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Abstract. In this paper, we prove that the standard adaptive fi-
nite element method with a (modified) maximum marking strategy
is instance optimal for the total error, being the square root of the
squared energy error plus the squared oscillation. This result will
be derived in the model setting of Poisson’s equation on a poly-
gon, linear finite elements, and conforming triangulations created
by newest vertex bisection.

1. Introduction

Adaptive algorithms for the solution of PDEs that have been pro-
posed since the 70’s are nowadays standard tools in science and en-
gineering. In contrast to uniform refinements, adaptive mesh modifi-
cations do not guarantee that the maximal mesh size tends to zero.
For this reason, even convergence of adaptive finite element methods
(AFEM’s) was unclear for a long time, though practical experiences
often showed optimal convergence rates.

In one dimension, convergence of an AFEM for elliptic problems
was proved by Babuška and Vogelius in [BV84] under some heuris-
tic assumptions. Later, Dörfler introduced in [Dör96] a bulk chasing
marking strategy thereby proving linear convergence of an AFEM in
two space dimensions for a sufficiently fine initial triangulation. This
restriction was removed in [MNS00, MNS02] by Morin, Nochetto, and
Siebert.

In [BDD04], Binev, Dahmen and DeVore extended the AFEM anal-
ysed in [MNS00] by a so-called coarsening routine, and showed that the
resulting method is instance optimal, cf. also [Bin07]. This means that
the energy norm of the error in any approximation produced by the al-
gorithm, with underlying triangulation denoted as T , is less than some
constant multiple of the error w.r.t. any admissible triangulation T̃
satisfying #(T̃ \ T⊥) ≤ λ#(T \ T⊥), for some fixed constant λ ∈ (0, 1).
Here, an admissible triangulation is a conforming triangulation, which
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is created by finitely many newest vertex bisections (NVB) from a fixed
initial triangulation, which we denote as T⊥.

In [Ste07], it was shown that already without the addition of coars-
ening, the AFEM is class optimal: Whenever the solution can be ap-
proximated at some asymptotic (algebraic) convergence rate s by finite
element approximations, and the right-hand side can be approximated
by piecewise polynomials at rate s, then the AFEM produces a se-
quence of approximations, which converges with precisely this rate s.
In [CKNS08], a similar result was presented with a refinement routine
that is not required to produce “interior nodes”, and with a different
treatment of the approximation of the right-hand side, that is assumed
to be in L2. In that paper, the AFEM is considered as a procedure for
reducing the total error, being the square root of the squared error in
the energy norm plus the squared so-called oscillation. This is also the
point of view that will be taken in the present work.

In the last few years, in numerous works class optimality results for
AFEMs have been derived for arbitrary space dimensions, finite ele-
ments of arbitrary orders, the error measured in L2, right-hand sides in
H−1, nonconforming triangulations, discontinuous Galerkin methods,
general diffusion tensors, (mildly) non-symmetric problems, nonlinear
diffusion equations, and indefinite problems.

In all these works the marking strategy is bulk chasing, also called
Dörfler marking. In [MSV08], Morin, Siebert and Veeser considered
also the maximum and equidistribution strategies, without proving any
rates though.

In the present work, we consider a standard AFEM, so without coars-
ening, in the model setting of Poisson’s equations with homogeneous
Dirichlet boundary conditions on a two-dimensional polygonal domain,
the error measured in the energy norm, square integrable right-hand
side, linear finite elements, and conforming triangulations created by
NVB. The refinement routine is not required to create interior nodes in
refined triangles. Our method utilizes a (modified) maximum marking
strategy for the standard residual error estimator organised by edges.

The maximum strategy marks all edges for bisection whose indicator
is greater or equal to a constant

√
µ ∈ (0, 1] times the largest indicator.

This strategy is usually preferred by practitioners since, other than with
Dörfler marking, it does not require the sorting of the error indicators,
and in practise the results turn out to be very insensible to the choice
of the marking parameter µ ∈ (0, 1].

Roughly speaking, our modification of the maximum marking strat-
egy replaces the role of the error indicator associated with an edge S by
the square root of the sum of the squared error indicators over those
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edges that necessarily have to be bisected together with S in order
to retain a conforming triangulation. The precise AFEM is stated in
Section 5.

The main result of this paper states that for any µ ∈ (0, 1], for some
constants C, C̃≥ 1 it holds that

|u− uTk |
2
H1(Ω) + osc2

Tk(Tk) ≤ C̃
(
|u− uT |2H1(Ω) + osc2

T (T )
)
,

for all admissible T with #(T \T⊥) ≤ #(Tk\T⊥)
C

. Here uT is the Galerkin
approximation to the exact solution u from the finite element space
corresponding to T , osc2

T (T ) :=
∑

T∈T |T |‖f − fT‖
2
L2(T ), where fT :=

1
|T |

∫
T
f dx, and Tk is the triangulation produced in the kth iteration of

our AFEM. This result means that our AFEM is instance optimal for
the total error. Clearly, instance optimality implies class optimality for
any (algebraic) rate s, but not vice versa.

Our AFEM is driven by the usual residual based a posteriori estima-
tor, that is only equivalent to the total error. Consequently, we do not
obtain instance optimality for the plain energy error, so without the
oscillation term. The oscillation encodes approximability of the right
hand side and is in most cases of higher order (e.g. as when f ∈ Hs

for some s > 0), and thus asymptotically neglectable.
To prove instance optimality, we will show that the total energy as-

sociated with any triangulation T produced by our AFEM is not larger
than the total energy associated with any conforming triangulation T̃
created by NVB with #(T̃ \T⊥) ≤ λ#(T \T⊥), for some fixed constant
λ ∈ (0, 1). Here the total energy is defined as the Dirichlet energy plus
the “squared element residual part of the a posteriori estimator”.

The outline of this paper is as follows: Sect. 2 is devoted to the
newest vertex bisection refinement procedure. On the set of vertices of
the triangulations that can be created by NVB from T⊥, we introduce
a tree structure where nodes generally have multiple parents. Because
of the resemblance of this tree structure with that of a family tree, we
refer to such a tree as a population. The concept of population is the
key for the derivation of some interesting new properties of NVB.

In Sect. 3, we show that the squared norm of the difference of
Galerkin solutions on nested triangulations is equivalent to the sum
of squared norms of the differences of the Galerkin solution on the fine
triangulation and that on some intermediate triangulations. We call
this the lower diamond estimate.

Sect. 4 is devoted to a posteriori error bounds. It is shown that the
difference of total energies associated with a triangulation T∗ and a
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coarser triangulation T is equivalent to the sum of the squared error
indicators over exactly those edges in T that are refined in T∗.

Based on the presented refinement framework and error estimator,
we precisely specify our AFEM in Section 5.

In Sect. 6, we investigate some fine properties of populations, and
thus of conforming triangulations created by NVB. Calling the vertices
in such a triangulation “free” when they can be removed while retaining
a conforming triangulation, the most striking property says that the
number of free nodes cannot be reduced by more than a constant factor
in any further conforming NVB refinement.

Finally, in Sect. 7 we combine these tools to prove instance optimal-
ity of our AFEM.

Throughout this paper we use the notation a . b to indicate a ≤ C b,
with a generic constant C only possibly depending on fixed quantities
like the initial triangulation T⊥, which will be introduced in the next
subsection. Obviously, a & b means b . a, and we denote a . b . a
by a h b.

2. Newest vertex bisection

We recall properties of the newest vertex bisection (NVB) algorithm
for creating locally refined triangulations. Moreover, we introduce new
concepts related to conforming NVB that allow us to derive some new
interesting properties.

2.1. Triangulations and binary trees. We denote by T⊥ a conform-
ing initial or “bottom” triangulation of a polygonal domain Ω ⊂ R2.
We restrict ourselves to mesh adaptation by newest vertex bisection
in 2d; compare with [Bän91, Kos94, Mau95, Tra97, BDD04, Ste08] as
well as [NSV09, SS05] and the references therein.

To be more precise, for each T ∈ T⊥, we label one of its vertices as its
newest vertex. Newest vertex bisection splits T into two sub-triangles
by connecting the newest vertex to the midpoint of the opposite edge
of T , called the refinement edge of T . This midpoint is labelled as the
newest vertex of both newly created triangles, called children of T . A
recursive application of this rule uniquely determines all possible NVB
refinements of T⊥.

The triangles of any triangulation of Ω that can be created in this
way are the leaves of a subtree of an infinite binary tree T of triangles,
having as roots the triangles of T⊥. The newest vertex of any T ∈ T
is determined by the labelling of newest vertices in T⊥. We define the
generation gen(T ) of T ∈ T as the number of bisections that are needed



INSTANCE OPTIMALITY OF THE ADAPTIVE MAXIMUM STRATEGY 5

to create T starting from T⊥. In particular, gen(T ) = 0 for T ∈ T⊥.
We have uniform shape regularity of T in the sense that

sup
T∈T

diam(T )/|T |
1
2 <∞,

only dependent on T⊥. We denote by N (T ) the set of nodes or vertices
of T ∈ T.

Among all triangulations that can be created by newest vertex bisec-
tion from T⊥, we are interested in those that are conforming and denote
the set of these triangulations as T. Note that T⊥ ∈ T by assumption.

In the following we shall always assume that in T⊥ the labelling of the
newest vertices is such that T = T⊥ satisfies the matching condition:

If, for T, T ′ ∈ T , T ∩ T ′ is the refinement edge of T ,

then it is the refinement edge of T ′.
(2.1)

It is shown in [BDD04], that such a labelling can be found for any
conforming T⊥.

By induction one shows that for any k ∈ N0, the uniform refinement
of the initial triangulation {T ∈ T : gen(T ) = k} is in T, and satisfies
the matching condition. Moreover, the following result is valid:

Proposition 2.1 ([Ste08, Corollary 4.6]). Let T ∈ T and T, T ′ ∈ T be
such that S = T ∩ T ′ is the refinement edge of T . Then,

• either gen(T ′) = gen(T ) and S is the refinement edge of T ′, or
• gen(T ′) = gen(T ) − 1 and S is the refinement edge of one of

the two children of T ′.

We denote by S(T ) (S0(T )) the set of (interior) sides or edges, and by
N (T ) (N0(T )) the set of (interior) nodes or vertices of a triangulation
T ∈ T.

Finally, we note that if, for T ∈ T, we replace each T ∈ T by
its grandchildren, i.e., the children of its children, then we obtain a
conforming triangulation, that will be denoted as T ++; compare with
Figure 1.

2.2. Populations. A triangulation T ∈ T can alternatively be de-
scribed in terms of populations, which we shall introduce now. To this
end, we denote the elements of

P> :=
⋃
T∈T

N (T ),

i.e., the union of the vertices of all T ∈ T, as persons.
We call a collection of persons a population when it is equal to N (T )

for some T ∈ T, and denote with P the collection of all populations.
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Figure 1. T with dashed refinement edges and the re-
sulting T ++.

Since a triangulation T ∈ T is uniquely defined by its nodes N (T ), we
have a one-to-one correspondence between populations P ∈ P and tri-
angulations T ∈ T. When P = N (T ), we write P = P(T ) respectively
T = T (P) and set

P⊥ := P(T⊥)

for the initial or bottom population.
The set P> can be equipped with a family tree structure. Let P ∈
P> \ P⊥, then there exists a T ∈ T such that P is the midpoint of
the refinement edge of T . We call the newest vertex of T a parent
of P , respectively P its child. If P ∈ ∂Ω then P has one parent.
Otherwise, when P ∈ Ω, it has two parents. The generation of P is
defined by gen(P ) = gen(T ) + 1. Since any uniform refinement of
the initial partition is conforming and satisfies the matching condition,
this definition is unique. Indeed, if P is the midpoint of a refinement
edge of another element in T̃ ∈ T, then gen(T ) = gen(T̃ ). Defining
gen(P ) = 0 when P ∈ P⊥, we infer that the generation of a child is
one plus the generation of its parent(s), which in particular are of equal
generation.

Since an equivalent definition of gen(P ) is given by min{gen(T ) :
T ∈ T, P ∈ N (T )}, no two vertices of a T ∈ T can have the same
generation, unless they have generation zero.

Thanks to the uniform shape regularity of T, the number of children
a single person can have is uniformly bounded. It is easy to see, that
a person P ∈ P> \ P⊥ has either two (when it is on the boundary) or
four children in P>; cf. Figure 2. For P ∈ P>, we denote by child(P )
the set of the children of P , and by parent(P ) the set of its parents.

Any T ∈ T is obtained from T⊥ by a sequence of simultaneous bi-
sections of pairs of triangles that share their refinement edge (or by
individual bisections of triangles that have their refinement edge on
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Figure 2. Parents–children relations, and Ω(P6) and Ω(P7).

the boundary). Each of such (simultaneous) bisections corresponds to
the addition of a person to the population whose both its parents (or
its single parent when the person is on the boundary) are already in
the population. We conclude the following result.

Proposition 2.2. A collection U ⊂ P> is a population if and only
if P⊥ ⊂ U and, for each P ∈ U , we have that all parents of P are
contained in U .

This intrinsic characterization of a population as a family tree will
be the key to derive many interesting properties of populations, and so
of triangulations in T.

As we have seen above, a person P ∈ P> \P⊥ is the (newest) vertex
of four, or, when P ∈ ∂Ω, two triangles from T, each of them having
the same generation as P . For P ∈ P>, we set

Ω(P ) := interior
⋃{

T ∈ T : P ∈ T and gen(T ) = gen(P )
}
,

cf. Figure 2. This definition extends to subsets U ⊂ P> setting

Ω(U) := interior
⋃
P∈U

Ω(P ).(2.2)

One easily verifies the following result:
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Proposition 2.3.

(a) Let P1, P2 ∈ P> \ P⊥ with P1 6= P2 and gen(P1) = gen(P2).
Then Ω(P1) ∩ Ω(P2) = ∅.

(b) Let P ∈ P> \ P⊥. Then Ω(P ) ⊂ Ω(parent(P )).

2.3. Refinements and coarsenings. For T , T∗ ∈ T we write T ≤ T∗
or T∗ ≥ T , when T∗ is a refinement of T or, equivalently, T is a
coarsening of T∗, i.e., when the tree of T is a subtree of that of T∗.
This defines a partial ordering on T. On P, we define a partial ordering
by P ≤ P∗ when P ⊂ P∗. We call P∗ a refinement of P or, equivalently,
P a coarsening of P∗. These orderings are equivalent:

Proposition 2.4. For P ,P∗ ∈ P, we have

P ≤ P∗ ⇐⇒ T (P) ≤ T (P∗).

The partially ordered set (P,≤) is a lattice, since for any P1,P2 ∈ P,
the lowest upper bound P1 ∨ P2 and the greatest lower bound P1 ∧ P2

exist in P, and are given by

(2.3) P1 ∨ P2 = P1 ∪ P2 and P1 ∧ P2 = P1 ∩ P2,

respectively. We call P1∧P2 the largest common coarsening, and P1∨P2

the smallest common refinement of P1 and P2.
Since P⊥ ≤ P for all P ∈ P, we have that P⊥ is the bottom of (P,≤).

Moreover, if we define P̂ := P ∪ {P>} and set P> ≥ P for all P ∈ P̂,

then P> is the top of P̂ and whence P̂ is a bounded lattice.
These notions can be transferred to triangulations T1, T2 ∈ T via

T1 ∨ T2 := T
(
P(T1) ∨ P(T2)

)
,

T1 ∧ T2 := T
(
P(T1) ∧ P(T2)

)
.

Consequently, (T,≤) is a lattice with bottom T⊥. Moreover, we can

add a largest element T > = T (P>) to T and define T̂ := T∪{T >} and

T > ≥ T for all T ∈ T. Then T > is the top of the bounded lattice T̂.

Remark 2.5. An interpretation of T1 ∨ T2 and T1 ∧ T2 is given in the
following (cf. [NSV09, Lemma 4.3]). For T1, T2 ∈ T, let T1 ∈ T1,
T2 ∈ T2 with |T1 ∩ T2| > 0, so that either T1 ⊂ T2 or T2 ⊂ T1. W.l.o.g.,
we assume T1 ⊂ T2. Then T1 ∈ T1 ∨ T2 and T2 ∈ T1 ∧ T2.

For T ∈ T and U ⊂ T , we define

Ω(U) := interior
⋃
{T : T ∈ U}.

For T , T∗ ∈ T with T ≤ T∗, we call Ω(T \ T∗) = Ω(T∗ \ T ) the area
of coarsening. It is the union of all triangles that are coarsened when
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P++

P

P

Figure 3. P , P++, and grandchildren (�) of P ∈ P
that are not in P++

passing from T∗ to T , or, equivalently, the union all triangles that
are refined when passing from T to T∗. The coarsening point of view,
however, will often turn out to be more relevant, in particular in Sect. 3.

Recalling the definition T ++ for T ∈ T, we set P++ := P((T (P)++).
Then P++\P ⊂

(
∪P∈Pchild(P )∪child(child(P ))

)
\P , with equality

only when all T ∈ T (P) have the same generation, cf. Figure 3. There
is a one-to-one correspondence of S(T (P)) and P++\P . Indeed, denote
the midpoint of a side S ∈ S(T ) by midpt(S) and set midpt(S) :=
{midpt(S) : S ∈ S} for a collection S of sides, then

P++ \ P = midpt(S(T (P))).(2.4)

More general, if P ,P∗ ∈ P with P ≤ P∗, then

(2.5) P∗ ∩ (P++ \ P) = midpt(S(T (P)) \ S(T (P∗))).

For T ∈ T, we define

V0(T ) := {v ∈ H1
0 (Ω) : v|T ∈ P1(T ) (T ∈ T )},

V(T ) := {v ∈ H1(Ω) : v|T ∈ P1(T ) (T ∈ T )},

Thanks to the nodal Lagrange basis representation of any finite element
function, the degrees of freedom (DOFs) of V0(T ) or V(T ) can be
identified with N0(T ) or N (T ), respectively. We set V0(T >) := H1

0 (Ω)
and V(T >) := H1(Ω).

The proof of the next proposition is left to the reader.

Proposition 2.6. The mapping T 7→ V0(T ) from T̂ to the lattice of
vector spaces is compatible with the lattice structure, i.e.,

T ≤ T∗ ⇒ V0(T ) ⊂ V0(T∗),
V0(T ∧ T∗) = V0(T ) ∩ V0(T∗),
V0(T ∨ T∗) = V0(T ) + V0(T∗),

The same holds true when we replace V0(T ) by V(T ).
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2.4. The refinement routine. For P ∈ P and a finite set C ⊂ P>,
we denote by P ⊕C the smallest refinement of P in P that contains C,
i.e.,

P ⊕ C :=
∧
{P ′ ∈ P : P ′ ≥ P , C ⊂ P ′}.

This is well-defined. To see this, recall that, thanks to the matching
condition, we have that {P ∈ P> : gen(P ) ≤ k} ∈ P for all k ∈ N0,
so that the largest common coarsening can be taken over the finitely
many P ′ ∈ P with maxP∈P ′ gen(P ) ≤ maxP∈P∪C gen(P ).

For P ∈ P>, we also write P ⊕ P instead of P ⊕ {P}. Note that

P∗ ⊕ P = P∗ ⊕ (P \ P∗) = P∗ ∨ P for all P ,P∗ ∈ P.

For P ∈ P and C ⊂ P> \ P⊥ we denote by P 	 C the greatest
coarsening of P in P that does not contain C, i.e.,

P 	 C :=
∨
{P ′ ∈ P : P ′ ≤ P , C ∩ P ′ = ∅}.

For P ∈ P> \ P⊥, we also write P 	 P for P 	 {P}.
For T ∈ T and U ⊂ T , we denote by T∗ = Ref(T ;U) the smallest

refinement of T in T with U ∩ T∗ = ∅, i.e.,

Ref(T ;U) =
∧
{T ′ ∈ T : T ′ ≥ T , U ∩ T ′ = ∅}.

In this definition T ′ ∈ T can be restricted to T ′ ≤ T ++. The set
U is commonly referred to as the set of triangles that are marked for
refinement.

Although no uniform bound for #(T∗ \ T )/#U can be shown, the
following important result is valid:

Theorem 2.7 ([BDD04]). For any sequence (Tk)k ⊂ T defined by T0 =
T⊥ and Tk+1 = Ref(Tk;Uk) for some Uk ⊂ Tk, k = 0, 1, . . ., we have
that

#(Tk \ T⊥) .
k−1∑
i=0

#Ui.

Our adaptive finite element routine will be driven by the marking
of edges for refinement. Therefore, for T ∈ T and M ⊂ S(T ), let
T∗ = Refine(T ;M) denote the smallest refinement of T in T with
M∩S(T∗) = ∅, i.e.,

Refine(T ;M) =
∧
{T ′ ∈ T : T ′ ≥ T ,M∩S(T ′) = ∅}.

Note that Refine(T ;M) = T (P(T )⊕midpt(M)).
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Setting

U1 = {T ∈ T :M contains an edge of T},
U2 = {T ′ ∈ Ref(T ;U1) :M contains an edge of T ′},

we have that

Refine(T ;M) = Ref(Ref(T ;U1);U2).

Since moreover #U1 +#U2 ≤ 4 ·#M, we conclude the following result.

Corollary 2.8. For any sequence (Tk)k ⊂ T defined by T0 = T⊥ and
Tk+1 = Refine(Tk;Mk) for some Mk ⊂ S(Tk), k = 0, 1, . . ., we have
that

#(Tk \ T⊥) .
k−1∑
i=0

#Mi.

Since every simultaneous bisection of a pair of triangles that share
their refinement edge increases the population by one, and the number
of triangles by two, and every bisection of a triangle that has its re-
finement edge on the boundary increases both the population and the
number of triangles by one, we observe that for P ,P∗ ∈ P with P∗ ≥ P ,

#(P∗ \ P) ≤ #(T (P∗) \ T (P)) ≤ 2 #(P∗ \ P).(2.6)

This result will allow us to transfer Corollary 2.8 in terms of popula-
tions.

3. Continuous problem, its discretisation,
and the lower diamond estimate

In this section, we shall introduce the model problem. Moreover, we
shall investigate a splitting of the difference of energies related to nested
spaces. To the best of our knowledge, this so-called lower diamond
estimate is new, and it plays a crucial role in the proof of the instance
optimality of the AFEM in Section 7.

3.1. Continuous and discrete problem. We consider the model set-
ting of Poisson’s equation

−∆u = f on Ω,

u = 0 on ∂Ω,
(3.1)

where, in view of the application of an a posteriori error estimator, we
assume that f ∈ L2(Ω). In weak form, it reads as finding u := uT > ∈
H1

0 (Ω)= V0(T >) such that∫
Ω

∇u · ∇v dx =

∫
Ω

fv dx (v ∈ H1
0 (Ω)).
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For T ∈ T, the Galerkin approximation uT ∈ V0(T ) of u is uniquely
defined by ∫

Ω

∇uT · ∇vT dx =

∫
Ω

fvT dx (vT ∈ V0(T )).(3.2)

It is well known, that for T ∈ T̂, uT is the unique minimiser of the
(Dirichlet) energy

J (v) :=

∫
Ω

1

2
|∇v|2 − fv dx (v ∈ V0(T )).

Setting
J (T ) := J (uT ),

Proposition 2.6 shows that J is non-increasing with respect to (T̂,≤),

i.e., for T , T∗ ∈ T̂, we have

T ≤ T∗ ⇒ J (T ) ≥ J (T∗).(3.3)

Moreover, from basic calculations we observe that for T ∈ T, we have

(3.4) J (T )− J (T∗) =
1

2
|uT − uT∗|

2
H1(Ω)

for all T∗ ∈ T̂ with T ≤ T∗.

3.2. The lower diamond estimate. To formulate the main result
from this subsection, we have to start with a definition.

Definition 3.1. For {T1, . . . , Tm} ⊂ T, we call (T ∧, T∨; T1, . . . , Tm) a
lower diamond in T of size m, when T ∧ =

∧m
j=1 Tj, T∨ =

∨m
j=1 Tj, and

the areas of coarsening Ω(Tj \ T∨) are pairwise disjoint, cf. Figure 4
for an illustration.

It is called an upper diamond in T of size m, when the last condition
reads as the areas of refinement Ω(T ∧ \ Tj) being pairwise disjoint.

Obviously, for any T ∈ T, (T , T ; T ) is a lower (and upper) diamond
in T of size 1. More interesting is the following result:

Lemma 3.2. For any T1 6= T2 ∈ T, (T1 ∧ T2, T1 ∨ T2; T1, T2) is a lower
(and upper) diamond in T of size 2.

Proof. Setting T ∧ := T1∧T2, T∨ := T1∨T2, assume that Ω(T1 \T∨) and
Ω(T2 \T∨) are not disjoint. Recalling that Ω(Tj \T∨) = Ω(T∨ \Tj), then
there exists a T ∈ (T∨ \T1)∩ (T∨ \T2) = T∨ \ (T1∪T2). This contradicts
T∨ = T1 ∨ T2; compare also with Remark 2.5, and thus (T ∧, T∨; T1, T2)
is a lower diamond.
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Figure 4. Lower (or upper) diamond of size 4.

Similarly, one finds that (T1\T ∧)∩(T2\T ∧) = ∅, i.e., (T ∧, T∨; T1, T2)
is an upper diamond. �

The main goal of this subsection is to prove the following result:

Theorem 3.3. Let (T ∧, T∨; T1, . . . , Tm) be a lower diamond in T. Then

|uT∨ − uT ∧ |
2
H1(Ω) h

m∑
j=1

|uT∨ − uTj |
2

H1(Ω)
,(3.5)

only dependent on T⊥.

The first ingredient to prove this theorem is the following observa-
tion.

Lemma 3.4. Let T , T∗ ∈ T̂ with T ≤ T∗, and let Π : V0(T∗)→ V0(T∗)
be a linear projector onto V0(T ) which is H1(Ω)-bounded, uniformly in
T , T∗. Then,

|uT∗ − uT |H1(Ω) h |uT∗ − ΠuT∗|H1(Ω).

Proof. Use that uT is the best approximation from V0(T ) to uT∗ in
| · |H1(Ω), and |uT∗−ΠuT∗|H1(Ω) ≤ |uT∗− vT |H1(Ω) + |Π(vT −uT∗)|H1(Ω) .
|uT∗ − vT |H1(Ω) for all vT ∈ V0(T ). �

In order to localize the projection error to the area of coarsening, we
shall consider a particular Scott-Zhang type quasi-interpolator [SZ90].

Lemma 3.5. Let T , T∗ ∈ T with T ≤ T∗. Let Ω1 := Ω(T \ T∗) and
Ω2 := Ω \ Ω1. There exists a projector ΠT∗→T : H1(Ω) → H1(Ω) onto
V(T ) with the following properties

(Pr1) |ΠT∗→T v|H1(Ω) . |v|H1(Ω) for all v ∈ H1(Ω).
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(Pr2) There exist projectors Π̄T ,i : H1(Ωi)→ H1(Ωi) onto V(T )|Ωi
:=

{v|Ωi
: v ∈ V(T )}, with for any T ∈ T with T ⊂ Ω̄i,

|Π̄T ,ivi|2H1(T ) .
∑

{T ′∈T :T ′∩T 6=∅, T ′⊂Ω̄i}

|vi|2H1(T ′)

for all vi ∈ H1(Ωi), i = 1, 2, such that

(ΠT∗→T v)|Ωi
= Π̄T ,i(v|Ωi

), i = 1, 2.

(Pr3) v − ΠT∗→T v vanishes on Ω2 for all v ∈ V(T∗).
(Pr4) ΠT∗→T (V0(T∗)) ⊂ V0(T ).

Proof. For the construction of ΠT∗→T , we assign to each node z ∈ N (T )
some edge Sz ∈ S(T ) such that z ∈ Sz and

Sz ⊂

{
∂Ω1, if z ∈ ∂Ω1,

∂Ω2, if z ∈ ∂Ω2.
(3.6)

These restrictions are well posed, since Ω is a domain, which excludes
the case that Ω1 and Ω2 touch at some isolated point. We denote by
Π := ΠT∗→T the Scott-Zhang projector according to the above assign-
ments (3.6), i.e., for z ∈ N (T ), the nodal value (Πv)(z) is defined by
means of L2(Sz) dual functions of the local nodal basis functions on
Sz; compare with [SZ90]. Then Π: H1(Ω)→ H1(Ω) is a projector onto
V(T ), and (Pr1) follows from [SZ90].

Thanks to (3.6), we may define the Scott-Zhang projectors Π̄T ,i :
H1(Ωi) → H1(Ωi) onto V(T )|Ωi

according to Sz, z ∈ N (T ) ∩ Ωi,
i = 1, 2. With these definitions the properties listed in (Pr2) are valid.

Let v ∈ V(T∗). Then v|Ω2 ∈ V(T )|Ω2 and since Π̄T ,2 is a projector
onto V(T )|Ω2 , we have that Π̄T ,2v|Ω2 = v|Ω2 , i.e., Πv = v on Ω2. This
proves (Pr3).

In order to prove (Pr4) let v ∈ V0(T∗). Then (Pr3) implies v = 0
on ∂Ω ∩ ∂Ω2. Therefore, let z ∈ N (T ) with z ∈ ∂Ω \ ∂Ω2. Then
locally ∂Ω1 coincides with ∂Ω, and thus Sz ⊂ ∂Ω1 ∩ ∂Ω according
to (3.6). Since v = 0 on ∂Ω, it follows from properties of the Scott-
Zhang projector that (Πv)(z) = 0. Consequently, we have (Πv)(z) = 0
for all z ∈ N (T ), i.e., Πv = 0 on ∂Ω. �

Remark 3.6. Note that the projector constructed in Lemma 3.5 does
not map H1

0 (Ω) into V0(T ) when Ω1 touches the boundary. In such a
situation we might have z ∈ N (T )∩∂Ω∩∂Ω1∩∂Ω2 but ∂Ω∩∂Ω1∩∂Ω2

contains no edge. Hence, in view of (3.6) it is not possible to require
additionally that z ∈ ∂Ω implies Sz ⊂ ∂Ω.
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Theorem 3.7. Let (T ∧, T∨; T1, . . . , Tm) be a lower diamond in T. Set
Πj := ΠT∨→Tj , and Ωj := Ω(Tj \T∨), j = 1, . . . ,m. Then the projectors
Πj commute as operators from V(T∨)→ V(T∨).

Define Π := Π1 ◦ · · · ◦ Πm : V(T∨) → V(T∨). Then Π is a projector
onto V(T ∧), and Π(V0(T∨)) ⊂ V0(T ∧). Moreover, for all v∨ ∈ V(T∨)
we have

Πv∨ =

{
Πjv∨ on Ωj,

v∨ on Ω \ ∪mj=1Ωj

(3.7)

and |Πv∨|H1(Ω) . |v∨|H1(Ω), only dependent on T⊥.

Proof. Thanks to Lemma 3.5 we have that Πj is a projector onto V(Tj),
and Πj(V0(T∨)) ⊂ V0(Tj). We fix i 6= j. Since Ωi and Ωj are disjoint,

we have Ωi ⊂ Ω \ Ωj. Hence, we conclude from (Pr3) that Πjv∨ = v∨
on Ωi and Πiv∨ = ΠjΠiv∨ on Ωi. Since (Pr2) implies that (Πiw)|Ωi

only depends on w|Ωi
, we conclude that ΠiΠjv∨ = Πiv∨ on Ωi, and

thus ΠiΠjv∨ = Πiv∨ = ΠjΠiv∨ on Ωi. Analogously, we have ΠiΠjv∨ =
Πjv∨ = ΠjΠiv∨ on Ωj. Moreover, thanks to (Pr3), we have ΠiΠjv∨ =

v∨ = ΠjΠiv∨ on Ω \ (Ωi ∪ Ωj) and thus ΠiΠjv∨ = ΠjΠiv∨.
Since the Πj commute, we conclude that Π is a projector onto⋂m
j=1 V(Tj) = V(T ∧); compare also with Proposition 2.6. The claim

Π(V0(T∨)) ⊂ V0(T ∧) follows analogously using (Pr4). Again since the
Πj commute we infer (3.7) from (Pr2).

Thanks to (3.7) and (Pr2) we conclude

|Πv∨|2H1(Ω) = |v∨|2H1(Ω\
⋃m

j=1 Ωj) +
m∑
j=1

|Πjv∨|2H1(Ωj)

. |v∨|2H1(Ω\
⋃m

j=1 Ωj) +
m∑
j=1

|v∨|2H1(Ωj) = |v∨|2H1(Ω),

with constants independent of m. �

With the projectors Πj and Π at hand, we are now ready to prove
the main result of this section.

Proof of Theorem 3.3. Thanks to Lemma 3.5, Π,Πj : V0(T∨)→ V0(T∨)
are (uniformly) bounded projectors onto V0(T ∧) or V0(Tj). From this,
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together with Lemma 3.4, (3.7), and (Pr3), we infer that

|uT∨ − uT ∧|2H1(Ω) h |uT∨ − ΠuT∨|2H1(Ω) =
m∑
j=1

|uT∨ − ΠjuT∨ |2H1(Ωj)

=
m∑
j=1

|uT∨ − ΠjuT∨ |2H1(Ω) h
m∑
j=1

|uT∨ − uTj |2H1(Ω). �

Thanks to (3.4), the latter result directly transfers to energy differ-
ences. In fact, under the conditions of Theorem 3.3, we have

J (T ∧)− J (T∨) h
m∑
j=1

(
J (Tj)− J (T∨)

)
.

This estimate is fundamental for our optimality analysis in Section 7.
We make the following definition:

Definition 3.8. An energy J̃ : T → R is said to satisfy the lower
diamond estimate when for all lower diamonds (T ∧, T∨; T1, . . . , Tm) in
T, it holds that

J̃ (T ∧)− J̃ (T∨) h
m∑
j=1

(
J̃ (Tj)− J̃ (T∨)

)
,

independent of the lower diamond.

Corollary 3.9. The energy J satisfies the lower diamond estimate.

4. A posteriori error estimation

In this section we shall present an edge-based variant of the standard
residual error estimator and recall some of its properties. To this end,
we fix some triangulation T ∈ T of Ω. For S ∈ S(T ) we define ΩT (S)
as the interior of the union of the triangles with common edge S, and
we define the squared local error indicators by

E2
T (S) :=


∑

{T∈T :T⊂ΩT (S)}

h2
T‖f‖

2
L2(T ) + hS

∥∥J∇uT K
∥∥2

L2(S)
for S ⊂ Ω∑

{T∈T :T⊂ΩT (S)}

h2
T‖f‖

2
L2(T ) for S ⊂ ∂Ω.

(4.1)

Here hS := |S|, hT := |T |
1
2 , and

J∇uT K|S :=
∑

{T∈T :S⊂T}

∇uT |T · nT
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with nT being the outward pointing unit normal on ∂T . Note that,

thanks to the choice hT = |T |
1
2 , we have that the local mesh size hT

decreases strictly with the factor 2−1/2 at every bisection of T .
For S̃ ⊂ S(T ) we define the accumulated squared error indicator by

E2
T (S̃) :=

∑
S∈S̃

E2
T (S).(4.2)

For T ∈ T we define the squared oscillation osc2(U) on U ⊂ T by

osc2(U) :=
∑
T∈U

h2
T‖f − fT‖

2
L2(T ),

where fT := 1
|T |

∫
T
f dx. It is well known that the estimator, defined in

(4.1), is reliable and efficient in the following sense; compare e.g. with
[Ver96].

Proposition 4.1. For T ∈ T we have the bounds

|u− uT |2H1(Ω) . E
2
T (S(T )) . |u− uT |2H1(Ω) + osc2(T ).

This proposition shows that the error estimator mimics the error
|u− uT |H1(Ω) up to oscillation.

We define the total energy G : T→ R by

G(T ) := J (T ) +H(T ), where H(T ) :=
∑
T∈T

h2
T‖f‖

2
L2(T ).(4.3)

Note that G, H and osc2 are non-increasing with respect to T. Since
H(T ), osc2(T ) → 0 for T → T >, it is natural to set H(T >) := 0,
osc2(T >) := 0, and G(T >) := J (T >).

From Proposition 4.1 and E2
T (S(T )) ≥ H(T ) ≥ osc2(T ), we obtain

E2
T (S(T )) h |u− uT |2H1(Ω) + osc2(T ) h |u− uT |2H1(Ω) +H(T ).(4.4)

The term (|u− uT |2H1(Ω) + osc2(T ))1/2 is referred to as the total error.
Similarly, we have in terms of an energy difference, that

E2
T (S(T )) h (J + osc2)(T )− (J + osc2)(T >) h G(T )− G(T >)(4.5)

Therefore, in order to prove instance optimality for the total error, it
suffices to prove instance optimality of the energy difference of the total
energy G.

In order two compare the energies of two discrete solutions, we need
the following lemma.
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Lemma 4.2. Let T , T∗ ∈ T with T ≤ T∗, then

H(T )−H(T∗) h H(T \ T∗) :=
∑

T∈T \T∗

h2
T‖f‖

2
L2(T ).

osc2(T )− osc2(T∗) h osc2(T \ T∗) =
∑

T∈T \T∗

h2
T‖f − fT‖

2
L2(T ).

Proof. Since every bisection locally reduces the mesh size by a factor
of 2−1/2, we have H(T∗ \ T ) ≤ 1

2
H(T \ T∗). This and H(T )−H(T∗) =

H(T \T∗)−H(T∗ \T ) proves the claim for H. The proof of the second
claim is similar using also infc∈R ‖f − c‖L2(T ) = ‖f − fT‖L2(T ). �

We shall now derive a discrete analogue of Proposition 4.1. To this
end, we need the Scott-Zhang type interpolation ΠT∗→T introduced in
Section 3.

Lemma 4.3. Let T , T∗ ∈ T, with T∗ ≥ T and denote by S = S(T )
and S∗ = S(T∗) the respective sets of sides. Then we have

|uT − uT∗ |
2
H1(Ω) . E

2
T (S \ S∗) . |uT − uT∗|

2
H1(Ω) +H(T \ T∗),

where S \ S∗ is the set of sides in S that are refined in S∗.

Proof. Let e∗ := uT∗ − uT , then by Lemma 3.5(Pr4) we have that

|e∗|2H1(Ω) =

∫
Ω

∇e∗ · ∇e∗ dx =

∫
Ω

∇e∗ · (∇e∗ −∇ΠT∗→T e∗) dx

=
∑
T∈T

∫
T

f(e∗ − ΠT∗→T e∗) dx−
∑
S∈S

∫
S

J∇uT K(e∗ − ΠT∗→T e∗) ds.

It follows from Lemma 3.5(Pr3) that e∗ = ΠT∗→T e∗ on Ω \ Ω(T \ T∗).
The first inequality to be shown follows by the trace theorem for the
second sum, the Cauchy-Schwarz inequality and Lemma 3.5(Pr2).

In order to prove the second inequality, let S ∈ S \ S∗, i.e., S is
refined in S∗. In other words, we have for the midpoint z of S, that
z ∈ N (T∗). If S ⊂ ∂Ω, then trivially have

E2
T (S) . |uT − uT∗|

2
H1(ΩT (S)) +

∑
{T∈T :T⊆ΩT (S)}

h2
T‖f‖

2
L2(T ).(4.6)

For S 6⊂ ∂Ω, let T ′ := Refine(T ;S), and let ϕz ∈ V0(T ′) be defined by
ϕz(z) = 1, and ϕz(z

′) = 0 for z′ ∈ N (T ′)\{z}. Note that ϕz ∈ V0(T∗),
and suppϕz ⊆ ΩT (S). We recall that J∇uT K|S ∈ R and deduce from
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(3.2), that

1

2

∫
S

hSJ∇uT K2 ds =

∫
S

hSJ∇uT K2ϕz ds

=

∫
ΩT (S)

fhSJ∇uT Kϕz dx

−
∫

ΩT (S)

(∇uT∗ −∇uT )hSJ∇uT K∇ϕz dx

≤ hS‖f‖L2(ΩT (S))‖J∇uT Kϕz‖L2(ΩT (S))

+ ‖∇uT∗ −∇uT ‖L2(ΩT (S))‖J∇uT KhS∇ϕz‖L2(ΩT (S)).

With standard scaling arguments we obtain that∥∥J∇uT KhS∇ϕz
∥∥2

L2(ΩT (S))
.
∥∥J∇uT Kϕz

∥∥2

L2(ΩT (S))
.
∫
S

hSJ∇uT K2 ds.

Thus it follows from Young’s inequality that∫
S

hSJ∇uT K2 ds . ‖∇uT∗ −∇uT ‖
2
L2(ΩT (S)) +

∑
{T∈T :T⊆ΩT (S)}

h2
T‖f‖

2
L2(T ).

and consequently we have (4.6) for all S ∈ S \ S∗. Since we have at
most a triple overlap of the ΩT (S), S ∈ S, the assertion follows by
summing over all S ∈ S \ S∗. �

The next result is the discrete analogue of (4.5) and shows that
the total energy G matches perfectly the squared a posteriori error
estimator defined in (4.1).

Proposition 4.4. Let T , T∗ ∈ T with T ≤ T∗. Then we have

G(T )− G(T∗) h E2
T (S(T ) \ S(T∗)).

Proof. By (3.4) and Lemma 4.2, we have G(T )−G(T∗) h |uT − uT∗|
2
H1(Ω)+

H(T \ T∗). From

Ω(T \ T∗) =
⋃

T∈T \T∗

T =
⋃

S∈S(T )\S(T∗)

ΩT (S),(4.7)

with an at most triple overlap of the sets ΩT (S), it follows that H(T \
T∗) . E2

T (S(T ) \ S(T∗)). An application of Lemma 4.3 completes the
proof. �
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Let us turn to the case of coarsenings in mutual disjoint areas. As
a direct consequence of Lemma 4.2 and the fact that J satisfies the
lower diamond estimate (Corollary 3.9), we get the following result.

Corollary 4.5. The energies H, osc2 and G satisfy the lower diamond
estimate.

Remark 4.6. In this paper we resort to edge based error indicators
(4.1) for the following reason. In the situation of Proposition 4.4 con-
sider e.g. the element based squared error indicators

Ẽ2
T (T ) := h2

T‖f‖
2
L2(T ) + 1

2
hT‖J∇uT K‖2

L2(∂T )

from [Ver96]. Then we have the estimate

Ẽ2
T (T ) .

∑
S⊂T

‖∇uT −∇uT∗‖
2
L2(ΩT (S)) + h2

T‖f‖
2
L2(ΩT (S))

only if all three edges of T are bisected at least once in T∗; compare
e.g. with [Dör96, MNS00, MNS02]. Since T∗ is conforming, this can
only be true for all elements T ∈ T \ T∗ when all elements of T are at
least refined twice in T∗. Consequently, either we have estimates similar
to those in Proposition 4.4 for squared element based error indicators
running over different sets of elements for both inequalities respectively,
or we need to resort to global refinement. In the latter case we have
T \ T∗ = T .

Our optimality proof later will be based on the language of popula-

tions. Naturally, we define G(P) := G(T (P)) for P ∈ P̂. Now, let us
reformulate our error estimator estimates in terms of populations.

Due to the one-to-one correspondence of S(T (P)) and P++ \ P ,
see (2.4), we set for U ⊂ P++ \ P

E2
P(U) := E2

T (P)(midpts−1(U)).

This allows us to rewrite Proposition 4.4 as follows.

Corollary 4.7. Let P ,P∗ ∈ P with P ≤ P∗. Then we have

G(P)− G(P∗) h E2
P
(
P∗ ∩ (P++ \ P)

)
.

Remark 4.8 (Upper diamond estimate). Let (T ∧, T∨; T1, . . . , Tm) be an
upper diamond in T. Since the requirement of the areas of refinement
Ω(T ∧ \Tj) being mutually disjoint is equivalent to the requirement that
the sets T ∧ \Tj, or the sets S(T ∧)\S(Tj) being mutually disjoint, from



INSTANCE OPTIMALITY OF THE ADAPTIVE MAXIMUM STRATEGY 21

Proposition 4.4 we obtain that

G(T ∧)− G(T∨) h E2
T ∧(S(T ∧) \ S(T∨)) =

m∑
j=1

E2
T ∧(S(T ∧) \ S(Tj))

h
m∑
j=1

(
G(T ∧)− G(Tj)

)
.

5. The adaptive finite element method (AFEM)

According to [BR78], the maximum marking strategy, marks sides
for refinement that correspond to squared local error indicators that
are not less than some constant multiple µ ∈ (0, 1] of the maximum
squared local error indicator.

In view of the fact that, in order to refine a side, generally more
sides have to be bisected to retain conformity of the triangulation, we
consider the following modified maximum marking strategy: First we
determine a side S such that the sum Ē2 of all local squared error
indicators of the sides that have to be bisected in order to refine S is
maximal. Then, in some arbitrary order, running over the sides in the
triangulation, we mark those sides S̃ for refinement for which the sum
of all squared local error indicators that correspond to the sides that
have to be bisected in order to refine S̃, but that do not have to be
bisected for the refinement of sides that are marked earlier, is not less
than µĒ2.

To give a formal description, for T ∈ T and S ∈ S(T ), let

ref’d(T ;S) := S(T ) \ S(Refine(T ;S)),

being the subset of sides in S(T ) that are bisected when passing to the
smallest refinement (in T) of T in which S has been bisected. Then
the adaptive finite element method reads as follows:

Algorithm 5.1 (AFEM). Fix µ ∈ (0, 1] and set T0 := T⊥ and k = 0.
The adaptive loop is an iteration of the following steps:

(1) SOLVE: compute uTk ∈ V0(Tk);

(2) ESTIMATE: compute {E2
Tk(S) : S ∈ S(Tk)};

(3) MARK: Ē2
Tk := max {E2

Tk(ref’d(Tk;S)) : S ∈ S(Tk)};

Mk := ∅; Ck := S(Tk); M̃k := ∅;

while Ck 6= ∅ do

select S ∈ Ck;
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if E2
Tk(ref’d(Tk;S) \ M̃k) ≥ µĒ2

Tk ;

thenMk :=Mk ∪ {S};

M̃k := M̃k ∪ ref’d(Tk;S);

end if;

Ck := Ck \ ref’d(Tk;S);

end while;

(4) REFINE: compute Tk+1 = Refine(Tk;Mk) and increment k.

If we define Pk := P(Tk), then we can rewrite our algorithm also in
the language of populations:

(1) SOLVE: compute uTk ∈ V0(Tk);

(2) ESTIMATE: compute {E2
Pk

(P ) : P ∈ P++
k \ Pk};

(3) MARK: Ē2
Pk

:= max {E2
Pk

((Pk ⊕ P ) \ Pk) : P ∈ P++
k \ Pk)};

Mk := ∅; Ck := P++
k \ Pk; M̃k := ∅;

while Ck 6= ∅ do

select P ∈ Ck;

if E2
Pk

((Pk ⊕ P ) \ (Pk ∪ M̃k)) ≥ µĒ2
Pk
;

thenMk :=Mk ∪ {P};

M̃k := M̃k ∪ ((Pk ⊕ P ) \ Pk);

end if;

Ck := Ck \
(
(Pk ⊕ P ) \ Pk

)
;

end while;

(4) REFINE: Pk+1 := Pk ⊕Mk

[
= Pk ∪ M̃k

]
and increment k.

Proposition 5.1. For the sequences (Pk)k∈N0 and (Mk)k∈N0 produced
by Algorithm 5.1 (second formulation), we have Mk 6= ∅ and

E2
Pk

(
Pk+1 ∩ (P++

k \ Pk)
)

= E2
Pk

(
(Pk ⊕Mk) \ Pk

)
≥ µ#Mk Ē2

Pk
.

Proof. Consider the while-loop in MARK. As long asMk = ∅, we have

M̃k = ∅. Thus for every P ∈ P++
k \ Pk that has been considered and

all P ′ ∈ (Pk⊕P )\Pk, we conclude E2
Pk

((Pk⊕P ′)\Pk) ≤ E2
Pk

((Pk⊕P )\
Pk) < µĒ2

Pk
. Hence assuming thatMk remains empty, at some moment
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P ∈ P++
k \ Pk is encountered with E2

Pk
((Pk ⊕ P ) \ (Pk ∪ M̃k)) = Ē2

Pk
,

which yields a contradiction. Therefore, after termination of the while-
loop in MARK, we have Mk 6= ∅.

Each time a P is added to Mk, the quantity E2
Pk

((Pk ⊕ Mk) \
Pk) increased by at least µĒ2

Pk
, which shows E2

Pk

(
(Pk ⊕Mk) \ Pk

)
≥

µ#Mk Ē2
Pk
.

Since Mk ⊂ P++
k and Pk+1 = Pk ⊕Mk, we have Pk+1 ∧ P++

k =
Pk ⊕Mk. Thus

Pk+1 ∩ (P++
k \ Pk) = (Pk+1 ∧ P++

k ) \ Pk = (Pk ⊕Mk) \ Pk = M̃k,

which concludes the proof. �

Remark 5.2. Generally, the set of marked edges or persons determined
in MARK depend on the ordering in which the sets S(Tk) or P++

k \ Pk
are traversed. In particular, the marking strategy does not necessarily
mark the S ∈ S(T ) with E2

Tk(ref’d(Tk;S)) = ĒTk for refinement.

Remark 5.3. It is not difficult to see that ESTIMATE can be imple-
mented in O(#Pk) operations. Also REFINE can be implemented in
O(#Pk) operations, once Mk is determined by MARK; recall Pk+1 =

Pk ⊕Mk = Pk ∪M̃k. In Appendix A it is demonstrated that the same
holds true for a slightly modified MARK, which yields a set Mk, which
has qualitatively the same properties as given in Proposition 5.1. Con-
sequently, our instance optimality result still holds with this modified
marking.

6. Fine properties of populations

Before we get to our optimality proof, we need some fine properties
of populations.

6.1. Ancestors, descendants and free elements. For P ∈ P> we
define its set of ancestors anc(P ) as follows: If gen(P ) = 0, then
anc(P ) := ∅. For gen(P ) ≥ 1, we define inductively

anc(P ) := parent(P ) ∪
⋃

Q∈parent(P )

anc(Q).

Moreover, we denote the set of the descendants of P by

desc(P ) := {P ′ ∈ P> : P ∈ anc(P ′)}.

As a shorthand notation, we write P ′ C P or P B P ′, when P ∈
child(P ′), or equivalently, P ′ ∈ parent(P ); and P ′<CP or PB>P ′,
when P ∈ desc(P ′), or equivalently, P ′ ∈ anc(P ).
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For U ⊂ P> we define

child(U) :=
⋃
P∈U

child(P ), parent(U) :=
⋃
P∈U

parent(P ),

anc(U) :=
⋃
P∈U

anc(P ), desc(U) :=
⋃
P∈U

desc(P ).

If P, P ′ ∈ P>, with P 6= P ′, have a joint child, then we call them
partners, and write P◦◦P ′.

For k ∈ N0, we define

gen−1(k) := {P ∈ P> : gen(P ) = k}.
The following lemma summarises some apparent basic properties

without proof.

Lemma 6.1. For P ,P∗ ∈ P, we have

(a) anc(P) ⊂ P;
(b) if P ≤ P∗, then anc(P) ∩ (P∗ \ P) = ∅;
(c) if P ≤ P∗, then desc(P∗ \ P) ∩ P = ∅;
(d) if C ⊂ P>, then P ⊕ C = P ∪ anc(C) ∪ C.

So far we have stated only very general properties of populations.
However, populations correspond to conforming triangulations created
by newest vertex bisection of the initial triangulation T⊥. In the fol-
lowing we shall exploit the structures inherited by this fact in order to
prove much stronger results.

The following lemma shows that the number of ancestors of the same
generation is for every person bounded by a uniform constant. For
apparent reasons we call this property limited genetic diversity (LGD).

Proposition 6.2. We have

sup
P∈P>

sup
k∈N

#
(
anc(P ) ∩ gen−1(k)

)
=: cGD <∞.

The scalar cGD is called the genetic diversity constant.

Proof. Thanks to the refinement by bisection, for T ∈ T, we have
|T | h 2−gen(T ). Consequently, by the uniform shape regularity of T, for
P ′ ∈ P> and P ∈ child(P ′), we have that dist(P ′, P ) h 2−gen(P ′)/2.
Applying a geometrical series argument, we thus infer that for P ′ ∈
anc(P ) ∩ gen−1(k), dist(P ′, P ) h 2−k/2.

Again by the uniform shape regularity of T, any ball of radius 2−k/2

contains at most an uniformly bounded number of vertices of the uni-
form refinement of T⊥ with triangles of generation k. This completes
the proof. �



INSTANCE OPTIMALITY OF THE ADAPTIVE MAXIMUM STRATEGY 25

The following property of the newest vertex bisection is even more
peculiar:

Proposition 6.3. Let P1, P2 ∈ P> be partners with gen(P1) ≥ 2. Then
P1 and P2 have a joint parent.

Proof. Let k := gen(P1) (= gen(P2)), and let P be a child of P1 and
P2. A patch of the coarsest triangulation in T that contains P looks
as indicated in Figure 5. Here, and in the following figures, the arrows

k + 1

P1

P2

P

k + 1k + 1

k + 1

Figure 5. Coarsest triangulation that contains P

indicate the parent-child relationships, and the numbers indicate the
generations of the triangles.

The two possible patches (up to symmetries) of coarsest triangula-
tions in T that contain P1 and P2 look as indicated in Figure 6. In the

P1

k

k

k

k
P2

P4P3

P2 k

k

k

k P1

P4P3

Figure 6. Two possible coarsest triangulations that
contain P1 and P2

left picture, P1 and P2 have a joint parent P3.
In the right picture, P1 has parent P3, and P2 has parent P4. Since

P3 and P4 are vertices of a joint T ∈ T and have the same generation,
their generation must be zero, i.e., gen(P1) = 1. �

The next lemma shows that any two ancestors of some person that
have the same (non-zero) generation are linked via a sequence of part-
ners.
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Lemma 6.4. Let P ∈ P> and P̄ , P̃ ∈ anc(P ), P̃ 6= P̄ , with gen(P̃ ) =
gen(P̄ ) ≥ 1. Then, for some 1 ≤ m ≤ gen(P ) − gen(P̄ ), there exist
P0, . . . , Pm ∈ anc(P ) such that P0◦◦ · · · ◦◦Pm and P0 = P̄ and Pm = P̃ .
In particular, child(Pi−1) ∩ child(Pi) ∩ (anc(P ) ∪ {P}) 6= ∅, i =
1, . . . ,m.

Proof. Fix P ∈ P>. We prove the claim by induction over k :=
gen(P ) − gen(P̄ ). If k = 1, then P̄ 6= P̃ have the joint child P ,
and hence child(P̄ ) ∩ child(P̃ ) ∩ {P} 6= ∅.

Now let k ≥ 2, and assume that the claim is already true for k − 1.
Let P̄ ′ ∈ child(P̄ )∩ anc(P ) and P̃ ′ ∈ child(P̃ )∩ anc(P ). If P̄ ′ = P̃ ′,
then child(P̄ ′) ∩ child(P̃ ′) ∩ anc(P )) 6= ∅.

Otherwise, by induction for some 1 ≤ m − 1 ≤ k − 1, there exist
P̄0, . . . , P̄m−1 ∈ anc(P ) such that P̄0◦◦ · · · ◦◦P̄m−1 and P̄0 = P̄ ′ and
P̄m−1 = P̃ ′.

Because of gen(P̄i) = gen(P̄ ) + 1 ≥ 2, by Proposition 6.3 there exist
P1, . . . , Pm−1 such that for i = 1, . . . ,m− 1, Pi is a parent of P̄i−1 and
P̄i; in particular Pi ∈ anc(P ).

Setting, P0 := P̄ and Pm := P̃ , we have found a sequence in anc(P )
such that subsequent persons have a joint child in anc(P ). By removing
possibly subsequent equal persons, we have found a sequence with the
required properties. �

Definition 6.5. We say that a set U ⊂ P> is descendant-free when
desc(U) ∩ U = ∅.

The next proposition generalizes upon Proposition 6.2.

Proposition 6.6. Let P ∈ P> and U ⊂ anc(P ) \ P⊥. If U is
descendant-free, then #U ≤ cGD.

Proof. Since #anc(P ) <∞, there are at most finitely many descendant-
free subsets of anc(P ) \ P⊥. Among them, let U denote the one that
first maximizes #U and then

∑
Q∈U gen(Q). We shall show that this

implies that all persons in U are of the same generation. Therefore, by
Proposition 6.2, we conclude the claim #U ≤ cGD.

Let gen(P ) ≥ 2, so that U 6= ∅. Define k := min{gen(P ′) : P ′ ∈ U}.
In order to show that U ⊂ gen−1(k), we proceed by contradiction and
assume that U 6⊂ gen−1(k), i.e., there exists a Q ∈ U with gen(Q) > k,
and so gen(P ) > k + 1. Since U is descendent-free, there exists a
P̃ ∈ (anc(Q) ∩ anc(P ) ∩ gen−1(k)) \ U .

By definition of k there exists P̄ ∈ U with gen(P̄ ) = gen(P̃ ) = k.
Due to Lemma 6.4 we find a finite sequence of partners in anc(P ),
starting with P̄ and ending with P̃ , where each couple has a common
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child in anc(P ). Since P̃ 6∈ U , we can select from this sequence a couple
P̄ ′◦◦P̃ ′, with P̄ ′ ∈ U , P̃ ′ 6∈ U , gen(P̃ ′) = gen(P̄ ′) = k, and that has a

common child P̂ ′ ∈ anc(P ).

On the one hand, since U is descendant-free, P̄ ′ ∈ U and P̂ ′ B P̄ ′,
we conclude that desc(P̂ ′) ∩ U ⊂ desc(P̄ ′) ∩ U = ∅. On the other
hand, thanks to the definition of k and P̃ ′ 6∈ U , we have that P̄ ′ is
the only ancestor of P̂ ′ in U . In other words, U ′ := (U \ {P̄ ′}) ∪
{P̂ ′} is a descendent-free subset of anc(P ). Since #U ′ = #U and∑

Q∈U ′ gen(Q) = 1 +
∑

Q∈U gen(Q), this is the desired contradiction.
�

Definition 6.7. Let U ⊂ P> \ P⊥. We call the subset

free(U) := {P ∈ U : desc(P ) ∩ U = ∅}.
the set of free persons in U .

The following lemma collects some basic properties of free subsets.

Lemma 6.8. Let U ⊂ P> \ P⊥.

(a) The set free(U) is descendant-free.
(b) If U is descendant-free, then free(U) = U .
(c) If #U <∞, then U ∪ anc(U) = free(U) ∪ anc(free(U)).
(d) If #U <∞ and P ∈ P, then P ⊕ U = P ⊕ free(U).
(e) If #U <∞ and U 6= ∅, then free(U) 6= ∅.

Proof. (a): Let P ∈ free(U), then by definition we have desc(P )∩U =
∅. Since free(U) ⊂ U , we conclude that desc(P ) ∩ free(U) = ∅, i.e.,
free(U) is descendant-free.

(b): The claim follows directly from the assumption desc(U)∩U = ∅.
(c): Obviously, it is sufficient to prove U ∪ anc(U) ⊂ free(U) ∪

anc(free(U)). Let P ∈ U . If P ∈ free(U), then P ∪ anc(P ) ⊂
free(U) ∪ anc(free(U)). Otherwise, if P 6∈ free(U), then pick a
P ′ ∈ U ∩ desc(P ). If P ′ 6∈ free(U), then, because #U < ∞, by
continuing this process, after finitely many steps a descendant P ′′ of
P ′, and thus of P , is found, which is in free(U). We conclude that
P ∪ anc(P ) ⊂ anc(P ′′) ⊂ anc(free(U)), which finishes the proof.

(d): By (c) and Lemma 6.1 (d), we have P ⊕U = P ∪U ∪ anc(U) =
P ∪ free(U) ∪ anc(free(U)) =P ⊕ free(U).

(e): Let #U <∞ with U 6= ∅. Then free(U) = ∅ together with (c)
implies U = ∅, which contradicts U 6= ∅. �

The following lemma states that removing free persons from a pop-
ulation results in a (smaller) population.

Lemma 6.9. Let P∗,P ∈ P Then,
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(a) for C ⊂ free(P∗ \ P⊥), we have P∗ 	 C = P∗ \ C;
(b) free(P∗ \ P) ⊂ free(P∗ \ P⊥).

Proof. (a) By assumption, P∗ \ C ∈ P and thus P∗ 	 C = P∗ \ C.
(b) By free(P∗ \ P) ⊂ P∗ \ P , we have free(P∗ \ P) ∩ P = ∅.

Since P ∈ P, the latter shows that desc(free(P∗ \ P)) ∩ P = ∅.
Finally, from from desc(free(P∗ \P))∩(P∗ \P) = ∅, we conclude that
desc(free(P∗ \ P)) ∩ P∗ = ∅. �

For P ∈ P, the set free(P\P⊥) are the nodes of T (P) that are “free”
in the sense that they can be removed while retaining a conforming
triangulation, i.e., a triangulation in T. Remarkably, as follows from
the following proposition, the number of free nodes in any triangulation
in T cannot be reduced by more than some constant factor by whatever
further refinement in T. This proposition plays a crucial role in the
optimality proof in Section 7.

Theorem 6.10. Let U ⊂ V ⊂ P> \ P⊥ with #V <∞. Then

#free(U) ≤ cGD #free(V).

Proof. It follows from free(U) ⊂ U ⊂ V and Lemma 6.8 (c), applied
to V , that

free(U) ⊂ free(V) ∪ anc(free(V)).

Thus we can write free(U) as

free(U) =
⋃

P∈free(V)

((
{P} ∪ anc(P )

)
∩ free(U)

)
︸ ︷︷ ︸

=:VP

.

Now the claim follows, when #VP ≤ cGD for all P ∈ free(V). To this
end, let P ∈ free(V).

Assume first that P ∈ free(U). Since free(U) is descendent-free we
have anc(P ) ∩ free(U) = ∅. Thus VP = {P} and #VP = 1 ≤ cGD.

Now assume P 6∈ free(U). Then VP = anc(P ) ∩ free(U). Since
free(U) is descendant-free, the subset VP of anc(P ) is descendant-free,
and it follows by Proposition 6.6 that #VP ≤ cGD. �

6.2. Populations and the lower diamond estimate. In this sub-
section we shall translate the lower diamond estimate of Section 3 to
the setting of populations. We start with the definition of a lower
diamond.

Definition 6.11. For {P1, . . . ,Pm} ⊂ P, we call (P∧,P∨;P1, . . . ,Pm)
a lower diamond in P of size m, when P∧ =

∧m
j=1Pj, P∨ =

∨m
j=1Pj,

and the sets P∨ \ Pj are mutually disjoint.
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As we shall see in Corollary 6.14 below, Definition 6.11 in terms
of populations is consistent with Definition 3.1 in terms of triangula-
tions. In particular, all results of Section 3 dealing with lower diamonds
transfer to populations.

Recall from Subsection 2.2 the definition of Ω(P ) for P ∈ P> \ P⊥.

Lemma 6.12. Let P1, P2 ∈ P> \ P⊥ with Ω(P1) ∩ Ω(P2) 6= ∅. Then
either P1 = P2 or P1<CP2 or P2<CP1.

Proof. If gen(P1) = gen(P2), then the claim follows by Proposition 2.3 (a).
W.l.o.g. assume now that gen(P1) < gen(P2). By (a repeated) appli-
cation of Proposition 2.3 (b), we have

Ω(P2) ⊂ Ω(anc(P2) ∩ gen−1(gen(P1))).

Thus Ω(P1)∩Ω(anc(P2)∩ gen−1(gen(P1)) 6= ∅, and therefore there ex-
ists a P3<CP2 with gen(P3) = gen(P1) and Ω(P1)∩Ω(P3) 6= ∅. Finally,
Proposition 2.3 (a) implies P1 = P3, i.e., P1<CP2. �

Lemma 6.13. Let P1,P2,P∗ ∈ P with P1,P2 ≤ P∗. Define Rj :=
P∗\Pj for j = 1, 2. Then R1∩R2 = ∅ if and only if Ω(R1)∩Ω(R2) = ∅.

Proof. Assume that R1 ∩R2 6= ∅. Then for P ∈ R1 ∩R2 we obviously
have ∅ 6= Ω(P ) ⊂ Ω(R1) ∩ Ω(R2).

Assume now that Ω(R1) ∩ Ω(R2) 6= ∅. Therefore, there exists P1 ∈
R1 and P2 ∈ R2 with Ω(P1) ∩ Ω(P2) 6= ∅. It follows from Lemma 6.12
that either P1 = P2, and thus R1 ∩ R2 6= ∅, or P1<CP2 or P2<CP1.
In the case P1<CP2 we obtain from P1 ∈ R1 that P1 6∈ P1, and thus
P2 6∈ P1 since P1 ∈ P. Consequently, we have P2 ∈ R1∩R2. The same
argument shows that R1 ∩R2 6= ∅ when P2<CP1. �

For P ,P∗ ∈ P, we have Ω(P∗ \P) = Ω(T (P∗) \ T (P)). Hence, as an
immediate consequence we obtain the following result.

Corollary 6.14. (P∧,P∨;P1, . . . ,Pm) is a lower diamond in P if and
only if (T (P∧), T (P∨); T (P1), . . . , T (Pm)) is a lower diamond in T.

This allows us to reformulate the lower diamond estimate in terms
of populations. In particular, Corollary 4.5 reads as:

Corollary 6.15 (Lower diamond estimate). Let (P∧,P∨;P1, . . . ,Pm)
be a lower diamond in P, then

G(P∧)− G(P∨) h
m∑
j=1

(
G(Pj)− G(P∨)

)
.



30 L. DIENING, C. KREUZER, AND R.P. STEVENSON

7. Energy optimality and instance optimality

For each m ∈ N0, we define the minimal energy level of populations
with not more than #P⊥ +m persons by

Gopt
m = min {G(P) : P ∈ P, #(P \ P⊥) ≤ m}.

Since the set on the right-hand side is finite, the minimum is attained
and there exists a population Popt

m ∈ P such that Gopt
m = G(Popt

m ). Our
analysis does not rely on the particular choice of Popt

m and therefore we
may ignore the fact that the choice of Popt

m may not be unique.
The AFEM, algorithm 5.1, produces a monotone increasing sequence
Pk of populations with P0 = P⊥. We say that the AFEM algorithm is
energy optimal, when there exists a constant C > 0 such that G(Pk) ≤
Gopt
m , whenever #(Pk \ P⊥) ≥ C m.

Lemma 7.1. Consider the sequences (Pk)k∈N0 and (Mk)k∈N0 produced
by Algorithm 5.1 (second formulation). Then there exists a constant
γ > 0, only possibly depending on T⊥ and on µ ∈ (0, 1] when it tends to
zero (i.e., ∀ε > 0, infµ∈[ε,1] γ(µ) > 0), such that: If, for some k,m ∈ N0,

we have Gopt
m ≥ G(Pk) > Gopt

m+1, then

G(Pk)− G(Pk+1) ≥ γ#Mk

(
Gopt
m − G

opt
m+1

)
.

Proof. Let k,m ∈ N0 be such that Gopt
m ≥ G(Pk) > Gopt

m+1. From Corol-
lary 4.7 and Proposition 5.1, we obtain

(7.1) G(Pk)− G(Pk+1) & E2
Pk

(Pk+1 ∩ (P++
k \ Pk)) ≥ µ#Mk Ē2

Pk
.

Setting P∨ := Pk ∨ Popt
m+1 and P∧ := Pk ∧ Popt

m+1, we choose

U := free(P∨ ∩ (P++
k \ Pk));

see Figure 7. Since G(Popt
m+1) < G(Pk), we have U 6= ∅; compare with

Lemma 6.8(e). Thanks to the definition of Ē2
Pk

(see Algorithm 5.1) and

U ⊂ P++
k \ Pk we obtain that

Ē2
Pk
≥ 1

#U
∑
P∈U

E2
Pk

((Pk ⊕ P ) \ Pk) ≥
1

#U
E2
Pk

( ⋃
P∈U

(Pk ⊕ P ) \ Pk
)
.

By Lemma 6.8 (c) we have U ∪ anc(U) ⊃ P∨ ∩ (P++
k \ Pk), and thus⋃

P∈U

(Pk ⊕ P ) \ Pk =
⋃
P∈U

(
{P} ∪ anc(P )

)
\ Pk

=
(
U ∪ anc(U)

)
\ Pk

⊃
(
P∨ ∩ (P++

k \ Pk)) \ Pk
= P∨ ∩ (P++

k \ Pk).
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E
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y

Popt
m

Popt
m+1

P∨ Pk+1

Pk

P∧

P⊥ = P0

Figure 7. Illustration with the proof of Lemma 7.1.
The populations represented by the dots in the
left and right ellipses are {Popt

m+1 	 P : P ∈ C} and
{Pk ⊕ P : P ∈ U}, respectively.

This and the previous estimate prove

Ē2
Pk
≥ 1

#U
E2
Pk

(
P∨ ∩ (P++

k \ Pk)
)
.

An application of Corollary 4.7 then shows that

E2
Pk

(P∨ ∩ (P++
k \ Pk)) & G(Pk)− G(P∨).

Since Pk 6= Popt
m+1, by Lemma 3.2 and Corollary 6.14 we have that

(P∧,P∨;Pk,Popt
m+1) is a lower diamond in P. By the lower diamond

estimate Corollary 6.15 together with G(Pk) ≥ G(Popt
m+1) ≥ G(P∨), this

implies

G(Pk)− G(P∨) ≥
1

2

((
G(Pk)− G(P∨)

)
+
(
G(Popt

m+1)− G(P∨)
))

h G(P∧)− G(P∨) ≥ G(P∧)− G(Popt
m+1).
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Combining the above observations with (7.1), yields

G(Pk)− G(Pk+1) & µ
#Mk

#U
E2
Pk

(P∨ ∩ (P++
k \ Pk))

& µ
#Mk

#U
(
G(P∧)− G(Popt

m+1)
)
.

(7.2)

For every P ∈ C := free(Popt
m+1 \ P∧) 6= ∅, we set P ′P := Popt

m+1 	 P ;

see Figure 7. Thanks to Lemma 6.9, we know P ′P = Popt
m+1 \ {P},

and thus P∧ ≤
∧
P∈CP ′P . If #C > 1, then the sets Popt

m+1 \ P ′P for

P ∈ C are mutually disjoint, and
∨
P∈C P ′P = Popt

m+1. Applying the lower

diamond estimate to the lower diamond (
∧
P∈C P ′P ,P

opt
m+1; (P ′P )P∈C) in

P, we obtain that

G(P∧)− G(Popt
m+1) ≥ G(

∧
P ′∈C

P ′P ′)− G(Popt
m+1) h

∑
P∈C

(
G(P ′P )− G(Popt

m+1)
)
.

If #C = 1, then the last step is obvious, whence the estimate is true in
any case. Since #(P ′P \ P⊥) = #(Popt

m+1 \ P⊥)− 1 ≤ m, we have

G(P ′P ) ≥ G(Popt
m ).

Therefore, we conclude from (7.2), that

G(Pk)− G(Pk+1) & µ
#Mk#C

#U
(
G(Popt

m )− G(Popt
m+1)

)
.(7.3)

It remains to prove that #C & #U . Define V := P∨∩(P++
k \Pk), then

U = free(V) and V ⊂ P∨ \ Pk. Since P∨ \ Pk = (Pk ∪ Popt
m+1) \ Pk =

Popt
m+1 \ (Pk ∩ Popt

m+1) = Popt
m+1 \ P∧, we have V ⊂ Popt

m+1 \ P∧. Thus

Theorem 6.10 and C = free(Popt
m+1 \ P∧) yield

#U = #free(V) ≤ cGD #free(Popt
m+1 \ P∧) = cGD #C.(7.4)

Therefore, (7.3) and (7.4) imply the desired estimate

G(Pk)− G(Pk+1) & µ#Mk

(
G(Popt

m )− G(Popt
m+1)

)
. �

Instance optimality of our AFEM would follow from Lemma 7.1 when
there would be a uniform bound on the cardinalities of the setsMk of
marked edges. Such a bound, however, does not exist, and the case of
having ‘many’ marked edges will be covered by the following lemma.

Lemma 7.2. Consider the sequences (Pk)k∈N0 and (Mk)k∈N0 produced
by Algorithm 5.1 (second formulation). Then there exists a constant
K ≥ 1, only possibly depending on T⊥, and on µ ∈ (0, 1] when it tends
to zero, such that:
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If, for some k,m ∈ N0, Gopt
m ≥ G(Pk) > Gopt

m+1, then

G(Pk+1) ≤ Gopt

m+b#Mk
K
c
.

Proof. For some k,m ∈ N0, let Gopt
m ≥ G(Pk) > Gopt

m+1. For #Mk < K,

we have that b#Mk

K
c = 0, and the claim is a direct consequence of the

monotonicity of the total energy. Therefore, assume that #Mk ≥ K.
We set α := b#Mk

K
c. Setting P∨ := Pk ∨ Popt

m+α and P∧ := Pk ∧ Popt
m+α.

We repeat the steps in the proof of Lemma 7.1 up to (7.2), now using the
diamond (P∧,P∨;Pk,Popt

m+α) in P. Then, for U := free(P∨∩(P++
k \Pk))

we get

G(Pk)− G(Pk+1) &
µ#Mk

#U
(
G(P∧)− G(Popt

m+α)
)
.(7.5)

We define C := free(Popt
m+α \ P∧), and set N := b#C

α
c. Exactly as in

Theorem 6.10 equation (7.4), we have #U ≤ cGD#C.
If N = 0, then #C < #Mk

K
, and hence #Mk

#U > K
cGD

. By taking the

constant K to be sufficiently large, depending on µ when it tends to
zero, we conclude that G(Pk)−G(Pk+1) ≥ G(P∧)−G(Popt

m+α), and thus

by G(P∧) ≥ G(Pk) we arrive at G(Pk+1) ≤ G(Popt
m+α).

Else, if N ≥ 1, then N ≥ #C
2α

. For C1, . . . , CN being mutually disjoint

subsets of C, each having α elements, we set P ′j := Popt
m+α 	 Cj, j =

1, . . . , N . It follows from Lemma 6.9, that P ′j = Popt
m+α \ Cj, and hence

we have P∧ ≤
∧N
j=1P ′j and #(P ′j \ P⊥) ≤ m. The last inequality

implies that

G(P ′j) ≥ G(Popt
m ), j = 1, . . . , N.

If N > 1, then the sets Popt
m+α \ P ′j= Cj for 1 ≤ j ≤ N are mutually

disjoint, and
∨N
j=1P ′j = Popt

m+α. By applying the lower diamond esti-

mate to the lower diamond (
∧N
j=1P ′j,P

opt
m+α; (P ′j)1≤j≤N) in P, we obtain

that

G(P∧)− G(Popt
m+α) ≥ G(

N∧
j=1

P ′j)− G(Popt
m+α) h

N∑
j=1

(
G(P ′j)− G(Popt

m+α)
)
.

If N = 1, then this estimate is obvious, whence it is true for N ≥ 1.
Therefore, we can further estimate (7.5) by

G(Pk)− G(Pk+1) &
µN#Mk

#U
(
G(Popt

m )− G(Popt
m+α)

)
≥ µK

2cGD

(
G(Popt

m )− G(Popt
m+α)

)
.
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In the last estimate, we have used that N#Mk

#U ≥ K
2cGD

, since N ≥ #C
2α

,
1
α
≥ K

#Mk
, and 1

#U ≥
1

cGD#C . By taking the constant K to be sufficiently

large, depending on µ when it tends to zero, we conclude that G(Pk)−
G(Pk+1) ≥ G(Popt

m )−G(Popt
m+α). Thus from G(Popt

m ) ≥ G(Pk), we obtain

that G(Pk+1) ≤ G(Popt
m+α). This proves the claim in the case N ≥ 1. �

Theorem 7.3. Consider the sequences (Pk)k∈N0 and (Mk)k∈N0 pro-
duced by Algorithm 5.1 (second formulation). Then, there exists a con-
stant C≥ 1, only possibly depending on T⊥ and on µ ∈ (0, 1] when it
tends to zero, such that #(Pk \ P⊥) ≥ Cm implies G(Pk) ≤ Gopt

m , i.e.,
the algorithm is energy optimal with respect to the total energy G.

Proof. Let γ and K be the constants from Lemmas 7.1 and 7.2. Setting

Ck :=
k−1∑
`=0

#M`, R :=
⌈1

γ

⌉
, L := 2(R− 1)(K − 1) + 2K,

the claim follows from

(7.6) G(Pk) ≤ G(Popt
bCk/Lc).

Indeed, Corollary 2.8 and (2.6) imply that there exists some constant
D > 0, depending solely on T⊥, such that #(Pk \ P⊥) ≤ DCk. Taking
C := 2DL, we conclude that if #(Pk \ P⊥) ≥ Cm, then Ck

2L
≥ m, and

thus bCk/Lc ≥ m, which shows G(Pk) ≤ G(Popt
m ) by (7.6).

We shall prove (7.6) by induction. Obviously, (7.6) is valid for k = 0.
Fixing an arbitrary k ∈ N, assume that (7.6) is valid for N0 3 k′ < k.
Since (7.6) is obviously true when G(Pk) = G(P>), we assume that
G(Pk) > G(P>).

First, assume that the set

{
`′ ∈ {max(k −R, 0),max(k −R + 1, 0), . . . , k − 1} : #M`′ ≥ K

}(7.7)

is non-empty and set ` to be its maximal element. By the induc-
tion hypothesis, there exists an m ≥ bC`/Lc such that G(Popt

m+1) <
G(P`) ≤ G(Popt

m ). By Lemma 7.2 we obtain that G(Pk) ≤ G(P`+1) ≤
G(Popt

m+b#M`/Kc). Using that bac+bbc ≥ ba+b/2c for b ≥ 1, #M` ≥ K,

the definition of L, and #M`′ ≤ K − 1 for the at most R− 1 integers
` < `′ ≤ k − 1, we arrive at

m+ b#M`/Kc ≥ bC`/Lc+ b#M`/Kc ≥ bC`/L+ #M`/(2K)c
≥ b(C` + #M` + (R− 1)(K − 1))/Lc ≥ bCk/Lc.

This completes the proof of (7.6) in the case that the set in (7.7) is
non-empty.
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Suppose now, that the set in (7.7) is empty. If k < R, then Ck ≤
(R− 1)(K − 1) < L, and we have (7.6). Now let k ≥ R. By the induc-
tion hypothesis, there exists an m ≥ bCk−R/Lc such that G(Popt

m+1) <
G(Pk−R) ≤ G(Popt

m ). By a repeated application of Lemma 7.1 with k
reading as k−R, k−R+ 1, . . . , `, as long as G(P`) > G(Popt

m+1), we find
that

G(Pk−R)− G(P`+1) = G(Pk−R)− G(Pk−R+1) + · · ·+ G(P`)− G(P`+1)

≥ γ(`− k +R + 1)(G(Popt
m )− G(Popt

m+1))

≥ γ(`− k +R + 1)(G(Pk−R)− G(Popt
m+1).

Therefore, by definition of R, for ` = k − 1 at the latest it holds that
G(P`+1) ≤ G(Popt

m+1), and thus G(Pk) ≤ G(Popt
m+1). Since L ≥ R(K − 1)

and #M`′ ≤ K − 1 for `′ ∈ {k −R, . . . , k − 1}, we have

m+ 1 ≥ b1 + Ck−R/Lc ≥ b(R(K − 1) + Ck−R)/Lc ≥ bCk/Lc.

This proves (7.6). �

We are now ready to prove instance optimality of our AFEM as was
announced in the introduction:

Theorem 7.4. There exist constants C, C̃≥ 1 such that for (Tk)k∈N0 ⊂
T being the sequence of triangulations produced by Algorithm 5.1 (first
formulation), it holds that

|u− uTk |
2
H1(Ω) + osc2

Tk(Tk) ≤ C̃
(
|u− uT |2H1(Ω) + osc2

T (T )
)

for all T ∈ T with #(T \T⊥) ≤ #(Tk\T⊥)
C

. The constant C̃ depends only
possibly on T⊥. The constant C may additionally depend on µ ∈ (0, 1]
when it tends to zero.

Proof. We know from (4.4) that the total energy G satisfies

G(T )− G(T >) h |u− uT |2H1(Ω) + osc2
T (T )

for all T ∈ T. Hence the assertion follows from Theorem 7.3. �

Appendix A. A slightly modified marking

In this section we propose a routine MARK, resorting to slightly
modified accumulated indicators, that can be implemented in O(#Pk)
operations. The important fact is that Proposition 5.1 remains valid,
which ensures the instance optimality in Section 7 also for this modified
marking step.
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Q

P

P ′

Figure 8. T (P) (solid lines), P, P ′, Q ∈ P++ \ P =
midpt(S(T (P))) with {P, P ′} = parent(Q), and {�} =
child(Q).

To this end, we first compute a modified maximal accumulated indi-
cator Ē2

Pk
. This value can be determined with the help of the following

recursive routine.

Algorithm A.1 (Maximal Indicator). Set Ē2
Pk

:= 0 and call max-ind(P, 0)

for all P ∈ (P++
k \ Pk) with no parents in P++

k \ Pk.

procedure max-ind(P, value-parent)

Ē2
Pk

:= max{Ē2
Pk
, E2
Pk

(P ) + value-parent};

for each child C ∈ child(P ) ∩ (P++
k \ Pk) do

max-ind(C, E2
Pk

(P ) + value-parent);

end for

end procedure max-ind

In general we have Ē2
Pk
6= Ē2

Pk
, since C ∈ P++

k \ Pk may have two

parents P, P ′ ∈ P++
k \ Pk. However, such a C cannot have children in

P++ \ P as is illustrated in Figure 8, and so we conclude that

Ē2
Pk
≥ 1

2
Ē2
Pk
.

Next, the setsMk and M̃k are determined by running the following
routine.

Algorithm A.2 (Marking). SetMk := M̃k := ∅ and call accum-est(P, 0)
for all P ∈ P++

k \ Pk with no parents in P++
k \ Pk.

boolean function accum-est(P, value-parent)

E2
P := E2

Pk
(P ) + value-parent;
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is marked := false;

if E2
P ≥ µĒ2

Pk
then

Mk :=Mk ∪ {P}; M̃k := M̃k ∪ {P};

E2
P := 0;

is marked := true;

end if;

for each child C ∈ child(P ) ∩ (P++
k \ Pk) do

if accum-est(C,E2
P ) then % child is marked, so mark the parent

M̃k := M̃k ∪ {P};

E2
P := 0;

is marked := true;

end if

end for

return is marked;

end function accum-est

One verifies that Mk,M̃k ⊂ P++
k \ Pk, Pk ⊕Mk = Pk ∪ M̃k, and

E2
Pk

(
(Pk ⊕Mk) \ Pk

)
≥ µ#Mk Ē

2
Pk
≥ 1

2
µ#Mk Ē2

Pk
;

i.e., Proposition 5.1 is still valid.
Finally, the work needed for this evaluation of MARK scales linearly

with #Pk. Indeed, the number of times that a P ∈ P++
k \ Pk is ac-

cessed by the flow of computation is proportional to the number of calls
accum-est(P, ·) (being one), plus the number of its children in P++

k \Pk
(being uniformly bounded).

References
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