero entries,

whose joint computation takesO(2 j) operations, such that for anỹs< s∗, ‖M−M∗
j‖ℓ2(Λ)→ℓ2(Λ) .

2− j s̃.

A consequence ofu ∈ A
s, andM beings∗-computable for somes∗ > s is thatg ∈ A

s with |g|A s .

|u|A s. Let us secondlyassumethat given anyε > 0, one knows how to produce an approximationgε

in O(ε−1/s|g|1/s
A s) operations, and thus in particular with #suppgε . ε−1/s|g|1/s

A s, with ‖g−gε‖ℓ2(Λ) 6 ε.
Then, given anyε > 0, the aforementioned algorithms are proven toproducean approximationuε

in O(ε−1/s|u|1/s
A s) operations, and so #suppuε . ε−1/s|u|1/s

A s, with ‖u− uε‖ℓ2(Λ) 6 ε. In view of the
assumptionu ∈ A

s, these bounds on the work and the support length are the best possible modulo a

constant factor. Note that‖u−∑λ∈Λ (uε)λ ψλ‖H 6 B
1
2
Ψ ε.

REMARK 1.1 Actually to arrive at this result in the frame case, an additional technical third assump-
tion was made concerning theℓ2(Λ)-orthogonal projector onto RanF . Although we expect it to hold
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much more generally, so far it was verified rigorously only ina special situation, see (Stevenson; 2003,
§4.3). In Stevenson (2003), we therefore introduced an alternative algorithm that does not require this
assumption, which however we expect to have worse quantitative properties.

REMARK 1.2 Although the algorithms from Cohen et al. (2001); Gantumur et al. (2007) are of some-
what different type, one may think of the adaptive algorithms to consist of the application of a simple
iterative scheme to (1.3), as the damped Richardson iteration or the Steepest Descent scheme, where in
each iteration the application ofM to the current finitely supported iterant, as well as the vector g are
approximated. Such schemes are convergent whenM = MT > 0, that we silently assumed above. IfL
is symmetric and positive definite, i.e.,L′ = L and inf06=v∈H(Lv)(v)/‖v‖2

H > 0, thenMT = M > 0 (> 0
in the basis case). Otherwise, one can apply the algorithms to the normal equationsMTMu = MTg,
although, depending onL, quantitative better options may be possible (cf. Dahmen etal. (2002); Gan-
tumur (2006)).

The validity of the assumption on the approximatibility ofg depends on the right-hand side at hand.
In any case, it is satisfied wheng is sufficiently smooth. The value ofs∗ for which M is s∗-computable
depends on the frame or basisΨ and the operatorL. Let us considerL to be a partial differential or
integral operator oforder 2t, so that typicallyH is a Sobolev space with smoothness indext, on an
n-dimensionaldomain or manifold. Then forΨ being awavelet basisof order d, even for a smooth
solutionu the largestsfor which membershipu∈A

s can be expected iss= d−t
n . For biorthogonalspline

wavelets that havẽd > d− 2t vanishing moments, in Gantumur and Stevenson (2006a) or Gantumur
and Stevenson (2006b) for differential or singular integral operators, respectively,s∗-computability for
s∗ > d−t

n was shown, being thus sufficient for optimality of the adaptive algorithms. The argument was
first, using the smoothness and vanishing moments of the wavelets, to show that the correspondingM is
s∗-compressible. This means that

for each j∈N0, there exists an infinite matrixM j , constructed by dropping entries fromM, such that
in each column it hasO(2 j) non-zero entries, and such that for anys̃< s∗, ‖M−M j‖ℓ2(Λ)→ℓ2(Λ) .

2− j s̃.

Secondly, by applying suitablequadrature, it was shown that each column ofM j can be approximately
computed, takingon averageO(1) operations per entry, while the order of approximation withrespect
to M is maintained.

The bottleneck for the application of the adaptive wavelet basis algorithms is the construction of suit-
able biorthogonal wavelet bases on the generally non-trivially shaped domains or manifolds on which the
equations are posed. The common construction principle is that via anon-overlappingdomain decom-
position, where each subdomain is a smooth parametric imageof then-dimensional unit cube (Dahmen
and Schneider (1999a); Canuto et al. (1999); Cohen and Masson (2000)). Biorthogonal multiresolu-
tion analyses on this cube are lifted to the subdomains, and continuously connected to biorthogonal
multiresolution analyses on the whole domain or manifold, giving rise to biorthogonal wavelets, called
composite wavelets. In view of obtainings∗-computability for a sufficiently large value ofs∗, difficulties
are that wavelets with supports that intersect interfaces between subdomains generally have no vanishing
moments, and that their smoothness is restricted to continuity. Proposals to circumvent these problems
have been made in Harbrecht and Stevenson (2006); Stevenson(2007), however resulting in wavelets
with larger supports, or requiring a more complicated construction. Another difficulty is that continuous
“gluing” of the multiresolution analyses over the interfaces requires some matching condition on the
parametrizations, that in practical situations might be difficult to fulfill. An elegant construction that
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FIG. 1. Construction of aggregated wavelet frame based on an overlapping domain decomposition.

does not require this matching, and yields wavelets that satisfy all requirements concerning smoothness
and vanishing moments was proposed in Dahmen and Schneider (1999b). Unfortunately, so far with this
approach it seems not easy to obtain wavelets that have competitive quantitative properties. A recent
investigation of this approach was made in Kunoth and Sahner(2006).

Above problems with the construction of waveletbasesled us to consider adaptive algorithms based
on frames. A special kind of frame for a Sobolev space on a domain or manifold, calledaggregated
wavelet framein Dahlke et al. (2004), can be easily constructed. Since in this paper we will considerL
to be apartial differential operatorof someorder 2t, appended withhomogeneous Dirichlet boundary
conditions, we describe the construction for the case that for somet ∈ N0, H = Ht

0(Ω) andΩ ⊂ R
n

is a domain. Consider anoverlapping domain decompositionof the domain into a finite number of
subdomains, each of them being a smooth parametric image of then-dimensional unit cube. Then, with
Ψ2 being a wavelet basis forHt

0(0,1)n, the union of the lifted bases is a frame forH = Ht
0(Ω), see

Figure 1. This construction is simple, and can be applied on any domain having a piecewise smooth
boundary. It can be expected that the effective condition number of the aggregated frame, i.e., the
condition number without taking the zero eigenvalues into account, is (much) smaller than that of the
corresponding composite wavelet basis.

In view of obtaining a sufficiently compressible stiffness matrix, we will considerΨ2 to be a
biorthogonal spline wavelet basis oforder d, havingd̃ vanishing moments. Moreover, to obtain frame
elements that are globally sufficiently smooth, i.e., that are in Cd−2(Ω), on those faces of(0,1)n that
are mapped into the interior ofΩ we incorporate homogeneous Dirichlet boundary conditionsintoΨ2

of orderd−2. The resulting collection is then still a frame forHt
0(Ω). Note that generallyΨ2 now

depends on the subdomain. An alternative to obtain globallysmooth frame elements, which has some
advantages in view of Remark 1.1, is to multiply the lifted basis on subdomainΩi with χi , where{χi}i

is a collection of smooth non-negative functions onΩ with χi vanishing outsideΩi and∑i χi h 1. Al-
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though in the following we will not consider this option, allresults from this paper trivially extend to
this construction.

As in the basis case, the largests for which membership of some solutionu ∈A
s can be expected is

s= d−t
n . Ford̃ > d−2t, the proof given in Stevenson (2004) ofs∗-compressibility of the stiffness matrix

with s∗ > d−t
n for the basis case carries directly over to the aggregated frame case. A potential problem,

however, is the quadrature, i.e., the question whetherM is alsos∗-computablefor somes∗ > d−t
n . In the

overlapping region of two subdomains, there are two collections of lifted wavelets whose elements are
piecewise smooth with respect to images of square meshes on(0,1)n underdifferentsmooth mappings,
see Figure 1. The question is whether entries involving pairs of wavelets from different collections
can be approximated within the required tolerance at sufficiently low cost. By carefully distributing
computational cost over the entries, in this paper we will show that indeedM is s∗-computable for
s∗ > d−t

n , at least whend−t
n > 1

2, t > 0 andd−1> t. For d−t
n > 1

2, andt = 0 ord−1= t, the suboptimal
results∗ = d−t

n will be shown. Although quantitatively better schemes might be possible, in doing so
we exclusively use simple composite quadrature rules of fixed order and variable rank in the parameter
space of the wavelet that has the highest level of the two involved in an entry.

As follows from the preceding discussion, our result ons∗-computability of the stiffness matrixM
of the boundary value problem with respect to an aggregated wavelet frame is a key ingredient in the
proof of optimality of adaptive frame algorithms. In a forthcoming paper, we will studyoverlapping
domain decomposition (Schwarz) algorithmsapplied on the continuous level for solving boundary value
problems, where the subdomain solves are approximated by adaptive wavelet basis algorithms. Our first
experiments show much better performance of these algorithms compared to the adaptive frame method.
The approximate application ofM enters these domain decomposition algorithms for the transport of
information between the subdomains. By thes∗-computability ofM shown here, also these algorithms
can be shown to be optimal.

This paper is organized as follows: In Sect. 2, a result is proven concernings∗-compressibility
of partial differential operators in (aggregated) frame coordinates, which slightly improves upon the
corresponding result from Stevenson (2004) (cf. Remark 2.1). Another reason to include it is that for
both the present result and that from Stevenson (2004), homogeneous Dirichlet boundary conditions
are essential, whereas this restriction was overlooked in Stevenson (2004). In Sect. 3, we develop
quadrature schemes to approximate the remaining entries after compression, and show the requireds∗-
computability. In Sect. 4, in a slightly specialized setting we give much sharper estimates for certain
quadrature errors, which may help improving the quantitative behaviour of adaptive wavelet and frame
algorithms. Finally, in Sect. 5, we report on numerical tests to verify the sharpness of bounds on the
sizes of the entries in the stiffness matrix, and on those on quadrature errors.

In this paper, byC . D we will mean thatC can be bounded by a multiple ofD, independently of
parameters whichC andD may depend on. Obviously,C & D is defined asD . C, andC h D asC . D
andC & D.

For any countable setΣ , we will use‖ · ‖ to denote‖ · ‖ℓ2(Σ) or ‖ · ‖ℓ2(Σ)→ℓ2(Σ).

2. Compressibility of Partial Differential Operators in (Aggregated) Frame Coordinates

For some domainΩ ⊂ R
n andt ∈ N0, let L : Ht

0(Ω) → H−t(Ω) be defined by

(Lw)(v) = ∑
|α|,|β |6t

∫

Ω
aα,β ∂ αw∂ β v, (w,v∈ Ht

0(Ω)),

where thecoefficients aα,β are sufficiently smooth.
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Let
Ψ = {ψλ : λ ∈ Λ}

be a countable collection of functions inHt
0(Ω), where we have in mindΨ to be an aggregated wavelet

frame. The indexλ encodes both thelevel, denoted by|λ | ∈ N0, and the location of the waveletψλ .
We assume that the wavelets arelocal in the sense that

diam(suppψλ ) . 2−|λ | and sup
x∈Ω ,ℓ∈N0

#{|λ | = ℓ : B(x;2−ℓ)∩suppψλ 6= /0} < ∞,

and that they arepiecewise smooth, with which we mean that suppψλ\singsuppψλ is the disjoint union
of m domainsΞλ ,1, . . . ,Ξλ ,m, with ∪m

i=1Ξλ ,i = suppψλ , whereψλ |Ξλ ,i
is smooth with, for anyγ ∈ N

n
0,

sup
x∈Ξλ ,i

|∂ γ ψλ (x)| . 2|λ |(
n
2+|γ|−t). (2.1)

We assume that there is a smooth, regular mappingκλ : R
n → R

n, for which each derivative is bounded,
uniformly in λ , such thatκ−1

λ (Ξλ ,i) is ann-cube aligned with the Cartesian coordinates, and

(ψλ ◦κλ )|κ−1
λ (Ξλ ,i)

∈ Qd−1,

with Qd−1 being then−fold tensor product of the space of univariate polynomials of degreed− 1.
Thinking of an aggregated wavelet frame,κλ is just the parametric mapping used to lift the wavelet on
(0,1)n to the subdomain. For some

N ∋ d > t +1,

we assume that, whend > 2,
ψλ ∈Cd−2(Ω).

By (2.1), this shows that fork∈ [0,d−1],

‖ψλ‖Wk
∞(Ω) . 2|λ |(

n
2+k−t). (2.2)

In view of these assumptions, recall from Sect. 1 that even for smoothu, the largests for which any
u ∈ ℓ2(Λ) with u = ∑λ∈Λ uλ ψλ can be expected to be inA s is s= d−t

n . Our task is therefore to prove
s∗-computability ofM = [(Lψλ ′)(ψλ )]λ ,λ ′∈Λ for somes∗ > d−t

n .

First of all, we show thatM is sufficiently compressible. To this end, we splitM into M(r) + M(s),
with M(r) containing those entries(Lψλ ′)(ψλ ) of M with

{

suppψλ ⊂ Ξλ ′,i′ , for some 16 i′ 6 m, when|λ | > |λ ′|,
suppψλ ′ ⊂ Ξλ ,i , for some 16 i 6 m, when|λ | < |λ ′|,

and zeros at the remaining locations inΛ ×Λ , and thus withM(s) being the matrix containing the
remaining entries ofM, and zeros otherwise (see Figure 2).The indices “r” and “s” refer to regular
and singular, respectively.

The collection of waveletsΨ is said to haved̃ ∈ N0 vanishing momentswhen, if d̃ > 0,

ψλ ◦κλ ⊥ Pd̃−1,



Computation of Differential Operators in Aggregated Wavelet Frame Coordinates 7 of 27

possibly with the exception of theλ with |λ | = 0.
In order not to be forced to handlen = 1 as an exceptional, although easy case, unless explicitly

stated otherwise, in the following we will always assume that

n > 1.

THEOREM2.1 For j ∈N0, we define the infinite matricesM(r)
j andM(s)

j by dropping the entriesMλ ,λ ′ =

(Lψλ ′)(ψλ ) from M(r) or M(s) when
∣

∣|λ |− |λ ′|
∣

∣ > j
n or

∣

∣|λ |− |λ ′|
∣

∣ > j
n−1, respectively.

Then the number of nonzero entries in each row and column ofM(r)
j andM(s)

j is of order 2j , and

‖M(r) −M(r)
j ‖ . 2− j( t+d̃

n ), ‖M(s) −M(s)
j ‖ . 2− j( d−1/2−t

n−1 ), (2.3)

for the latter estimate assuming thatd̃ > d−2t −1.

REMARK 2.1 The corresponding result from Stevenson (2004) gives the same bound for‖M(r)−M(r)
j ‖,

whereas it shows that for anys< d−1/2−t
n−1 , ‖M(s) −M(s)

j ‖ . 2− js.

So Theorem 2.1 shows thatM(r) is s∗-compressible withs∗ > d−t
n or s∗ > d−t

n whend̃ > d−2t or
d̃ > d−2t, and thatM(s) is s∗-compressible withs∗ > d−t

n or s∗ > d−t
n when d−t

n > 1
2 or d−t

n > 1
2, and

d̃ > d−2t −1.
In order to prove it, we start with bounding the individual entries ofM.

LEMMA 2.1 We have

|M(r)
λ ,λ ′ | . 2−

∣

∣|λ |−|λ ′|
∣

∣( n
2+t+d̃), |M(s)

λ ,λ ′ | . 2−
∣

∣|λ |−|λ ′|
∣

∣( n
2+d−1−t),

for the latter estimate assuming thatd̃ > d−2t −1.

Proof. Let |λ | > |λ ′|, |λ | > 0. By a transformation of coordinates, we can write

(Lψλ ′)(ψλ ) = ∑
|α|,|β |6t

∫

κ−1
λ (suppψλ )

ãα,β ∂ α(ψλ ′ ◦κλ )∂ β (ψλ ◦κλ ), (2.4)

for some smooth ˜aα,β depending on the coefficientsaα,β andκλ . Since bounding the lower order terms
is easier, we consider a term of the right-hand side of (2.4) for arbitrary|α| = |β | = t.

Whend− 1 6 2t, select aγ 6 β with |α + γ| = d− 1 and so|β − γ| = 2t − (d− 1). Using the
homogeneous Dirichlet boundary conditions for the case that suppψλ ∩suppψλ ′ ∩∂Ω 6= /0, integration
by parts, vol(suppψλ ) . 2−|λ |n, and (2.2) show that

|
∫

κ−1
λ (suppψλ )

ãα,β ∂ α(ψλ ′ ◦κλ )∂ β (ψλ ◦κλ )|

= |
∫

κ−1
λ (suppψλ )

(−1)|γ|∂ γ(ãα,β ∂ α(ψλ ′ ◦κλ ))∂ β−γ(ψλ ◦κλ )|

. 2−|λ |n2|λ
′|( n

2+d−1−t)2|λ |(
n
2+2t−(d−1)−t) = 2−(|λ |−|λ ′|)( n

2+d−1−t).
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Whend−1 > 2t, by additionally using that the wavelets haved̃ > d−2t −1 vanishing moments,
we obtain

|
∫

κ−1
λ (suppψλ )

· · · | = |
∫

κ−1
λ (suppψλ )

(−1)|β |∂ β (ãα,β ∂ α(ψλ ′ ◦κλ ))(ψλ ◦κλ )|

. 2−|λ |n inf
p∈Pd−2t−2

‖(−1)|β |∂ β (ãα,β ∂ α(ψλ ′ ◦κλ ))− p‖L∞(κ−1
λ (suppψλ ))2

|λ |( n
2−t)

. 2−|λ |ndiam(κ−1
λ (suppψλ ))d−2t−1‖(−1)|β |∂ β (ãα,β ∂ α(ψλ ′ ◦κλ ))‖Wd−2t−1

∞
2|λ |(

n
2−t)

. 2−|λ |n2−|λ |(d−1−2t)2|λ
′|( n

2+d−1−t)2|λ |(
n
2−t) = 2−(|λ |−|λ ′|)( n

2+d−1−t),

which completes the proof of the second estimate.

Finally, when suppψλ ⊂ Ξλ ′,i′ for some 16 i′ 6 m, i.e., when(Lψλ ′)(ψλ ) = M(r)
λ ,λ ′ , using (2.1) we

find

|
∫

κ−1
λ (suppψλ )

· · · | . 2−|λ |n inf
p∈Pd̃−1

‖(−1)|β |∂ β (ãα,β ∂ α(ψλ ′ ◦κλ ))− p‖L∞(κ−1
λ (suppψλ ))2

|λ |( n
2−t)

. 2−|λ |n2−|λ |d̃2|λ
′|( n

2+d̃+2t−t)2|λ |(
n
2−t) = 2−(|λ |−|λ ′|)( n

2+t+d̃).

�

REMARK 2.2 Sinceψλ ′ ◦κλ ′ ∈ Qd−1, in the exponent of the upper boundh 2|λ
′|( n

2+|γ|−t) for
supx∈κ−1

λ (Ξλ ′,i)
|∂ γ(ψλ ′ ◦κλ )(x)| the term|γ| can be replaced by max(n(d−1), |γ|). As a consequence,

for sufficiently larged̃, the last estimate from above proof, and so the upper bound for M(r)
λ ,λ ′ is not sharp

for |λ ′| > 0, in the sense that the bound is still valid when multiplied with a certain positive power of
2−|λ ′|. So the case|λ ′| = 0 is the most difficult one. This observation is valid for manyestimates that
will be derived in this paper.

Proof of Theorem 2.1. The locality of the wavelets shows that the number of nonzeroentries in each

row of M(r)
ℓ,ℓ′ := [M(r)

λ ,λ ′ ]|λ |=ℓ, |λ ′|=ℓ′ and column ofM(r)
ℓ′,ℓ is O(max{1,2(ℓ′−ℓ)n}). The piecewise smooth-

ness of the wavelets shows that the number of nonzero entriesin each row ofM(s)
ℓ,ℓ′ := [M(s)

λ ,λ ′ ]|λ |=ℓ, |λ ′|=ℓ′

and column ofM(s)
ℓ′,ℓ is O(max{1,2(ℓ′−ℓ)(n−1)}). The definition ofM(r)

j andM(s)
j shows that in each row

and column they haveO(2 j) nonzero entries.

Estimating‖M(r)
ℓ,ℓ′‖

2 and‖M(s)
ℓ,ℓ′‖

2 on the products of their maximal absolute row- and column sums,
taking into account Lemma 2.1, we find

‖M(r)
ℓ,ℓ′‖

2 . 2|ℓ
′−ℓ|n2−|ℓ′−ℓ|( n

2+t+d̃)2, ‖M(s)
ℓ,ℓ′‖

2 . 2|ℓ
′−ℓ|(n−1)2−|ℓ′−ℓ|( n

2+d−1−t)2.

By applying‖M(r) −M(r)
j ‖2 6 maxℓ′ ∑{ℓ:|ℓ−ℓ′|> j

n}
‖M(r)

ℓ,ℓ′‖×maxℓ ∑{ℓ′:|ℓ−ℓ′|> j
n}
‖M(r)

ℓ,ℓ′‖ and

‖M(s) −M(s)
j ‖2 6 maxℓ′ ∑{ℓ:|ℓ−ℓ′|> j

n−1}
‖M(r)

ℓ,ℓ′‖×maxℓ ∑{ℓ′:|ℓ−ℓ′|> j
n−1}

‖M(r)
ℓ,ℓ′‖,

the proof is completed. �

3. Computability

The following lemma will be applied forB j = M(r)
j with k = n, and forB j = M(s)

j with k = n−1.
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LEMMA 3.1 For some fixedk ∈ N, and all j ∈ N0, let B j = ((B j)λ ,λ ′)λ ,λ ′∈Λ be a matrix such that
the number of possible nonzero entries in each row of(B j)ℓ,ℓ′ := [(B j)λ ,λ ′ ]|λ |=ℓ, |λ ′|=ℓ′ and column of

(B j)ℓ′,ℓ is O(max{1,2(ℓ′−ℓ)k}), and

(B j)λ ,λ ′ = 0 when
∣

∣|λ |− |λ ′|
∣

∣ > j
k .

Let B∗
j be an approximation forB j , zero on positions whereB j is known to be zero, and for which

the computation of(B∗
j )λ ,λ ′ takesO(Nj,λ ,λ ′) operations otherwise, where, for some absolute constants

r,q > 0, r 6= q,

|(B j)λ ,λ ′ − (B∗
j )λ ,λ ′ | . N−q

j,λ ,λ ′2
−
∣

∣|λ |−|λ ′|
∣

∣(k/2+rk). (3.1)

For someρ ∈ (1, r/q) whenr > q, andρ ∈ (r/q,1) whenr < q, andθ 6 min{1,ρ}, select

Nj,λ ,λ ′ h max

{

1,2 jθ−
∣

∣|λ |−|λ ′|
∣

∣ρk
}

.

Then the work for computing each column ofB∗
j is O(2 j), and

‖B j −B∗
j‖ .

{

2− jqθ whenr > q,

2− j(r+(θ−ρ)q) whenr < q.
(3.2)

In particular, takingθ = min{1,ρ}, we have‖B j −B∗
j‖ . 2− j min{q,r}.

Proof. The work per column (or row) is less than or equal to an absolute multiple of

j/k

∑
m=0

2mkmax
{

1,2 jθ−mρk
}

h 2 j +2 jθ
j/k

∑
m=0

2mk(1−ρ)
h 2 j +2 jθ max{1,2 j(1−ρ)} h 2 j ,

because ofθ 6 min{1,ρ}.
By bounding the squared norm of(E j)ℓ,ℓ′ = (B j)ℓ,ℓ′ − [(B∗

j )λ ,λ ′ ]|λ |=ℓ, |λ ′|=ℓ′ on the product of its
maximal absolute row- and column sum, taking into account the number of non-zero entries in each row
and column, (3.1), and the selection ofNj,λ ,λ ′ , we find that

‖E j,ℓ,ℓ′‖ . (1·2|ℓ−ℓ′|k)
1
2 (2 jθ−|ℓ−ℓ′|ρk)−q2−|ℓ−ℓ′|(k/2+rk) = 2− jθq2−|ℓ−ℓ′|k(r−ρq).

By bounding‖B j −B∗
j‖

2 on maxℓ′ ∑{ℓ:|ℓ−ℓ′|6 j
k}
‖(E j)ℓ,ℓ′‖×maxℓ ∑{ℓ′:|ℓ−ℓ′|6 j

k}
‖(E j)ℓ,ℓ′‖, we arrive at

(3.2). �

REMARK 3.1 For r = q, one easily infers that one can compute aB∗
j taking O(2 j) operations per

column, with for anyε > 0, ‖B j −B∗
j‖ . 2− j(min{q,r}−ε).

Now we come to the task of approximately computing the entries of M(r)
j andM(s)

j . We will exclu-

sively apply composite quadrature rules ofvariable rank N∈ N, depending onj and
∣

∣|λ | − |λ ′|
∣

∣, but
fixed order p∈ N, onn-cubes aligned with the Cartesian coordinates. That is, we subdivide then-cube
under consideration intoN equal subcubes, and, on each of these subcubes2, we apply a quadrature
rule that isexact on Qp−1(2). We assume that this rule is internal, i.e., that all abscissae are in the
closure of the subcube, and that it is uniformly stable, i.e., that the sum of the absolute values of the
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FIG. 2. suppψλ ⊂ Ξλ ′,i′ , i.e., an entry ofM(r).

weights can be bounded by an absolute multiple of the volume of the subcube. Finally, having a fixed
p, we can assume that the total number of abscissae isO(N).

Without loss of generality,in the remainder of this section and in the next sectionwe assume that

|λ | > |λ ′| .

For notational convenience, and, in view of (2.4), without loss of generality, we will assume that
κλ = id , so that

Mλ ,λ ′ =
m

∑
i=1

∑
|α|,|β |6t

∫

Ξλ ,i

aα,β ∂ α ψλ ′∂ β ψλ , (3.3)

eachΞλ ,i being ann-cube aligned with the Cartesian coordinates, andψλ |Ξλ ,i
∈ Qd−1 .

We first consider the task of approximating the entries ofM(r)
j .

PROPOSITION3.1 Let suppψλ ⊂ Ξλ ′,i′ for some 16 i′ 6 m, see Figure 2 for an illustration. LetM(r),∗
λ ,λ ′

be the result of the application of a composite rule of rankN and orderp applied to each of the integrals
from (3.3). Then

|M(r)
λ ,λ ′ −M(r),∗

λ ,λ ′ | . N−p/n2−(|λ |−|λ ′|)(n/2+p−d+1).

Proof. Although this proof can already be found in Gantumur and Stevenson (2006a), for convenience
we recall it here. It is sufficient to consider one integral

∫

Ξλ ,i
aα,β ∂ α ψλ ′∂ β ψλ . Using that each of the

N subcubes ofΞλ ,i has diameter. 2−|λ |N−1/n, and thus volume. 2−|λ |nN−1, standard estimates show
that the quadrature error can be bounded by an absolute multiple of

∑
2

2−|λ |nN−1(2−|λ |N−1/n)p max
16k6n

‖∂ p
k (aα,β ∂ α ψλ ′∂ β ψλ )‖L∞(2),

where2 runs over theN subcubes. In order to bound‖∂ u
k aα,β ∂ v

k ∂ α ψλ ′∂ w
k ∂ β ψλ‖L∞(2) for any u+

v+ w = p, sinceaα,β is smooth,|λ | > |λ ′|, and∂ w
k ∂ β ψλ vanishes whenβk + w > d, by invoking the

bound (2.1) on the partial derivatives ofψλ ′ andψλ we see that the worst case occurs whenu = 0,
βk +w = rk := min{d−1,βk + p}, and thusv = p− rk +βk, yielding

‖∂ p
k

(

aα,β ∂ α ψλ ′∂ β ψλ

)

‖L∞(2) . 2|λ
′|(|α|+p−rk+βk+n/2−t)2|λ |(|β |+rk−βk+n/2−t)

6 2|λ
′|(p−d+1+|α|+n/2−t)2|λ |(|β |+d−1+n/2−t), (3.4)
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FIG. 3. suppψλ 6⊂ Ξλ ′,i′ for any 16 i′ 6 m, i.e., an entry ofM(s), butΞλ ,i ⊂ Ξλ ′,i′(i) for any i.

where we used that 2(|λ |−|λ ′|)(rk−βk) 6 2(|λ |−|λ ′|)(d−1), that is sharp whenβk = 0 andp > d−1. Upon
applying that|α|, |β | 6 t, and using that the number of the subcubes isN, the proof is completed. �

REMARK 3.2 In above proof, the worst case occurs whenβk = 0 and|β | = t. For n = 1 andt > 0,
both equalities cannot hold simultaneously. One may verifythat for n = 1, the upper bound from
Proposition 3.1 can be sharpened toN−p2−(|λ |−|λ ′|)(3/2+p+t−d).

COROLLARY 3.1 Letd̃ > d−2t andp > 2d− t −1, thenM(r) is s∗-computable withs∗ > d−t
n .

Proof. Recall that the number of nonzero entries in each row ofM(r)
ℓ,ℓ′ and column ofM(r)

ℓ′,ℓ is

O(max{1,2(ℓ′−ℓ)n}). Using Proposition 3.1, an application of Lemma 3.1 fork = n yields a matrix

M(r),∗
j , for which the computation of each column takesO(2 j) operations, and for which‖M(r)

j −

M(r),∗
j ‖ . 2

− j
(

p−d+1
n

)

whend > 1, and‖M(r)
j −M(r),∗

j ‖ . 2
− j

(

p−d+1
n −ε

)

for any ε > 0 otherwise (cf.

Remark 3.1). Using that‖M(r) −M(r)
j ‖ . 2

− j
(

t+d̃
n

)

by Theorem 2.1, the proof is completed. �

Next we consider the approximation of the non-zero entriesMλ ,λ ′ of M(s)
j . Note that for these

entries, suppψλ will have a non-empty intersection with the singular support of ψλ ′ . As a consequence,
for p not too small, generally the decay of the quadrature error will not be as fast as function of the rank

N → ∞ or
∣

∣|λ |−|λ ′|
∣

∣→ ∞ as with the entries ofM(r)
j . However, since the number of non-zero entries in

M(s)
ℓ,ℓ′ increases less fast as function of|ℓ− ℓ′| → ∞ as that inM(r)

ℓ,ℓ′ , as shown in Lemma 3.1, this effect
can be compensated by investing some more work in their computation without increasing the overall
complexity.

REMARK 3.3 Let (λ ,λ ′) correspond to a non-zero entry ofM(s), i.e., suppψλ 6⊂ Ξλ ′,i′ for any 16

i′ 6 m, but such that for all 16 i 6 m there exists an 16 i′(i) 6 m with Ξλ ,i ⊂ Ξλ ′,i′(i), meaning that
singsuppψλ ′ ∩suppψλ ⊂ singsuppψλ , see Figure 3. Then it is obvious that the bound of the quadrature
error from Proposition 3.1 is still valid. This situation occurs whenψλ ′ andψλ are piecewise smooth
with respect to partitions that arenestedas function of the level, e.g., in the case of an aggregated wavelet
frame, whenψλ ′ andψλ are wavelets lifted by the same parametric mapping. In ordernot to complicate
our exposition, in the following we will ignore this fact, and use also for such entries the less favourable
bound on the quadrature error from the following proposition.

PROPOSITION3.2 LetM∗
λ ,λ ′ be the result of the application of a composite rule of rankN and orderp
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FIG. 4. SetVλ ,i,λ ′ of subcubes in the quadrature mesh onΞλ ,i on whichψλ ′ is not arbitrarily smooth.

applied to each of the integrals from (3.3). Then

|Mλ ,λ ′ −M∗
λ ,λ ′ | . N−p/n2−(|λ |−|λ ′|)(n/2+p−d+1) +N−(d−t)/n2−(|λ |−|λ ′|)(n/2+d−1−t),

which is valid without any assumption on the location of singsuppψλ .

Note that the first term in the upper bound is equal to the boundgiven in Proposition 3.1.
Proof. As in the proof of Proposition 3.1, we have to consider only one integral
∫

Ξλ ,i
aα,β ∂ α ψλ ′∂ β ψλ , where it is now sufficient to consider the hard case that

Ξλ ,i ∩singsuppψλ ′ 6= /0. Let us denote withVλ ,i,λ ′ the set ofn-cubes2 in the quadrature mesh onΞλ ,i

on whichψλ ′ is not arbitrarily smooth, see Figure 4. Using that∂ α ψλ ′ ∈ Wd−1−|α|
∞ (Ω), in particular

using the bound (2.2), for any2∈Vλ ,i,λ ′ its Taylor polynomialq∈Pd−2−|α| of orderd−1−|α| at some
pointy∈ 2, with q := 0 whend−1−|α| = 0, satisfies

‖∂ α ψλ ′ −q‖L∞(2) . (N−1/n2−|λ |)d−1−|α|‖∂ α ψλ ′‖
Wd−1−|α|

∞ (2)

. N−(d−1−|α|)/n2−|λ |(d−1−|α|)2|λ
′|(d−1+n/2−t).



Computation of Differential Operators in Aggregated Wavelet Frame Coordinates 13 of 27

Fromq∈ Pd−2−|α|, for |η | 6 d−2−|α| we have∂ ηq∈ Pd−2−|α|−|η |, and so

∂ ηq(x) =
d−2−|α|−|η |

∑
j=0

1
j!

{

(
n

∑
i=1

(xi −yi)
∂

∂x′i
) j(∂ ηq)(x′)

}

∣

∣

∣

x′=y

=
d−2−|α|−|η |

∑
j=0

1
j!

{

(
n

∑
i=1

(xi −yi)
∂

∂x′i
) j(∂ η+α ψλ ′)(x′)

}

∣

∣

∣

x′=y
.

Invoking the bounds for‖∂ ζ ψλ ′‖L∞(Ω) for |ζ | 6 d−2, we infer that for|x−y| . 2−|λ ′|, so in particular
for x∈ 2, we have

|∂ ηq(x)| . 2|λ
′|(|α|+|η |+n/2−t), (3.5)

obviously being also valid for|η | > d−2−|α|. Note that this bound on‖∂ ηq‖L∞(2) is equal to that on
‖∂ η+α ψλ ′‖L∞(2) from (2.1) in case2 6∈Vλ ,i,λ ′ .

Let us now think of the composite quadrature rule as being applied to the integrandaα,β ∂ α ψλ ′∂ β ψλ
with, on any2∈Vλ ,i,λ ′ , the factor∂ α ψλ ′ being replaced by the correspondingq. Since the fact that gen-
erally the modified integrand is discontinuous over interfaces between differentn-cubes in the quadra-
ture mesh does not effect the error of the composite quadrature rule, using (3.5) the proof of Proposi-
tion 3.1 shows that this quadrature error can be bounded by anabsolute multiple of

N−p/n2−(|λ |−|λ ′|)(n/2+p−d+1). (3.6)

To bound the total error we have to add the sum over2 ∈ Vλ ,i,λ ′ of bounds for the error of the
quadrature rule on2 with integrandaα,β (∂ α ψλ ′ − q)∂ β ψλ . On each of such a2, this error can be
bounded by an absolute multiple of

vol(2)‖aα,β (∂ α ψλ ′ −q)∂ β ψλ‖L∞(2)

. (N−1/n2−|λ |)nN−(d−1−|α|)/n2−|λ |(d−1−|α|)2|λ
′|(d−1+n/2−t)2|λ |(|β |+n/2−t)

. N−1−(d−1−t)/n2−(|λ |−|λ ′|)(n/2+d−1−t), (3.7)

the last inequality being sharp for|α| = |β | = t. Since #Vλ ,i,λ ′ . N(n−1)/n, we find that the additional
error can be bounded by an absolute multiple of

N−(d−t)/n2−(|λ |−|λ ′|)(n/2+d−1−t).

which completes the proof. �

REMARK 3.4 One might wonder why for2 ∈ Vλ ,i,λ ′ we wrote aα,β ∂ α ψλ ′∂ β ψλ = aα,β q∂ β ψλ +

aα,β (∂ α ψλ ′ − q)∂ β ψλ , and estimated the quadrature error for both terms separately. Indeed, using

aα,β ∂ α ψλ ′∂ β ψλ ∈Wd−1−|α|
∞ (2), alternatively one can apply a standard error estimate for aquadrature

rule of order min{d−1−|α|, p} applied to this integrand. Invoking the bounds on the partial derivatives
of ψλ andψλ ′ , however, one would end up with a bound on the quadrature error as in Proposition 3.2
with the second termN−(d−t)/n2−(|λ |−|λ ′|)(n/2+d−1−t) replaced byN−(d−t)/n2−(|λ |−|λ ′|)n/2.

COROLLARY 3.2 Let p > max{d− t,2d− 2− t}, d−t
n > 1

2 and d̃ > d− 2t − 1. ThenM(s) is s∗-
computable withs∗ = d−t

n .
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Proof. Recall that the number of nonzero entries in each row ofM(s)
ℓ,ℓ′ and column ofM(s)

ℓ′,ℓ is

O(max{1,2(ℓ′−ℓ)(n−1)}). The conditionp> max{d− t,2d−2− t} shows that in the bound from Propo-
sition 3.2 the first term is never larger than the second one, that can be written as

N−(d−t)/n2−(|λ |−|λ ′|)((n−1)/2+
d−1/2−t

n−1 (n−1)). The conditiond−t
n > 1

2 shows thatd−1/2−t
n−1 > (d−t)

n , and so

an application of Lemma 3.1 fork = n−1 yields a matrixM(s),∗
j , for which the computation of each

column takesO(2 j) operations, and for which‖M(s)
j −M(s),∗

j ‖ . 2− j( d−t
n ). Using that byd−t

n > 1
2 and

d̃ > d−2t −1, ‖M(s) −M(s)
j ‖ . 2− j( d−t

n ) by Theorem 2.1, the proof is completed. �

Above result is not fully satisfactory, since actually we needs∗ > d−t
n . For s∗ = d−t

n , generally the
adaptive frame algorithms can only be shown to be optimal up to some log factors. Below, we reconsider

the task of approximately computing the entries ofM(s)
j . For η 6 α, |β |+ |η | 6 d−1, integration by

partsshows that

∫

Ω
aαβ ∂ α ψλ ′∂ β ψλ = (−1)|η |

m

∑
i=1

∫

Ξλ ,i

∂ α−η ψλ ′∂ η(aα,β ∂ β ψλ ), (3.8)

so that alternatively one can apply the composite quadrature rule to each term on the right-hand side,
with the advantage that∂ α−η ψλ ′ is smoother than∂ α ψλ ′ . We will consider this approach for thelargest
possibleη , i.e.,|η | = min{|α|,d−1−|β |}. Formula (3.4) now reads as

‖∂ p
k

(

∂ α−η ψλ ′∂ η(aα,β ∂ β ψλ )
)

‖L∞(2) . 2|λ
′|(p−d+1+|α|−|η |+n/2−t)2|λ |(|β |+|η |+d−1+n/2−t),

which is sharp whenβk = ηk = 0 andp> d−1. As in the proof of Proposition 3.2, for each2 ∈Vλ ,i,λ ′ ,
let us think of∂ α−η ψλ ′ being replaced by a Taylor polynomialq of orderd−1−|α −η |, with q = 0
whend−1−|α −η | = 0. Then the quadrature error can be bounded by some absolute multiple of

∑
2

2−|λ |nN−1(2−|λ |N−1/n)p2|λ
′|(p−d+1+|α|−|η |+n/2−t)2|λ |(|β |+|η |+d−1+n/2−t)

6 N−p/n2−(|λ |−|λ ′|)(n/2+p−d+1−min{t,d−1−t}),

with the last inequality being sharp when|α| = |β | = t.
Instead of (3.7), for each2 ∈Vλ ,i,λ ′ we get

vol(2)‖(∂ α−η ψλ ′ −q)∂ η(aα,β ∂ β ψλ )‖L∞(2)

. (N−1/n2−|λ |)nN−(d−1−|α|+|η |)/n2−|λ |(d−1−|α|+|η |)2|λ
′|(d−1+n/2−t)2|λ |(|β |+|η |+n/2−t)

. N−1−(d−1−t+min{t,d−1−t})/n2−(|λ |−|λ ′|)(d−1+n/2−t),

with the last inequality being sharp for|α| = |β | = t. So, using #Vλ ,i,λ ′ . N(n−1)/n, the additional error
can be bounded by an absolute multiple of

N−(d−t+min{t,d−1−t})/n2−(|λ |−|λ ′|)(n/2+d−1−t),

and we have arrived at the following result:
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PROPOSITION3.3 LetM∗
λ ,λ ′ be the result of the application of a composite rule of rankN and order

p applied to each of the integrals from (3.8) for each|α|, |β | 6 t, where for each of these integrals the
largest possibleη is taken. Then

|Mλ ,λ ′ −M∗
λ ,λ ′ | .N−p/n2−(|λ |−|λ ′|)(n/2+p−d+1−min{t,d−1−t})

+N−(d−t+min{t,d−1−t})/n2−(|λ |−|λ ′|)(n/2+d−1−t),

which is valid without any assumption on the location of singsuppψλ . (The terms in the exponents
within frames indicate the differences to the bound from Proposition 3.2.)

COROLLARY 3.3 Let p > 2d−2− t + min{t,d−1− t}, d−t
n > 1

2, d−1 > t > 0 andd̃ > d−2t −1.
ThenM(s) is s∗-computable for somes∗ > d−t

n .

Proof. The number of nonzero entries in each row ofM(s)
ℓ,ℓ′ and column ofM(s)

ℓ′,ℓ is

O(max{1,2(ℓ′−ℓ)(n−1)}). The conditionsp> 2d−2−t +min{t,d−1−t}, andd−1> t > 0 that implies
d > 2, show that in the bound from Proposition 3.3 the first term isnever larger than the second one, that

can be written asN−(d−t+min{t,d−1−t})/n2−(|λ |−|λ ′|)((n−1)/2+
d−1/2−t

n−1 (n−1)). The conditiond−t
n > 1

2 shows

thatr := d−1/2−t
n−1 > d−t

n , and the conditionst > 0 andd−1> t show that min{t,d−1− t}> 0 and thus

thatq := d−t+min{t,d−1−t}
n > d−t

n . So an application of Lemma 3.1 fork = n−1 yields a matrixM(s),∗
j ,

for which the computation of each column takesO(2 j) operations, and for which‖M(s)
j −M(s),∗

j ‖ .

2− j min{q,r}, or‖M(s)
j −M(s),∗

j ‖. 2− j(min{q,r})−ε for anyε > 0 in caseq= r (see Remark 3.1). Using that

by d̃ > d−2t−1, ‖M(s)−M(s)
j ‖. 2

− j
(

d−1/2−t
n−1

)

by Theorem 2.1, andd−1/2−t
n−1 > d−t

n by the assumption

that d−t
n > 1

2, the proof is completed. �

Concluding we can say that under the conditions of Corollary3.1 and 3.2,M is s∗-computable with
s∗ > d−t

n , and that under the conditions of Corollary 3.1 and 3.3, it isis s∗-computable withs∗ > d−t
n .

Corollary 3.3 requires thatt > 0 andd− 1 > t, the latter meaning that lowest possible order spline
wavelets are not covered.

The underlying quadrature scheme consists of the application of a simple composite quadrature rule
of fixed orderp, and a suitably chosen rankN on the integral in the parameter space of the wavelet that
has the highest level of the two involved in an entry. The rankN depends onj, i.e., on the total number
of operations one is prepared to spend on the computation of each column of the approximate stiffness
matrix, on the difference in levels of the wavelets involved, and on whether the support of the wavelet on
the higher level intersects the singular support of the wavelet on the lower level or not. Fully satisfactory
results are only obtained, when in the first, singular case, quadrature is applied after first applying an
integration by parts.

For that case, even more favourable bounds, possibly leading to better quantitative behaviour of the
adaptive frame scheme, could be obtained by applying adaptive quadrature, in the sense that subcubes
that intersect the singular support could be more refined than those that do not (cf. Figure 4). On the
latter subcubes, instead ofh-refinement alsop-refinement could be considered. These modifications
would require more programming efforts though.

We apply fixed order composite quadrature rules mainly because of the approximation of the singular
entries ofM, i.e, the entries ofM(s), and because of the ease with which they can be adjusted to give
approximations within any prescribed tolerance. Numerical experiments learned us that when applied
to regular entries their error decreases much faster as function of the difference in levels of the wavelets
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involved than predicted by the bound of Proposition 3.1. Although for our goal of proving optimal
computational complexity of adaptive frame algorithms this bound was satisfactory, in view of the
quantitative behaviour it is interesting to derive a more accurate bound. This will be the topic of the next
section.

4. The Regular Case Revisited

All quadrature error bounds derived so far were obtained by summing over 16 i 6 mbounds for quadra-
ture errors in approximating integrals over the individualΞλ ,i , being the regions restricted to whichψλ
is in Qd−1. The fact thatψλ is a wavelet, i.e., that it has vanishing moments did not playany role. In this
section, we will see that also for bounding quadrature errors the vanishing moments can be exploited.
Although for relatively larged andd̃ compared top, also for entries ofM(s) better bounds can be ob-
tained, for simplicity herewe consider only entries ofM(r) (actually, we will even exclude some of these
entries from our considerations, see below).

In order to simplify our analysis we make the following observation. By a scaling of the inte-
gration domain,

∫

aα,β (x)∂ α
x ψλ ′(x)∂ β

x ψλ (x)dx can be written as
∫

âα,β (y)∂ α
y ψ̂λ ′(y)∂ β

y ψ̂λ (y)dy, where

âα,β (y) = aα,β (2−|λ ′|y), and whereψ̂λ ′ and ψ̂λ have all the properties of a wavelet on level 0 and
|λ |− |λ ′|, respectively. In the same way, a composite quadrature ruleof rankN and orderp to approxi-

mate
∫

Ξλ ,i
aα,β (x)∂ α

x ψλ ′(x)∂ β
x ψλ (x)dx can be transformed to such a rule to approximate

∫

2|λ ′|Ξλ ,i
âα,β (y)∂ α

y ψ̂λ ′(y)∂ β
y ψ̂λ (y)dy. In other words, if for|λ ′| = 0 we can prove an upper bound for

the quadrature error in approximatingM(r)
λ ,λ ′ of typeh N−q2−|λ |r , then we have shown an upper bound

of typeh N−q2−(|λ |−|λ ′|)r for general|λ |> |λ ′|. (Since qualitatively, ˆaα,β becomes increasingly smooth
with increasing|λ ′|, as in Remark 2.2 we see that the case|λ ′|= 0 is actually the most demanding one).

Since for any non-zero entryM(r)
λ ,λ ′ , ψλ ′ is infinitely smooth on suppψλ , it is even sufficient to prove an

upper bound of typeh N−q2−|λ |r for the quadrature error in approximating an integral
∫

g∂ β ψλ where
g∈C∞. This is what we are going to do in the following.

The usual way wavelets are constructed on then-cube is by takingtensor products of univariate
wavelets and scaling functions. In order to obtain the best possible estimates we will exploit this fact.
We start with considering theunivariate case n= 1.

So we considerψλ to be a univariate spline wavelet with̃d vanishing momentsand oforder d> t +1
with respect to a subdivision of[0,1] into subintervals, that in this section are assumed to haveequal
length h= h|λ | h 2−|λ |. Since the wavelets satisfy homogeneous Dirichlet boundary conditions of order

t −1, for β 6 t integration by parts shows that theβ -th derivativeψ(β )
λ hasd̃+β vanishing moments.

From now on, we will only consider thoseψλ that satisfyhomogeneous Dirichlet boundary condi-
tionsof themaximal possible order d−2, which in cased > t +1 is not satisfied by each wavelet whose
support has non-empty intersection with∂Ω . For such wavelets, there exist scalarsaℓ = aℓ,λ ,β such that

ψ(β )
λ = ∑

ℓ∈Z

aℓζ (·+ ℓh),

whereζ is thecardinal B-spline of order d− β with knot distanceh. The number of non-zeroaℓ is
bounded, uniformly inλ .

LEMMA 4.1 For anyq∈ Pd−β−1, ∑i∈Z q(·+ ih)ζ (·+ ih) ∈ P0, and∑i∈Z ζ (·+ ih) = 1.
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REMARK 4.1 For comparison, using (Cohen; 2000, Theorem 2.8.1) one infers that a general compactly
supportedζ ∈ L1 with

∫

R
ζ 6= 0 satisfies the Strang-Fix conditions of orderd−β −1 (implying that the

shift invariant space generated byζ containsPd−β−1) if and only if ∑i∈Z(·+ ih)kζ (·+ ih) ∈ Pk−1 for
k = 1, . . . ,d−β −1, and 06= ∑i∈Z ζ (·+ ih) ∈ P0.

Proof. It is sufficient to give the proof forh = 1. With ζk denoting the B-spline of orderk, ζ1 is the
characteristic function of[0,1], and fork > 1,

ζk(x) = x
k−1ζk−1(x)+(1− x−1

k−1)ζk−1(x−1). (4.1)

For k = d−β = 1, both statements of the lemma are obviously true. Assume that both statements
are true for somek−1 = d−β > 1. Using (4.1), we find that

∑
i∈Z

q(x+ i)ζk(x+ i) = ∑
i∈Z

[

q(x+ i) x+i
k−1 +q(x+ i +1)(1− x+i

k−1)
]

ζk−1(x+ i),

and so in particular∑i∈Z ζk(x+ i) = ∑i∈Z ζk−1(x+ i) = 1. Substitutingq(x) = xr for r ∈ N, we have

(x+ i)r x+i
k−1 +(x+ i +1)r(1− x+i

k−1) = (x+i)r+1

k−1 +
r

∑
ℓ=0

(

r

ℓ

)

(x+ i)ℓ− 1
k−1

r

∑
ℓ=0

(

r

ℓ

)

(x+ i)ℓ+1

=
r

∑
ℓ=0

(

r

ℓ

)

(x+ i)ℓ− 1
k−1

r−1

∑
ℓ=0

(

r

ℓ

)

(x+ i)ℓ+1 ∈ Pr ,

where in particular forr = k−1,

(x+ i)k−1 x+i
k−1 +(x+i +1)k−1(1− x+i

k−1)

=
k−1

∑
ℓ=0

(

k−1

ℓ

)

(x+ i)ℓ− 1
k−1

k−2

∑
ℓ=0

(

k−1

ℓ

)

(x+ i)ℓ+1

=
k−2

∑
ℓ=0

(

k−1

ℓ

)

(x+ i)ℓ− 1
k−1

k−3

∑
ℓ=0

(

r

ℓ

)

(x+ i)ℓ+1 ∈ Pk−2.

We conclude that for anyq∈ Pk−1, ∑i∈Z q(·+ i)ζk(·+ i) = ∑i∈Z q̃(·+ i)ζk−1(·+ i) for some ˜q∈ Pk−2,
which completes the proof by the induction hypothesis. �

Thanks to the fact thatψ(β )
λ hasd̃+β vanishing moments we have the following result.

LEMMA 4.2 ∑ℓ∈Z aℓq(ℓ) = 0 for anyq∈ Pd̃+β−1.

Proof. Without loss of generality we takeh = 1, and dropλ from the notations. We have

∑
i∈Z

ψ(β )(x+ i) = ∑
i∈Z

∑
ℓ∈Z

aℓζ (x+ i + ℓ) = ∑
ℓ∈Z

aℓ ∑
i∈Z

ζ (x+ i + ℓ) = ∑
ℓ∈Z

aℓ ∑
i∈Z

ζ (x+ i),

so that 0=
∫

R
ψ(β )(x)dx=

∫ 1
0 ∑i∈Z ψ(β )(x+ i)dx together with∑i∈Z ζ (·+ ih) = 1 6= 0 implies∑ℓ∈Z aℓ =

0.
Now suppose that the statement of the lemma is valid for anyq ∈ Pd̃+β−2. Then writing (x+
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i)d̃+β−1 = ∑d̃+β−1
k=0

(

d̃+β−1

k

)

(−ℓ)k(x+ i + ℓ)d̃+β−1−k, we have

∑
i∈Z

(x+ i)d̃+β−1ψ(β )(x+ i) =
d̃+β−1

∑
k=0

(

d̃+β−1

k

)

∑
ℓ∈Z

aℓ(−ℓ)k ∑
i∈Z

(x+ i + ℓ)d̃+β−1−kζ (x+ i + ℓ)

=
d̃+β−1

∑
k=0

(

d̃+β−1

k

)

∑
ℓ∈Z

aℓ(−ℓ)k ∑
i∈Z

(x+ i)d̃+β−1−kζ (x+ i) (4.2)

= ∑
ℓ∈Z

aℓ(−ℓ)d̃+β−1 ∑
i∈Z

ζ (x+ i),

so that 0=
∫ 1

0 ∑i∈Z(x+ i)d̃+β−1ψ(β )(x+ i)dx together with∑i∈Z ζ (·+ ih) = 1 6= 0 implies

∑ℓ∈Z aℓℓ
d̃+β−1 = 0, with that completing the proof. �

REMARK 4.2 Above proof confirms the known fact that∑ℓ∈Z aℓq(ℓ) = 0 for anyq∈ Pd̃+β−1 is also a

sufficient condition forψ(β )
λ to haved̃+β vanishing moments.

To approximately compute
∫

R
gψ(β )

λ , it is written as∑i∈Z

∫ (i+1)h
ih gψ(β )

λ , and the individual integrals
over the intervals[ih,(i +1)h] are approximated bycomposite quadrature rulesof order p> 0 andrank

N, which in this section are assumed to beshift invariant, i.e., of type∑N
j=1w jg(x j + ih)ψ(β )

λ (x j + ih)

with w j andx j independent ofi. For the resulting approximation for
∫

R
gψ(β )

λ we have the following
result.

PROPOSITION4.1 For any polynomialq of degree less or equal tõd+max(d−1, p−d+2β ),

∑
i∈Z

N

∑
j=1

w jq(x j + ih)ψ(β )
λ (x j + ih) =

∫

R

qψ(β )
λ .

Proof. Again, without loss of generality we takeh = 1, and dropλ from the notations. We write
∫

R
qψ(β ) and the quadrature approximation as

∫ 1
0 ∑i∈Z q(x+ i)ψ(β )(x+ i)dx and∑N

j=1w j ∑i∈Z q(x j +

i)ψ(β )(x j + i), respectively. Forr ∈ N, as in (4.2) we have

∑
i∈Z

(x+ i)rψ(β )(x+ i) =
r

∑
k=0

(

r

k

)

∑
ℓ∈Z

aℓ(−ℓ)k ∑
i∈Z

(x+ i)r−kζ (x+ i)

=
r

∑
k=d̃+β

(

r

k

)

∑
ℓ∈Z

aℓ(−ℓ)k ∑
i∈Z

(x+ i)r−kζ (x+ i)

=
r−d̃−β

∑
m=0

(

r

m

)

∑
ℓ∈Z

aℓ(−ℓ)r−m ∑
i∈Z

(x+ i)mζ (x+ i),

where the second equality follows from Lemma 4.2. Forr 6 d̃+max(d−1, p−d+2β ), i.e.,r− d̃−β 6

max(d− β − 1, p− d + β ), the last expression is either a constant thanks to Lemma 4.1, or, since
ζ ∈ Pd−β−1, it is a polynomial of degree less or equal top−1. Since in any casep > 0, in both cases
the quadrature approximation is exact. �

So the order of exactness of the quadrature rule is an increasing function ofd̃, and a non-decreasing,
and eventually increasing function of bothd and p. It is remarkable that even forp = 1, the rule is
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already exact for any polynomial of degreed̃+d−1. On the other hand it is fair to say that the required
number of function evaluations grows withp, d and d̃. E.g. thinking ofN = 1, a p

2 -point Gauss rule
being of orderp, andψλ being a biorthogonal spline wavelet of orderd with d̃ vanishing moments as
introduced in Cohen et al. (1992) whose support extends to 2(d+ d̃−1) intervals of type[ih,(i +1)h],
this number of function evaluations isp(d+ d̃−1).

An alternative way to approximate
∫

R
gψ(β )

λ for smoothg has been analyzed in Barinka et al. (2002).

After splitting the integral into
∫

R
g(ψ(β )

λ +C)−C
∫

R
gψ(β )

λ for some constantC with ψ(β )
λ +C > 0, both

integrals were approximated by Gauss quadrature, the first using ψ(β )
λ +C as weight function. In this

way exactness of orderp is obtained at the expense of only 2∗ p/2 = p function evaluations. Of course
additional work is required in setting up this Gauss rule.

PROPOSITION4.2 |
∫

R
gψ(β )

λ | . 2−|λ |( 1
2+t+d̃)|g|

Wd̃+β
∞

and

|
∫

R

gψ(β )
λ − ∑

i∈Z

N

∑
j=1

w jg(x j + ih)ψ(β )
λ (x j + ih)|

. N−p2−|λ |( 1
2+t+d̃+max(d−β ,p+β+1−d))‖g‖

Wmax(p,d̃+max(d−1,p−d+2β )+1)
∞

.

Proof. Sinceψ(β )
λ hasd̃+β vanishing moments, using (2.1) we have

|
∫

R

gψ(β )
λ | . vol(suppψλ )‖ψ(β )

λ ‖L∞diam(suppψλ )d̃+β |g|
Wd̃+β

∞

. 2−|λ |2|λ |(
1
2+β−t)2−|λ |(d̃+β )|g|

Wd̃+β
∞

.

Similarly to the proof of Proposition 3.1, but now using the fact that by Proposition 4.1 we may
subtract fromg say its Taylor polynomialq of orderm := d̃+max(d−1, p−d+2β )+1 around some
point in suppψλ , the quadrature error can be bounded on some multiple of

N2−|λ |N−1(2−|λ |N−1)p|(g−q)ψ(β )
λ |Wp

∞

. 2−|λ |(p+1)N−p max
06ℓ6d−1−β

‖ψ(β+ℓ)
λ ‖L∞ |g−q|

Wp−ℓ
∞

. 2−|λ |(p+1)N−p max
06ℓ6d−1−β

2|λ |(
1
2+β+ℓ−t)2−|λ |max(0,m−p+ℓ)|g|

Wmax(0,m−p+ℓ)+p−ℓ
∞

. 2−|λ |(p+1)N−p2|λ |(d−
1
2−t)2−|λ |(m−p+d−1−β )‖g‖

Wmax(p,m)
∞

,

where we usedψλ ∈ Pd−1, (2.1), and thatm− p+ d− 1− β > 0 by d̃ + β > 0. By substituting the
expression form, the proof is completed. �

Returning to themultivariate setting, we consider waveletsψλ of the following type

ψλ = ξλ1
⊗·· ·⊗ξλn,

where|λ1| = · · · = |λn| = |λ |, and for 16 ℓ 6 n, ξλℓ
is eithera univariate waveletψλℓ

of the type we

studied in this section, except that forγ 6 d−1 it satisfies‖ψλℓ
‖Wγ

∞
. 2|λℓ|(

1
2+γ− t

n ) instead of‖ψλℓ
‖Wγ

∞
.

2|λℓ|(
1
2+γ−t), or such a function without vanishing moments, i.e., a univariate scaling function, where at
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least one of the factorsξλ1
, . . . ,ξλn is a wavelet. Note that the scaling of anL2-orthonormalized wavelet

ψλ with a factor 2−|λ |t to give it an “energy-norm” of order 1 is independent of the space dimension
n. Here, we distributed this scaling evenly over the factors.Furthermore, note that above assumption
on the multivariate wavelet means that it satisfies homogeneous Dirichlet boundary conditions of the
maximal orderd−2, meaning that ford−1 > t we exclude some wavelets that are mapped onto the
physical boundary∂Ω .

To approximate
∫

Rn g∂ β ψλ for |β |6 t, we apply the product of the quadrature rules for the univariate
integrals in the coordinate directions, i.e., sums of shiftinvariant composite rules of orderp over the
subintervals on which the univariate wavelet or scaling function is polynomial. So denotingIλℓ,βℓ

(g) =
∫

R
gξ (βℓ)

λℓ
andQλℓ,βℓ,M(g) its quadrature approximation using rankM, given N ∈ N

n we approximate
∫

Rn g∂ β ψλ = (Iλ1,β1
⊗·· ·⊗ Iλn,βn)(g) by (Qλ1,β1,N1/n ⊗·· ·⊗Qλn,βn,N1/n)(g). Note that the total number

of abscissae ish N.

PROPOSITION4.3 We have

|(Iλ1,β1
⊗·· ·⊗ Iλn,βn −Qλ1,β1,N1/n ⊗·· ·⊗Qλn,βn,N1/n)(g)| .

N−p/n2−|λ |( n
2+t+d̃+min16ℓ6n max(d−βℓ,p+βℓ+1−d)) max

{γ:γℓ6max(p,d̃+max(d−1,p−d+2βℓ)+1)}
‖∂ γg‖L∞(Rn).

Proof. It is sufficient to consider the case thatξλ1
is a wavelet and, since the other cases give never

worse bounds, the other factors are scaling functions. Withobvious simplifications of the notations,
Proposition 4.2 (withN, t reading asN1/n, t/n) shows that fork = 1,

|(I1⊗·· ·⊗ Ik−Q1⊗·· ·⊗Qk)(g)| .

N−p/n2−|λ |(k( 1
2+ t

n )+d̃+max(d−β1,p+β1+1−d)) max
{γ:γℓ6max(p,d̃+max(d−1,p−d+2βℓ)+1),16ℓ6k}

‖∂ γg‖L∞(Rk).

For k > 1, we write

I1⊗·· ·⊗ Ik−Q1⊗·· ·⊗Qk =

(I1⊗·· ·⊗ Ik−1−Q1⊗·· ·⊗Qk−1)⊗Qk + I1⊗·· ·⊗ Ik−1⊗ (Ik−Qk).

From

|(Ik− (Ik−Qk))(g)| . 2−|λ |( 1
2+ t

n )‖g‖
W

max(p,d̃+max(d−1,p−d+2βk)+1)
∞ (R)

,

|(Ik−Qk)(g)| . N−p/n2−|λ |( 1
2+t+max(d−βk,p+βk+1−d))‖g‖

W
max(p,max(d−1,p−d+2βk)+1)
∞ (R)

,

|(I1⊗·· ·⊗ Ik−1)(g)| . 2−|λ |( 1
2+ t

n+d̃+(k−2)( 1
2+ t

n))‖∂ d̃+β1
1 ∂ β2

2 · · ·∂ βk−1
k−1 g‖L∞(Rk−1),

by Proposition 4.2 for both wavelets and scaling functions (d̃ = 0), and, for the last estimate, addition-
ally a tensor product argument (cf. Light and Cheney (1985)), by again applying this tensor product
argument and the induction hypothesis we arrive at the statement of the proposition. �

Recalling thatMλ ,λ ′ = ∑|α|,|β |6t
∫

Ω aα,β ∂ α ψλ ′∂ β ψλ , and using that

min
|β |6t

min
16ℓ6n

max(d−βℓ, p+βℓ +1−d) = max(d− t, p+1−d,⌈ p+1
2 ⌉),

we arrive at the conclusion that for the basically shift invariant tensor product setting discussed in this
section, the following estimate is valid.
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FIG. 5. Two simple domains made up of two overlapping patches with non-matching dyadic grids.

COROLLARY 4.1 Let |λ | > |λ ′| with suppψλ ⊂ Ξλ ′,i′ for some 16 i′ 6 m, and such thatψλ satisfies
homogeneous Dirichlet boundary conditions of orderd−2. Then

|M(r)
λ ,λ ′ −M(r),∗

λ ,λ ′ | . N−p/n2−(|λ |−|λ ′|)( n
2+t+d̃+max(d−t,p+1−d,⌈ p+1

2 ⌉)).

To compare with the upper bound from Proposition 3.1, note that n
2 + t + d̃ + max(d− t, p+ 1−

d,⌈ p+1
2 ⌉)− (n

2 + p−d+1) = max(2d+ d̃− p−1, t +d, t +d+ d̃−⌊ (p+1)
2 ⌋).

5. Numerical Tests

The numerical experiments in this section intend to confirm the sharpness of the different estimates
given in Lemma 2.1, Propositions 3.1, 3.2 and 3.3, and Corollary 4.1. On domainsΩ ⊂R

2, we consider
an operatorL : H1

0(Ω) → H−1(Ω) of order 2t = 2 defined by

(Lw)(v) :=
2

∑
k=1

∫

Ω
∂kw∂kv, (5.1)

which results from the variational formulation of Poisson’s problem with homogeneous Dirichlet bound-
ary conditions. We are concerned with the size and the approximation of the entries in the stiffness
matrix representingL with respect to aggregated wavelet frames.

As reference systemsΨ2

i = {ψ2

i,µ : µ ∈ Λ2

i } ⊂ H1
0(0,1)2, we use biorthogonal spline wavelet

bases of orderd = 2 or d = 3, havingd̃ = 2 or d̃ = 3 vanishing moments, respectively. The dual
wavelets are chosen not to satisfy any boundary conditions,so that indeed all primal wavelets have
the aforementioned number of vanishing moments (Dahmen andSchneider (1998)). The wavelets are
constructed as tensor products of univariate wavelets and scaling functions with respect to uniform
partitions of the unit interval as discussed in Sect. 4.

The elements of the aggregated frame are obtained by liftingaccording to

ψi,µ(x) =
ψ2

i,µ(κ−1
i (x))

|detDκi(κ−1
i (x))|1/2

, for x∈ Imκi , (5.2)
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and zero elsewhere onΩ , whereκi : (0,1)2 → Ωi ⊂ Ω represents a smooth parametrization of the
i−th patch of the open, overlapping coveringΩ =

⋃m
i=1 Ωi . Although not required for the current

application, in our software we included the additional scaling given by the denominator in (5.2) in
order that‖ψi,µ‖L2(Ω) = ‖ψ2

i,µ‖L2(0,1)2, and that the lifted primal wavelets are biorthogonal to similarly
lifted dual wavelets. Except for affineκi , effectively it yields smooth, non-polynomial coefficients
in the differential operator that we therefore have omittedin (5.1). Ford > 2, the reference system
Ψ2

i depends (weakly) oni, in the sense that on those edges that are mapped into the interior of Ω ,
homogeneous Dirichlet boundary conditions of orderd−2> t−1= 0 are prescribed, which guarantees
that allψi,µ ∈Cd−2(Ω). The aggregated wavelet frame onΩ is now defined as

Ψ := {ψλ : λ = (i,µ) ∈
m
⋃

i=1

{i}×Λ2

i }. (5.3)

We consider parametrizations of type

κi(r,s) = (1− r)(1−s)b(0,0) +(1− r)sb(0,1) + r(1−s)b(1,0) + rsb(1,1),

whereb(k,ℓ) ∈ R
2, (k, ℓ) ∈ {0,1}2. Thus, provided that the verticesb(k,ℓ) are ordered appropriately,κi

maps the unit square to an arbitrary quadrangle inR
2. In case the vertices describe a parallelogram,κi

is affine and so the denominator in (5.2) is a constant.
We consider two different types of overlapping decompositions ofΩ . The first type refers to the

situation of overlapping rectangular patches with non-matching dyadic grids both being aligned with
the Cartesian coordinates, as shown in Figure 5 (left).

First of all, we address the decay estimates in Lemma 2.1, which are the essential ingredients for
the proof of Theorem 2.1, stating a sufficient compressibility of M. For the grids in Figure 5 (left),
we could compute the entries ofM exactly, whereas for the grids in Figure 5 (right) we applied our
composite quadrature scheme with, for this goal,N ≫ 1 and a high orderp such that the quadrature
error is neglectable.

For fixed columns ofM(r) andM(s), we have computed the largest entry in modulus as function of
level difference of row and column indices. The decay of the modulus of this entry is illustrated by the
results given in Figure 6. Lemma 2.1 predicts the exponential decay raten/2+ d̃+ t or n/2+d−1− t
in base 2 forM(r) or M(s), respectively. ForM(r), we observed the rate 4 or 5 ford = d̃ = 2 ord = d̃ = 3,
and forM(s), we observed the rate 1 or 2 ford = d̃ = 2 ord = d̃ = 3, all in accordance with the predicted
rates.

For investigating thequadrature errorsof our composite schemes we used product Gaussian quadra-
ture formulas of fixed orderp as building block. Figure 7 addresses the rate of convergence of the
composite quadrature scheme for a fixed entry fromM(r) as function of the granularity or rankN. We
have used a quadrature rule of orderp = 4 for the cased = d̃ = 2 andp = 2 for d = d̃ = 3. We observe
the polynomial rates 2= 4/2 = p/n and 1= 2/2, respectively, as predicted by both Proposition 3.1 and
Corollary 4.1.

For fixed N and p = d = d̃ = 2, the decay of the quadrature error in a fixed column ofM(r) as
function of the level difference||λ |−|λ ′|| of the involved wavelets is examined in Figure 8. We observe
the exponential raten/2+ t + d̃ + max(d− t, p+ 1− d,⌈(p+ 1)/2⌉) = 6 in base 2 as predicted by
Corollary 4.1, which is much better than the raten/2+ p−d+1 = 2 predicted by Proposition 3.1.

Unlike that from Corollary 4.1, as stated in Remark 3.3 the bound from Proposition 3.1 also applies
to entries fromM(s) when the singular supports of the corresponding wavelets are nested as function of
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FIG. 6. Decay of the entries in a column ofM(r) (upper part) andM(s) (lower part) for d = d̃ = 2 andd = d̃ = 3.

the level, cf. Figure 3. The results given in Figure 9 forp = d = d̃ = 2 indicate that for those entries the
bound from this proposition as function of the level difference is sharp.

Figure 10 addresses the rate of convergence of the compositequadrature scheme for entries inM(s)

as function of the rankN. We have used a quadrature rule of orderp = 2 for the cased = d̃ = 2 and
p= 4 for d = d̃ = 3. We observe the polynomial rates(d−t)/n= 1/2 and 1, respectively, in accordance
with the second term from the bound of Proposition 3.2. Sincein these casesp> max{d−t,2d−2−t},
as stated in the proof of Corollary 3.2, the second term in this bound is always dominating. Recall that
for the entries ofM(s) the integrand of any integral in (3.3) may be discontinuous.Consequently, ifN
is successively increased, the ratio of the number of quadrature knots on either side of the singularity
may differ, even for uniform dyadicN-refinement, as we have used it in our experiments. This causes
the oscillatory behaviour of the error that can be observed in Figure 10.

For fixedN, the decay of the quadrature error in a fixed column ofM(s) as function of the level differ-
ence||λ |− |λ ′|| of the involved wavelets is examined in Figure 11. The results confirm the exponential
raten/2+d−1− t in base 2 given by the second term from the bound of Proposition 3.2.

Since ford = 3, d−1 > t = 1, for this case alternatively we can apply the composite quadrature to
the right hand side in (3.8), i.e.,after integration by parts.The results shown in the lower error diagram
of Figure 10, obtained withp = 4, confirm the improved polynomial rate 3/2 = (d− t +min{t,d−1−
t)})/n predicted by Proposition 3.3, and illustrate an improved quantitative performance. Indeed, in the
lower error diagram of Figure 10 the initial error forN = 1 is more than ten times smaller than without
the integration by parts trick.

To conclude we can say that in our tests all estimates have shown to be sharp. Moreover, also the
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singular supports ofψλ andψλ ′ are nested like in Figure 3, becauseλ = (i,µ) andλ ′ = (i,µ ′), i.e., they are lifted by the sameκi .
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FIG. 11. Decay of the quadrature error in a column ofM(s) as function of||λ |− |λ ′|| for fixedN andp= 2, d = d̃ = 2, andp= 4,
d = d̃ = 3.

quantitative performances of our quadrature scheme for theapproximation of the matricesM(r) have
turned out to be quite promising, cf. Figure 7 and 8. Naturally, the computation of entries inM(s)

is much harder. Nevertheless, applying an additional integration by parts as suggested in (3.8), both
higher convergence rates as function of the rankN and an improvement of constants can be achieved.
Therefore, it can be expected that the application of this trick, possibly in combination with an adaptive
quadrature scheme as mentioned at the end of Section 5, will allow for an efficient computation of
stiffness matrices also for domains with more complex geometries.

REFERENCES

Barinka, A., Barsch, T., Dahlke, S., Mommer, M. and Konik, M. (2002). Quadrature formulas for refinable
functions and wavelets. II. Error analysis,J. Comput. Anal. Appl.4(4): 339–361.

Canuto, C., Tabacco, A. and Urban, K. (1999). The wavelet element method part I: Construction and analysis,
Appl. Comput. Harmon. Anal.6: 1–52.

Cohen, A. (2000).Wavelet methods in numerical analysis, In P.G. Ciarlet and J. L. Lions, editors,Handbook of
Numerical Analysis. Vol. VII., pages 417–711. North-Holland, Amsterdam.

Cohen, A., Dahmen, W. and DeVore, R. (2001). Adaptive wavelet methods for elliptic operator equations –
Convergence rates,Math. Comp.70: 27–75.

Cohen, A., Dahmen, W. and DeVore, R. (2002). Adaptive wavelet methods II - Beyond the elliptic case,Found.
Comput. Math.2(3): 203–245.

Cohen, A., Daubechies, I. and Feauveau, J. (1992). Biorthogonal bases of compactly supported wavelets,Comm.
Pur. Appl. Math.45: 485–560.

Cohen, A. and Masson, R. (2000). Wavelet adaptive method for second order elliptic problems: Boundary condi-
tions and domain decomposition,Numer. Math.86: 193–238.

Dahlke, S., Fornasier, M. and Raasch, T. (2004). Adaptive framemethods for elliptic operator equations,Adv.
Comput. Math., doi:10.1007/s10444-005-7501-6.

Dahlke, S., Fornasier, M., Raasch, T., Stevenson, R. P. and Werner, M. (2006). Adaptive frame methods for elliptic
operator equations: The steepest descent approach,IMA J. Numer. Math., doi:10.1093/imanum/drl035.

Dahmen, W. and Schneider, R. (1998). Wavelets with complementary boundary conditions—function spaces on
the cube,Results Math.34(3-4): 255–293.

Dahmen, W. and Schneider, R. (1999a). Composite wavelet bases for operator equations,Math. Comp.68: 1533–
1567.

Dahmen, W. and Schneider, R. (1999b). Wavelets on manifolds I: Construction and domain decomposition,SIAM



Computation of Differential Operators in Aggregated Wavelet Frame Coordinates 27 of 27

J. Math. Anal.31: 184–230.
Dahmen, W., Vorloeper, J. and Urban, K. (2002). Adaptive wavelet methods — basic concepts and applications

to the Stokes problem,in D.-X. Zhou (ed.),Proceedings of the International Conference of Computational
Harmonic Analysis, World Scientific, pp. 39–80.

Gantumur, T. (2006). An optimal adaptive wavelet method for nonsymmetric and indefinite elliptic problems,J.
Comp. Appl. Math.. Available online 29 December 2006. doi:10.1016/j.cam.2006.11.013.

Gantumur, T., Harbrecht, H. and Stevenson, R. (2007). An optimal adaptive wavelet method without coarsening of
the iterands,Math. Comp.77: 615–629.

Gantumur, T. and Stevenson, R. P. (2006a). Computation of differential operators in wavelet coordinates,Math.
Comp.75: 697–709.

Gantumur, T. and Stevenson, R. P. (2006b). Computation of singular integral operators in wavelet coordinates,
Computing76: 77–107.

Harbrecht, H. and Stevenson, R. (2006). Wavelets with patchwise cancellation properties,Math. Comp.75(256): 1871–
1889.

Kunoth, A. and Sahner, J. (2006). Wavelets on manifolds: An optimizedconstruction,Math. Comp.75: 1319–
1349.

Light, W. A. and Cheney, E. W. (1985).Approximation theory in tensor product spaces, volume 1169 ofLecture
Notes in Mathematics, Springer-Verlag, Berlin.

Stevenson, R. (2007). Composite wavelet bases with extended stability and cancellation properties,SIAM J. Numer.
Anal. 45(1): 133–162.

Stevenson, R. P. (2003). Adaptive solution of operator equations using wavelet frames,SIAM J. Numer. Anal.
41(3): 1074–1100.

Stevenson, R. P. (2004). On the compressibility of operators in waveletcoordinates,SIAM J. Math. Anal.
35(5): 1110–1132.


