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Abstract. Following [Studia Math., 76(2) (1983), pp. 1–58 and 95–136] by
Z. Ciesielski and T. Figiel and [SIAM J. Math. Anal., 31 (1999), pp. 184–230]
by W. Dahmen and R. Schneider, by the application of extension operators
we construct a basis for a range of Sobolev spaces on a domain Ω from cor-
responding bases on subdomains that form a non-overlapping decomposition.
As subdomains, we take hypercubes, or smooth parametric images of those,
and equip them with tensor product wavelet bases. We prove approximation
rates from the resulting piecewise tensor product basis that are independent
of the spatial dimension of Ω. For two- and three dimensional polytopes we
show that the solution of Poisson type problems satisfies the required regular-
ity condition. The dimension independent rates will be realized numerically in
linear complexity by the application of the adaptive wavelet-Galerkin scheme.

1. Introduction

Let Ω = ∪Nk=0Ωk ⊂ Rn be a non-overlapping domain decomposition. By the use
of extension operators, we will construct isomorphisms from the Cartesian product
of Sobolev spaces on the subdomains, which incorporate suitable boundary condi-
tions, to Sobolev spaces on Ω. By applying such an isomorphism to the union of
Riesz bases for the Sobolev spaces on the subdomains, the result is a Riesz basis
for the Sobolev space on Ω.

Since the approach can be applied recursively, to understand the construction
of such an isomorphism, it is sufficient to consider the case of having two subdo-
mains. For i ∈ {1, 2}, let Ri be the restriction of functions on Ω to Ωi, let η2 be
the extension by zero of functions on Ω2 to functions on Ω, and let E1 be some
extension of functions on Ω1 to functions on Ω which, for some m ∈ N0, is bounded

from Hm(Ω1) to the target space Hm(Ω). Then
[

R1

R2(Id− E1R1)

]
: Hm(Ω) →

Hm(Ω1) ×Hm
0,∂Ω1∩∂Ω2

(Ω2) is boundedly invertible with inverse [E1 η2], see Fig-
ure 1 (Hm

0,∂Ω1∩∂Ω2
(Ω2) is the space of Hm(Ω2) functions that vanish up to order

m− 1 at ∂Ω1 ∩ ∂Ω2). Consequently, if Ψ1 is a Riesz basis for Hm(Ω1) and Ψ2 is a
Riesz basis for Hm

0,∂Ω1∩∂Ω2
(Ω2), then E1Ψ1 ∪ η2Ψ2 is a Riesz basis for Hm(Ω).
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Figure 1. Splitting of u into a sum of functions on the subdomains.

The principle to construct a basis for a function space on Ω by applying an
isomorphism from this space onto the product of corresponding function spaces on
non-overlapping subdomains was introduced in [CF83]. In [DS99] (see also [KS06]),
this idea was revisited with the aim to practically construct such a basis for doing
computations, rather than to show its existence.

In addition to the findings from [DS99], in the current work we derive precise
conditions on the ordering of the subdomains so that the corresponding “true”
extension operators (not the trivial zero extensions), being the building blocks of
the isomorphism, actually do exist as bounded mappings. To explain this, as an
example, consider the construction of a basis for H1(Ω) where Ω is an L-shaped
domain subdivided into 3 subdomains as illustrated in Figure 2. The arrows de-

Ω1

Ω3
2

Ω3
2

1 1
Ω2 Ω1 Ω2

Figure 2. A feasible and a non-feasible configuration for H1(Ω).

pict the direction and the ordering of the extensions. The construction requires
homogeneous boundary conditions on incoming interfaces and no boundary condi-
tions on outgoing interfaces. In the left case we begin by constructing a basis for
H1

0,∂Ω2∩∂Ω3
(Ω1 ∪Ω2) as the union of a basis for H1

0,∂Ω1∩∂Ω2
(Ω1) and the image of a

basis for H1
0,∂Ω2∩∂Ω3

(Ω2) under the first extension, which has to be bounded as an
operator from H1

0,∂Ω2∩∂Ω3
(Ω2) to H1

0,∂Ω2∩∂Ω3
(Ω1∪Ω2). The full basis is constructed

by adding the image of a basis for H1(Ω3) under the second extension, which needs
to be a bounded operator from H1(Ω3) to H1(Ω).

Choosing the action of the extension operators as illustrated in the right case
yields an invalid configuration. This is due to the fact that in the first step we
would need a bounded extension operator from H1(Ω1) to H1

0,∂Ω2∩∂Ω3
(Ω1∪Ω2). In

view of the boundary condition incorporated in the latter space, this is, however,
impossible.

The conditions on the directions of the arrows depend on the boundary conditions
imposed on ∂Ω, e.g., they will be different when a basis for H1

0 (Ω) is sought.
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Our main interest in the construction of a basis from bases from subdomains lies
in the use of piecewise tensor product approximation. On the hypercube

� := (0, 1)n,

one can construct a basis for the Sobolev space Hm(�) (or for a subspace incor-
porating Dirichlet boundary conditions) by taking an n-fold tensor product of a
collection of univariate functions that forms a Riesz basis for L2(0, 1) as well as,
properly scaled, forHm(0, 1). Thinking of a univariate wavelet basis of order d > m,
the advantage of this approach is that the rate of nonlinear best M -term approxi-
mation of a sufficiently smooth function u is d−m, compared to d−m

n for standard
best M -term isotropic (wavelet) approximation of order d on �. The multiplication
of the one-dimensional rate d −m by the factor 1

n is commonly referred to as the
curse of dimensionality.

One may argue that for any fixed n, a rate d−m can also be obtained by isotropic
approximation by increasing the order from d to nd − (n − 1)m. Concerning the
required smoothness of u, however, in the latter case it is (essentially) necessary
and sufficient that for 1 ≤ i ≤ n, 0 ≤ k ≤ m, it holds that ∂α∂ki u ∈ Lp(�) for
p = (d − m + 1

2 )−1 and ‖α‖1 ≤ n(d − m), where α denotes a multiindex, i.e.,
α ∈ Nn0 . With tensor product approximation the last condition reads as the much
milder one ‖α‖∞ ≤ d −m (a precise formulation of the smoothness conditions in
terms of (tensor products of) Besov spaces can be found in [Nit06, SU09]).

Actually, the above conditions guarantee only any rate s < d −m. Arguments
from interpolation space theory that are used do not give a result for the “endpoint”
s = d−m.

In any case, for dimensions n ≥ 3, the solution of an elliptic boundary value
problem of order 2m = 2 generally does not satisfy the conditions such that isotropic
approximation converges with the best, or any near best possible rate allowed by
the polynomial order, i.e., d−mn for order d. In order to achieve this rate, generally
anisotropic approximation is mandatory (cf. [Ape99]).

In addition to avoiding the curse of dimensionality, the possibility of anisotropic
approximation is automatically included in (adaptive) tensor product approxima-
tion. In [DS10], see also [Nit05], it was shown that best approximations of u from
a suitably chosen nested sequence of spaces spanned by tensor product wavelets
realizes the best possible rate d−m, so not only any near best possible rate, when
for 1 ≤ i ≤ n, 0 ≤ k ≤ m and ‖α‖∞ ≤ d−m, ∂α∂ki u is in a weighted L2(�) space,
with a weight being an n-fold product of univariate weights on (0, 1) that vanish
at the endpoints. Clearly, the optimal rate d − m for this linear approximation
scheme implies this rate for the nonlinear best M -term approximation from the
tensor product basis. What is more, in [DS10] it was shown that for a sufficiently
smooth right-hand side, the solution of Poisson’s problem on the n-dimensional
unit cube � satisfies this regularity condition.

In view of these results on �, we consider a domain Ω whose closure is the union
of subdomains τ +� for some τ ∈ Zn, or a domain Ω that is a parametric image of
such a domain under a piecewise sufficiently smooth, globally Cm−1 diffeomorphism
κ, being a homeomorphism when m = 1. We equip Hm(Ω) (or a subspace incorpo-
rating Dirichlet boundary conditions) with a Riesz basis that is constructed using
extension operators as discussed before from tensor product wavelet bases of order d
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on the subdomains, or from push-forwards of such bases. Our restriction to decom-
positions of Ω into subdomains from a topological Cartesian partition will allow us
to rely on univariate extensions. We will show the best possible approximation rate
d−m for any u that restricted to any of these subdomains has a pull-back whose
derivatives of sufficiently high order are in the aforementioned weighted L2(�)-
spaces. The latter proof turns out to be technically hard. Indeed, in order to end
up with locally supported wavelets, we will apply local, scale-dependent extension
operators – i.e., only wavelets that are non-zero near an interface will be extended,
– which do not preserve more smoothness than essentially membership of Hm.

Furthermore, using anisotropic regularity results recently shown in [CDN10], we
show that if, additionally, Ω is a two- or, more interesting, a three-dimensional
polytope, then for a sufficiently smooth right-hand side, the solution of Poisson’s
problem satisfies this piecewise regularity condition. For that to hold in three
dimensions, it will be needed that the parametrization map κ is piecewise trilinear,
and it may require a refinement of the initial decomposition of Ω.

Since it defines a boundedly invertible mapping from a Hilbert space, being
H1

0 (Ω), to its dual, the Poisson problem is an example of a well-posed operator
equation. Equipping H1

0 (Ω) with a Riesz basis constructed using extension opera-
tors from tensor product wavelet bases of order d on the subdomains, the operator
equation is equivalently formulated as a boundedly invertible bi-infinite matrix vec-
tor equation. Approximate solutions produced by the adaptive wavelet-Galerkin
method ([CDD01, Ste09]) were proven to converge with the best possible rate in
linear complexity. We perform numerical tests in two and three dimensions with
wavelets of order d = 5 that confirm that this rate is d−m.

This paper is organized as follows: In Sect. 2, we present the abstract idea behind
the construction of isomorphisms from a Sobolev space on a domain onto the prod-
uct of corresponding Sobolev spaces on subdomains that form a non-overlapping
decomposition.

In Sect. 3, we recall results on tensor product approximation on a hypercube,
and collect assumptions on the univariate wavelets, being the building blocks of the
tensor product wavelets.

In Sect. 4, we consider a domain Ω that is the union of hypercubes from a
Cartesian partition of Rn into hypercubes. We formulate precise conditions on the
order in which univariate extensions over interfaces have to applied, and which
boundary conditions have to be imposed, such that for a range of smoothness
indices the composition of these extensions is an isomorphism from a Sobolev spaces
on Ω onto the product of the corresponding Sobolev spaces on the collection of
hypercubes. Equipping these hypercubes with tensor product wavelet bases, we
end up with a piecewise tensor product wavelet basis on Ω.

In order to obtain locally supported primal and dual wavelets, in Sect. 5 the ex-
tension operators are replaced by scale-dependent modifications, in the sense that
only wavelets with supports “near” the interfaces are extended. It is shown that
approximation from the resulting piecewise tensor product basis gives rise to rates
that are independent of the spatial dimension, assuming the function that is ap-
proximated satisfies some mild, piecewise weighted Sobolev smoothness conditions.

In Sect. 6, these regularity conditions are verified for the solution of Poisson’s
problem with sufficiently smooth right-hand side in two and three-dimensional poly-
topes.
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The best possible rates from the piecewise tensor product basis can be realized
in linear complexity by the application of the adaptive wavelet-Galerkin scheme.
In Sect. 7, we present numerical results obtained with this scheme for the two-
dimensional slit domain, and the three-dimensional thick L-shaped domain and the
Fichera corner domain.

2. Construction of the isomorphisms

In an abstract setting, for a class of mappings from a Banach space to the
Cartesian product of two other Banach spaces, we give conditions on such mappings
to be isomorphisms. The results will be applied to construct isomorphisms from a
Sobolev space on a domain onto the product of Sobolev spaces on subdomains.

Proposition 2.1. For normed linear spaces V and Vi (i = 1, 2), let E1 ∈ B(V1, V ),
η2 ∈ B(V2, V ), R1 ∈ B(V, V1), and R2 ∈ B(=η2, V2) be such that

R1E1 = Id, R2η2 = Id, R1η2 = 0, =(Id− E1R1) ⊂ =η2.
Then

E = [E1 η2] ∈ B(V1 × V2, V ) is boundedly invertible,
with inverse

E−1 =
[

R1

R2(Id− E1R1)

]
.

Proof. Using that R1E1 = Id, R1η2 = 0, R2η2 = Id, we have[
R1

R2(Id− E1R1)

]
[E1 η2] =

[
Id 0
0 Id

]
,

and using that =(Id− E1R1) ⊂ =η2 and R2η2 = Id, we have

[E1 η2]
[

R1

R2(Id− E1R1)

]
= E1R1 + η2R2(Id− E1R1) = Id. �

In applications V (Vi) will be densely embedded in a Hilbert space H (Hi).
Questions about boundedness of E or E−1 in dual spaces then reduce to properties
of the Hilbert adjoint of E. Study of the Hilbert adjoint will also be relevant for
the investigation of dual bases.

Proposition 2.2. For Hilbert spaces H and Hi (i = 1, 2), let Ri ∈ B(H,Hi), and
isometries ηi ∈ B(Hi,H) be such that

Riηj = δij (i, j ∈ {1, 2}), H = =η1 ⊕⊥ =η2,
and let E1 ∈ B(H1,H) be such that R1E1 = Id.

Then η1R1 + η2R2 = Id, E ∈ B(H1 ×H2,H) is boundedly invertible, η∗i = Ri,
and

E∗ =
[
E∗

1

R2

]
, E−∗ = [η1 (Id− η1E

∗
1 )η2].

Proof. The first statement statement follows from η1R1 + η2R2 = Id on =ηi. The
second statement follows from Proposition 2.1 once we have verified that =(Id −
E1R1) ⊂ =η2. Writing (Id−E1R1)x = η1x1 +η2x2, and applying R1 to both sides,
we find x1 = 0 as required. For any u ∈ Hi, v ∈ H,

〈ηiu, v〉H = 〈ηiu,
∑
j

ηjRjv〉H = 〈ηiu, ηiRiv〉H = 〈u,Riv〉Hi ,
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or η∗i = Ri. Now the last statement follows from the formulas for E and E−1 given
in Proposition 2.1. �

Remark 2.3. The formulas for E and E−∗, and so those for E−1 and E∗ are sym-
metric, with reversed roles ofH1 andH2, in the sense that with E2 := (Id−η1E∗

1 )η2,
it holds that (Id− η2E

∗
2 )η1 = E1.

Let Ṽ and Ṽi (i = 1, 2) be reflexive Banach spaces with

Ṽ ↪→ H, Ṽi ↪→ Hi with dense embeddings.

In this setting, we have that boundedness, or bounded invertibility of

E : Ṽ ′
1 × Ṽ ′

2 → Ṽ ′

is equivalent to boundedness, or to bounded invertibility of

E∗ : Ṽ → Ṽ1 × Ṽ2.

Proposition 2.4. Let the assumptions of Proposition 2.2 be valid. Let

R2 ∈ B(Ṽ , Ṽ2), η1 ∈ B(Ṽ1, Ṽ ), E∗
1 ∈ B(Ṽ , Ṽ1).

Then E∗ ∈ B(Ṽ , Ṽ1 × Ṽ2), and so E ∈ B(Ṽ ′
1 × Ṽ ′

2 , Ṽ
′), is boundedly invertible if

and only if R2 has a right-inverse Ê2 ∈ B(Ṽ2, Ṽ ).

Proof. The assumptions imply that E∗ ∈ B(Ṽ , Ṽ1×Ṽ2), and that for E−∗ ∈ B(Ṽ1×
Ṽ2, Ṽ ) it suffices to show that E2 := (Id− η1E∗

1 )η2 ∈ B(Ṽ2, Ṽ ). If the latter is true,
then, since R2E2 = Id, we can take Ê2 = E2.

Conversely, let Ê2 ∈ B(Ṽ2, Ṽ ) be a right-inverse of R2. We have that

R1(Id− E2R2) = R1 −R1η2R2 +R1η1E
∗
1η2R2 = R1 + E∗

1η2R2

= E∗
1 (η1R1 + η2R2) = E∗

1 ∈ B(Ṽ , Ṽ1).

So

Id− E2R2 = (η1R1 + η2R2)(Id− E2R2) = η1R1(Id− E2R2) ∈ B(Ṽ , Ṽ ),

or E2R2 ∈ B(Ṽ , Ṽ ). But then E2 = E2R2Ê2 ∈ B(Ṽ2, Ṽ ). �

Finally in this section, we apply arguments from interpolation space theory to
conclude boundedness of E in scales of Banach spaces.

Proposition 2.5. (a). Let V , V , and Vi, V i (i = 1, 2) be Banach spaces with

V ↪→ V, V i ↪→ Vi with dense embeddings.

Let the mappings (R1, R2, E1, η2) satisfy the conditions from Proposition 2.1 for
both triples (V, V1, V2) and (V , V 1, V 2). Then for s ∈ [0, 1], q ∈ [1,∞],

E ∈ B([V1, V 1]s,q × [V2, V 2]s,q, [V, V ]s,q) is boundedly invertible.

(b). Let Ṽ , Ṽ , and Ṽi, Ṽ i be reflexive Banach spaces, and H and Hi be Hilbert
spaces (i = 1, 2) with

Ṽ ↪→ Ṽ ↪→ H, Ṽ i ↪→ Ṽi ↪→ Hi with dense embeddings.

Let the conditions of Proposition 2.2 be satisfied, as well as the conditions of
Proposition 2.4 for both triples (Ṽ , Ṽ1, Ṽ2) and (Ṽ , Ṽ 1, Ṽ 2). Then for s ∈ [0, 1],
q ∈ [1,∞],

E ∈ B([Ṽ1, Ṽ 1]
′
s,q × [Ṽ2, Ṽ 2]

′
s,q, [Ṽ , Ṽ ]′s,q) is boundedly invertible.
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3. Approximation by tensor product wavelets on the hypercube

We will study non-overlapping domain decompositions, where the subdomains
are either unit n-cubes or smooth images of those. Sobolev spaces on these cubes,
that appear with the construction of a Riesz basis for a Sobolev space on the domain
as a whole, will be equipped with tensor product wavelet bases. From [DS10], we
recall the construction of those bases, as well as results on the rate of approximation
from spans of suitably chosen subsets of these bases.

For t ∈ [0,∞) \ (N0 + { 1
2}) and ~σ = (σ`, σr) ∈ {0, . . . , bt+ 1

2c}
2, with I := (0, 1),

let

Ht
~σ(I) := {v ∈ Ht(I) : v(0) = · · · = v(σ`−1)(0) = 0 = v(1) = · · · = v(σr−1)(1)}.

Remark 3.1. Later, we will use this definition also with I reading as a general
non-empty interval, with 0 and 1 reading as its left and right boundary.

For t and ~σ as above, and for t̃ ∈ [0,∞) \ (N0 + { 1
2}) and ~̃σ = (σ̃`, σ̃r) ∈

{0, . . . , bt̃+ 1
2c}

2, we assume univariate wavelet collections

Ψ~σ,~̃σ :=
{
ψ

(~σ,~̃σ)
λ : λ ∈ ∇~σ,~̃σ

}
⊂ Ht

~σ(I)

such that
(W1) Ψ~σ,~̃σ is a Riesz basis for L2(I),

(W2) {2−|λ|tψ(~σ,~̃σ)
λ : λ ∈ ∇~σ,~̃σ} is a Riesz basis for Ht

~σ(I),

where |λ| ∈ N0 denotes the level of λ. Denoting the dual basis of Ψ~σ,~̃σ for L2(I) as

Ψ̃~σ,~̃σ := {ψ̃(~σ,~̃σ)
λ : λ ∈ ∇~σ,~̃σ}, furthermore we assume that

(W3) {2−|λ|t̃ψ̃(~σ,~̃σ)
λ : λ ∈ ∇~σ,~̃σ} is a Riesz basis for H t̃

~̃σ
(I),

and that for some
N 3 d > t,

(W4) |〈ψ̃(~σ,~̃σ)
λ , u〉L2(I)| . 2−|λ|d‖u‖Hd(supp ψ̃(~σ,~̃σ)) (u ∈ Hd(I) ∩Ht

~σ(I)),

(W5) ρ := supλ∈∇~σ,~̃σ
2|λ| max(diam supp ψ̃(~σ,~̃σ)

λ ,diam suppψ(~σ,~̃σ)
λ )

h infλ∈∇~σ,~̃σ
2|λ| max(diam supp ψ̃(~σ,~̃σ)

λ ,diam suppψ(~σ,~̃σ)
λ ),

(W6) sup
j,k∈N0

#{|λ| = j : [k2−j , (k+ 1)2−j ]∩ (supp ψ̃(~σ,~̃σ)
λ ∪ suppψ(~σ,~̃σ)

λ ) 6= ∅} <∞.

The conditions (W5) and (W6) will be referred to by saying that both primal and
dual wavelets are local or locally finite, respectively. For some arguments, it will be
used that by increasing the coarsest scale, the constant ρ can always be assumed
to be sufficiently small.

With, for n ∈ N,
� := In,

one has L2(�) = ⊗ni=1L2(I). For

σ = (~σi = ((σi)`, (σi)r))1≤i≤n ∈ ({0, . . . , bt+ 1
2c}

2)n,

we define

Ht
σ(�) := Ht

~σ1
(I)⊗ L2(I)⊗ · · · ⊗ L2(I) ∩ · · · ∩ L2(I)⊗ · · · ⊗ L2(I)⊗Ht

~σn
(I),

which is the space of Ht(�)-functions whose normal derivatives of up to orders (σi)`
and (σi)r vanish at the facets Ii−1×{0}×In−i and Ii−1×{1}×In−i, respectively
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(1 ≤ i ≤ n) (the proof of this fact given in [DS10] for t ∈ N0 can be generalized to
t ∈ [0,∞) \ (N0 + 1

2 )).
The tensor product wavelet collection

Ψσ,σ̃ := ⊗ni=1Ψ~σi,~̃σi
=
{
ψ

(σ,σ̃)
λ := ⊗ni=1ψ

(~σi,~̃σi)
λi

: λ ∈ ∇σ,σ̃ :=
n∏
i=1

∇~σi,~̃σi

}
,

and its renormalized version
{(∑n

i=1 4t|λi|
)−1/2

ψ
(σ,σ̃)
λ : λ ∈ ∇σ,σ̃

}
are Riesz bases

for L2(�) and Ht
σ(�), respectively. The collection that is dual to Ψσ,σ̃ reads as

Ψ̃σ,σ̃ := ⊗ni=1Ψ̃~σi,~̃σi
=
{
ψ̃

(σ,σ̃)
λ := ⊗ni=1ψ̃

(~σi,~̃σi)
λi

: λ ∈ ∇σ,σ̃

}
,

and its renormalized version
{(∑n

i=1 4|λi|
)−t̃/2

ψ̃
(σ,σ̃)
λ : λ ∈ ∇σ,σ̃

}
is a Riesz basis

for H t̃
σ̃(�).

For λ ∈ ∇σ,σ̃, we set |λ| := (|λ1|, . . . , |λn|). As usual, for j,  ∈ Nn0 , |j| ≤ ||
will mean that |j|i ≤ ||i (1 ≤ i ≤ n), whereas |j| ≥ || or |j| = || will mean that
|| ≤ |j| or |j| ≤ || and |j| ≥ ||, respectively.

For θ ≥ 0, the weighted Sobolev space Hd
θ(I) is defined as the space of all mea-

surable functions u on I for which the norm

‖u‖Hd
θ(I) :=

 d∑
j=0

∫
I
|xθ(1− x)θu(j)(x)|2dx

 1
2

is finite. For

m ∈ {0, . . . , btc},

we will consider the weighted Sobolev space

Hd
m,θ(�) := ∩np=1 ⊗ni=1 Hd

θ−δip min(m,θ)(I),

equipped with a squared norm that is the sum over p = 1, . . . , n of the squared
norms on ⊗ni=1Hd

θ−δip min(m,θ)(I).

Theorem 3.2 ([DS10, Thm. 4.3]). For any θ ∈ [0, d), there exist a (nested)
sequence (∇(σ,σ̃)

M )M∈N ⊂ ∇σ,σ̃ with #∇(σ,σ̃)
M h M , such that

inf
v∈span{ψ(σ,σ̃)

λ :λ∈∇(σ,σ̃)
M }

‖u−v‖Hm(�) . M−(d−m)‖u‖Hd
m,θ(�), (u ∈ Hd

m,θ(�)∩Hm
σ (�)),

where for m = 0, M−(d−m) should be read as (log #M)(n−1)( 1
2+d)M−d.

The index sets ∇(σ,σ̃)
M can be chosen to have the following multiple tree property:

For any λ ∈ ∇(σ,σ̃)
M and any j ∈ Nn0 with j ≤ |λ| , there exists a µ ∈ ∇(σ,σ̃)

M with
|µ| = j, and suppψ(σ,σ̃)

λ ∩ suppψ(σ,σ̃)
µ 6= ∅.

With the notations u ∈ Ht
σ(α + �) and u ∈ Hd

m,θ(α + �), we will mean that
u(·+ α) ∈ Ht

σ(�) or u(·+ α) ∈ Hd
m,θ(�), respectively.
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4. Construction of Riesz bases by extension

Let {�0, . . . ,�N} be a set of hypercubes from {τ + � : τ ∈ Zn}, and let Ω̂
be a (reference) domain (i.e., open and connected) in Rn with ∪Nk=0�k ⊂ Ω̂ ⊂
(∪Nk=0�k)int, and such that ∂Ω̂ is the union of (closed) facets of the �k’s. The case
Ω̂ ( (∪Nk=0�k)int corresponds to the situation that Ω̂ has one or more cracks. We
will describe a construction of Riesz bases for Sobolev spaces on Ω̂ from Riesz bases
for corresponding Sobolev spaces on the subdomains �k using extension operators.
We start with giving sufficient conditions (D1)–(D5) such that suitable extension
operators exist. At the end of this section, we will consider domains given as the
parametric image of Ω̂.

We assume that there exists a sequence ({Ω̂(q)
k : q ≤ k ≤ N})0≤q≤N of sets of

polytopes, such that Ω̂(0)
k = �k and where each next term in the sequence is created

from its predecessor by joining two of its polytopes. More precisely, we assume that
for any 1 ≤ q ≤ N , there exists a q ≤ k̄ = k̄(q) ≤ N and q − 1 ≤ k1 = k

(q)
1 6= k2 =

k
(q)
2 ≤ N such that

(D1) Ω̂(q)

k̄
=
(
Ω̂(q−1)
k1

∪ Ω̂(q−1)
k2

\∂Ω̂
)int

is connected, and the interface J := Ω̂(q)

k̄
\

(Ω̂(q−1)
k1

∪ Ω̂(q−1)
k2

) is part of a hyperplane,

(D2) {Ω̂(q)
k : q ≤ k ≤ N, k 6= k̄} =

{
Ω̂(q−1)
k : q − 1 ≤ k ≤ N, k 6= {k1, k2}

}
,

(D3) Ω̂(N)
N = Ω̂.

For some
t ∈ [0,∞) \ (N0 + { 1

2}),
to each of the closed facets of all the hypercubes �k, we associate a number in
{0, . . . , bt + 1

2c} indicating the order of the Dirichlet boundary condition on that
facet (where a Dirichlet boundary condition of order 0 means no boundary con-
dition). On facets on the boundary of Ω̂, this number can be chosen at one’s
convenience (it is dictated by the boundary conditions of the boundary value prob-
lem that one wants to solve on Ω̂), and, as will follow from the conditions imposed
below, on the other facets it should be either 0 or bt+ 1

2c.
By construction, each facet of any Ω̂(q)

k is a union of some facets of the �k′ ’s,
that will be referred to as subfacets. Letting each of these subfacets inherit the
Dirichlet boundary conditions imposed on the �k′ ’s, we define

◦
Ht(Ω̂(q)

k ),

and so for k = q = N in particular
◦
Ht(Ω̂) =

◦
Ht(Ω̂(N)

N ), to be the closure in Ht(Ω̂(q)
k )

of the smooth functions on Ω̂(q)
k that satisfy these boundary conditions. Note that

for 0 ≤ k ≤ N , for some σ(k) ∈ ({0, . . . , bt+ 1
2c}

2)n,
◦
Ht(Ω̂(0)

k ) =
◦
Ht(�k) = Ht

σ(k)(�k).

Remark 4.1. On the intersection of facets of hypercubes �k′ , the natural inter-
pretation of the boundary conditions is the minimal one such that the boundary
conditions on each of these facets is not violated.

The boundary conditions on the hypercubes that determine the spaces
◦
Ht(Ω̂(q)

k ),
and the order in which polytopes are joined should be chosen such that
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(D4) on the Ω̂(q−1)
k1

and Ω̂(q−1)
k2

sides of J , the boundary conditions are of order
0 and bt+ 1

2c, respectively,

and, w.l.o.g. assuming that J = {0} × J̆ and (0, 1)× J̆ ⊂ Ω(q−1)
k1

,

(D5) for any function in
◦
Ht(Ω̂(q−1)

k1
) that vanishes near {0, 1} × J̆ , its reflection

in {0} × Rn−1 (extended with zero, and then restricted to Ω̂(q−1)
k2

) is in
◦
Ht(Ω̂(q−1)

k2
).

The condition (D5) can be formulated by saying that the order of the boundary
condition at any subfacet of Ω̂(q−1)

k1
adjacent to J should not be less than this order

at its reflection in J , where in case this reflection is not part of ∂Ω̂(q−1)
k2

the latter
order should be read as the highest possible one bt+ 1

2c; and furthermore, that the
order of the boundary condition at any subfacet of Ω̂(q−1)

k2
adjacent to J should not

be larger than this order at its reflection in J , where in case this reflection is not
part of ∂Ω̂(q−1)

k1
, the latter order should be read as the lowest possible one 0. See

Figure 3 for an illustration.

J

order i ≤ order j

Ω̂(q−1)
k1

order bt+ 1
2c

order 0

order i ≤ order j

Ω̂(q−1)
k2

Ω̂(q−1)
k1

order bt+ 1
2c

order 0

Ω̂(q−1)
k2

Figure 3. Two illustrations with (D1)–(D5). The fat arrow indi-
cates the action of the extension E(q)

1 .

Given 1 ≤ q ≤ N , for i ∈ {1, 2}, let R(q)
i be the restriction of functions on Ω̂(q)

k̄

to Ω̂(q−1)
ki

, let η(q)
2 be the extension of functions on Ω̂(q−1)

k2
to Ω̂(q)

k̄
by zero, and let

E
(q)
1 be some extension of functions on Ω̂(q−1)

k1
to Ω̂(q)

k̄
.

Proposition 4.2. Assume that

E
(q)
1 ∈ B(L2(Ω̂

(q−1)
k1

), L2(Ω̂
(q)

k̄
)), E

(q)
1 ∈ B(

◦
Ht(Ω̂(q−1)

k1
),

◦
Ht(Ω̂(q)

k̄
)).

Then for s ∈ [0, 1]

E(q) := [E(q)
1 η

(q)
2

] ∈ B
( 2∏
i=1

[L2(Ω̂
(q−1)
ki

),
◦
Ht(Ω̂(q−1)

ki
)]s,2, [L2(Ω̂

(q)

k̄
),

◦
Ht(Ω̂(q)

k̄
)]s,2

)
is boundedly invertible.

Proof. Taking V (q) = L2(Ω̂
(q)

k̄
), V (q)

i = L2(Ω̂
(q−1)
ki

), V (q) =
◦
Ht(Ω̂(q)

k̄
), V (q)

i =
◦
Ht(Ω̂(q−1)

ki
), and noting that =(Id−E(q)

1 R
(q)
1 ) ⊂ {u ∈

◦
Ht(Ω̂(q)

k̄
) : u = 0 on Ω̂(q−1)

k1
} =

=(η(q)
2 | ◦

H
t
(Ω̂

(q−1)
k2

)
), the result follows from an application of Proposition 2.5(a). �
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Corollary 4.3. For E being the composition for q = 1, . . . , N of the mappings
E(q) from Proposition 4.2, trivially extended with identity operators in coordinates
k ∈ {q − 1, . . . , N} \ {k(q)

1 , k
(q)
2 }, it holds that

(4.1) E ∈ B
( n∏
k=0

[L2(�k),
◦
Ht(�k)]s,2, [L2(Ω̂),

◦
Ht(Ω̂)]s,2

)
.

is boundedly invertible.

Under the conditions (D1)–(D5), the extensions E(q)
1 can be constructed (essen-

tially) as tensor products of univariate extensions with identity operators in the
other Cartesian directions.

Proposition 4.4. W.l.o.g. let J = {0} × J̆ and (0, 1)× J̆ ⊂ Ω̂(q−1)
k1

. Let G1 be an
extension operator of functions on (0, 1) to functions on (−1, 1) such that

G1 ∈ B(L2(0, 1), L2(−1, 1)), G1 ∈ B(Ht(0, 1),Ht
(bt+ 1

2 c,0)
(−1, 1)).

Then E(q)
1 defined by R(q)

2 E
(q)
1 being the composition of the restriction to (0, 1)× J̆ ,

followed by an application of

G1 ⊗ Id⊗ · · · ⊗ Id,

followed by an extension by 0 to Ω̂(q−1)
k2

\(−1, 0)× J̆ , satisfies the assumptions made
in Proposition 4.2.

Remark 4.5. The condition that an extension by G1 vanishes up to order bt+ 1
2c at

−1 is fully harmless since it can easily be enforced by multiplying an extension by
some smooth cut-off function. The scale-dependent extension that we will discuss
in Subsection 5.1 satisfies this boundary condition automatically.

Our main interest of Corollary 4.3 lies in the following:

Corollary 4.6. For 0 ≤ k ≤ N , let Ψk be a Riesz basis for L2(�k), that renor-
malized in Ht(�k), is a Riesz basis for

◦
Ht(�k) = Ht

σ(k)(�). Then for s ∈ [0, 1],

and with E from Corollary 4.3, the collection E(
∏N
k=0 Ψk), normalized in the cor-

responding norm, is a Riesz basis for [L2(Ω̂),
◦
Ht(Ω̂)]s,2.

Remark 4.7. Although we allow for t ∈ (0, 1
2 ), for these values of t our exposition is

not very relevant. Indeed, for those t, a piecewise tensor product basis can simply
be constructed as the union of the tensor product bases on the hypercubes.

To find the corresponding dual basis, we follow Section 2. Taking for q =
1, . . . , N ,

H(q) = L2(Ω̂
(q)

k̄
), H

(q)
i = L2(Ω̂

(q)
ki

),

and with η
(q)
1 being the extension of functions on Ω̂(q−1)

k1
to Ω̂(q)

k̄
by zero, Proposi-

tion 2.2 shows that

(E(q))−∗ = [η(q)
1 (Id− η

(q)
1 (E(q)

1 )∗)η(q)
2

].

Corollary 4.8. In the situation of Corollary 4.6, let Ψ̃k the Riesz basis for L2(�k)
that is dual to Ψk. Then E−∗(

∏N
k=0 Ψ̃k) is the Riesz basis for L2(Ω̂) that is dual

to E(
∏N
k=0 Ψk). The operator E−∗ is the composition for q = 1, . . . , N of the

mappings (E(q))−∗ trivially extended with identity operators in coordinates k ∈
{q − 1, . . . , N} \ {k(q)

1 , k
(q)
2 }.
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Below we give conditions such that E−∗(
∏N
k=0 Ψ̃k), properly scaled, is a Riesz

basis for a range of Sobolev spaces with positive smoothness indices, and so, equiv-
alently, E(

∏N
k=0 Ψk) to be a Riesz basis for the corresponding dual spaces.

For some t̃ ∈ [0,∞)\(N0+{ 1
2}), to each of the closed facets of all the hypercubes

�k, we associate a number in {0, . . . , bt̃ + 1
2c} indicating the order of the dual

Dirichlet boundary condition on that facet. On facets on the boundary of Ω̂, this
number can be chosen arbitrarily, where on the interior facets it is 0 or bt̃+ 1

2c.
We define

◦
H t̃(Ω̂(q)

k ), and so for k = q = N in particular
◦
H t̃(Ω̂) =

◦
H t̃(Ω̂(N)

N ), to
be the closure in H t̃(Ω̂(q)

k ) of the smooth functions on Ω̂(q)
k that on any of its facets

satisfy the boundary conditions that were imposed on each of its subfacets. Note
that with some abuse of notation, even when t̃ = t generally

◦
H t̃(Ω̂(q)

k ) 6=
◦
Ht(Ω̂(q)

k ),
and that for 0 ≤ k ≤ N ,

◦
H t̃(Ω̂(0)

k ) =
◦
H t̃(�k) = H t̃

σ̃(k)(�k),

for some σ̃(k) ∈ ({0, . . . , bt̃+ 1
2c}

2)n.
We make the following assumptions on the selection of the boundary conditions

that determine the dual spaces
◦
H t̃(Ω̂(q)

k ):

(D′
4) on the Ω̂(q−1)

k1
and Ω̂(q−1)

k2
sides of J , the boundary conditions are of order

bt̃+ 1
2c and 0, respectively,

and, w.l.o.g. assuming that J = {0} × J̆ and (0, 1)× J̆ ⊂ Ω(q−1)
k1

,

(D′
5) for any function in

◦
H t̃(Ω̂(q−1)

k2
) that vanishes near {−1, 0}× J̆ , its reflection

in {0} × Rn−1 (extended with zero, and then restricted to Ω̂(q−1)
k1

) is in
◦
H t̃(Ω̂(q−1)

k1
).

Proposition 4.9. For 1 ≤ q ≤ N , let the extension E(q)
1 be of tensor product form

as in Proposition 4.4 with G∗1 ∈ B(H t̃
(0,bt̃+ 1

2 c)
(−1, 1),H t̃

(bt̃+ 1
2 c,bt̃+

1
2 c)

(0, 1)), and let

Ψ̃k, properly scaled, be a Riesz basis for
◦
H t̃(�k). Then for s ∈ [0, 1], E−∗(

∏N
k=0 Ψ̃k)

is, properly scaled, a Riesz basis for [L2(Ω̂),
◦
H t̃(Ω̂)]s,2.

Remark 4.10. The boundary conditions imposed on G∗1u at 1 are fully harmless.
The scale-dependent extension G1 that we will discuss in Subsection 5.1 satisfies
these boundary conditions automatically. On the other hand, thinking of t ≥ t̃, the
boundary conditions at 0 are, when t̃ > 1

2 , the only properties that are not already
implied by the conditions on G1 from Proposition 4.4.

Proof. The conditions (D′
4), (D′

5) imply both that R(q)
2 has a right-inverse which is

in B(
◦
H t̃(Ω(q−1)

k2
),

◦
H t̃(Ω(q)

k̄
)) and (E(q)

1 )∗ ∈ B(
◦
H t̃(Ω(q)

k̄
),

◦
H t̃(Ω(q−1)

k1
)), by the assump-

tion on G∗1. Since R(q)
2 ∈ B(

◦
H t̃(Ω(q)

k̄
),

◦
H t̃(Ω(q−1)

k2
)), η(q)

1 ∈ B(
◦
H t̃(Ω(q−1)

k1
),

◦
H t̃(Ω(q)

k̄
))

directly follow from (D′
4), an N -fold application of Proposition 2.4 together with

the assumption on the bases Ψ̃k completes the proof. �

To end the discussion about the stability of E(ΠN
k=0Ψk) in dual norms, we note

that for t̃ < 1
2 , which suffices for our application for solving PDEs, the conditions

(D′
4), (D′

5), and those from Proposition 4.9 are void, with the exception of the very
mild condition of Ψ̃k, properly scaled, being a Riesz basis for

◦
H t̃(�k).
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The construction of Riesz bases on the reference domain Ω̂ extends to more
general domains in a standard fashion. Let Ω be the image of Ω̂ under a homeo-
morphism κ. We define the pull-back κ∗ by κ∗w = w ◦ κ, and so its inverse κ−∗,
known as the push-forward, satisfies κ−∗v = v ◦ κ−1.

Proposition 4.11. Let κ∗ be boundedly invertible as a mapping both from L2(Ω)
to L2(Ω̂) and from Ht(Ω) to Ht(Ω̂). Setting

◦
Ht(Ω) := =κ−∗| ◦Ht

(Ω̂)
, we have that

κ−∗ ∈ B([L2(Ω̂),
◦
Ht(Ω̂)]s,2, [L2(Ω),

◦
Ht(Ω)]s,2) is boundedly invertible (s ∈ [0, 1]).

So if Ψ is a Riesz basis for L2(Ω̂) and, properly scaled, for
◦
Ht(Ω̂), then for s ∈ [0, 1],

κ−∗Ψ is, properly scaled, a Riesz basis for [L2(Ω),
◦
Ht(Ω)]s,2.

If Ψ̃ is the collection dual to Ψ, then |detDκ−1(·)|κ−∗Ψ̃ is the collection dual to
κ−∗Ψ.

5. Approximation by –piecewise– tensor product wavelets

In the setting of Proposition 4.4, Corollary 4.6 and Proposition 4.9, writing
�k = � + αk, where αk ∈ Zn, we select the the primal and dual bases for L2(�k)
to be

Ψσ(k),σ̃(k)(· − αk), Ψ̃σ(k),σ̃(k)(· − αk)

as constructed in Section 3, which, properly scaled, are Riesz bases for Ht
σ(k)(�k)

and H t̃
σ̃(k)(�k), respectively.

In the setting of Proposition 4.11, for m ∈ {0, . . . , btc} and u ∈
◦
Hm(Ω) :=

[L2(Ω),
◦
Ht(Ω)]m/t,2, with additionally

(5.1) u ∈ κ−∗(
N∏
k=0

Hd
m,θ(�k)) := {v : Ω → R : v ◦ κ ∈

N∏
k=0

Hd
m,θ(�k)},

we study approximation rates from κ−∗E
(∏N

k=0 Ψσ(k),σ̃(k)(·−αk)
)

in the Hm(Ω)-
norm. Since, as is assumed in Proposition 4.11, κ∗ ∈ B(

◦
Hm(Ω),

◦
Hm(Ω̂)) is bound-

edly invertible, it is sufficient to study this issue for the case that κ = Id and so
Ω = Ω̂.

We will apply extension operators E(q)
1 that are built from univariate extension

operators. The latter will be chosen such that the resulting primal and dual wavelets
on Ω̂ are, restricted to each �k ⊂ Ω̂, tensor products of collections of univariate
functions that are local and locally finite (cf. parts (1) and (2) of the forthcoming
Proposition 5.4).

5.1. Construction of scale-dependent extension operators. We make the
following additional assumptions on the univariate wavelets. For ~σ = (σ`, σr) ∈
{0, . . . , bt+ 1

2c}
2, ~̃σ = (σ̃`, σ̃r) ∈ {0, . . . , bt̃+ 1

2c}
2, and with ~0 := (0, 0),

(W7) V
(~σ)
j := span{ψ(~σ,~̃σ)

λ : λ ∈ ∇~σ,~̃σ, |λ| ≤ j} is independent of ~̃σ, and V
(~σ)
j =

V
(~0)
j ∩Ht

~σ(I),

(W8) ∇~σ,~̃σ is the disjoint union of ∇(`)
σ`,σ̃`

, ∇(I), ∇(r)
σr,σ̃r

such that
(i) sup

λ∈∇(`)
~σ,~̃σ

, x∈suppψ
(~σ,~̃σ)
λ

2|λ||x| . ρ, sup
λ∈∇(r)

~σ,~̃σ
, x∈suppψ

(~σ,~̃σ)
λ

2|λ||1− x| . ρ,
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(ii) for λ ∈ ∇(I), ψ(~σ,~̃σ)
λ = ψ

(~0,~0)
λ , ψ̃(~σ,~̃σ)

λ = ψ̃
(~0,~0)
λ , and the extensions of

ψ
(~0,~0)
λ and ψ̃(~0,~0)

λ by zero are in Ht(R) and H t̃(R), respectively.

(W9)


span{ψ(~0,~0)

λ (1− ·) : λ ∈ ∇(I), |λ| = j} = span{ψ(~0,~0)
λ : λ ∈ ∇(I), |λ| = j},

span{ψ(σ`,σr),(σ̃`,σ̃r)
λ (1− ·) : λ ∈ ∇(`)

σ`,σ̃`
, |λ| = j} =

span{ψ(σr,σ`),(σ̃r,σ̃`)
λ : λ ∈ ∇(r)

σr,σ̃r
, |λ| = j},

(W10)

{
ψ

(~σ,~̃σ)
λ (2l·) ∈ span{ψ(~σ,~̃σ)

µ : µ ∈ ∇(`)
σ`,σ̃`

} (l ∈ N0, λ ∈ ∇(`)
σ`,σ̃`

),

ψ
(~0,~0)
λ (2l·) ∈ span{ψ(~0,~0)

µ : µ ∈ ∇(I)} (l ∈ N0, λ ∈ ∇(I)).
As (W1)–(W6), these conditions are satisfied by following the biorthogonal wavelet
constructions on the interval from [Pri10, Dij09] ((W7) is not satisfied by the con-
struction from [DKU99], but the following exposition can be adapted to apply to
these wavelets as well).

Remark 5.1. In view of the boundary conditions that are imposed on the in-
terfacets, see (D4) and (D′

4), it is actually sufficient to impose (W7)–(W10) for
(σ`, σ̃`), (σr, σ̃r) ∈ {(bt+ 1

2c, 0), (0, bt̃+ 1
2c)}.

We consider the setting of Proposition 4.4. W.l.o.g. we assume that J = {0}× J̆ ,
and (0, 1)×J̆ ⊂ Ω̂(q−1)

k1
. We assume to have available a univariate extension operator

(5.2) Ğ1 ∈ B(L2(0, 1), L2(−1, 1)) with

{
Ğ1 ∈ B(Ht(0, 1),Ht(−1, 1)),

Ğ∗1 ∈ B(H t̃(−1, 1),H t̃
(bt̃+ 1

2 c,0)
(0, 1)).

Let η1 and η2 denote the extensions by zero of functions on (0, 1) or on (−1, 0) to
functions on (−1, 1), with R1 and R2 denoting their adjoints. We assume that Ğ1

and its “adjoint extension”

Ğ2 := (Id− η1Ğ
∗
1)η2

(cf. Remark 2.3) are local in the sense that

(5.3)

{
diam(suppR2Ğ1u) . diam(suppu) (u ∈ L2(0, 1)),

diam(suppR1Ğ2u) . diam(suppu) (u ∈ L2(−1, 0)),

see Figure 4 for an illustration.

00−1

−1

1

1

η1η2 R1R2

Ğ2 Ğ∗1Ğ1

Figure 4. Univariate extensions and restrictions.

Examples are given by Hestenes extensions ([Hes41, DS99, KS06]), which are of
the form

(5.4) Ğ1v(−x) =
L∑
l=0

γl(ζv)(βlx) (v ∈ L2(I), x ∈ I),
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(and, being an extension, Ğ1v(x) = v(x) for x ∈ I), where γl ∈ R, βl > 0, and
ζ : [0,∞) → [0,∞) is some smooth cut-off function with ζ ≡ 1 in a neighborhood
of 0, and supp ζ ⊂ [0,minl(βl, β−1

l )]. Its adjoint reads as

Ğ∗1w(x) = w(x) + ζ(x)
L∑
l=0

γl
βl
w
(−x
βl

)
(w ∈ L2(−1, 1), x ∈ I).

A Hestenes extension satisfies (5.2) if and only if
L∑
l=0

γlβ
i
l = (−1)i (N0 3 i ≤ bt− 1

2c),
L∑
l=0

γlβ
−(j+1)
l = (−1)j+1 (N0 3 j ≤ bt̃− 1

2c).

With a univariate extension Ğ1 as in (5.2) at hand, the obvious approach is
to define E(q)

1 according to Proposition 4.4 with G1 = Ğ1. A problem with the
choice G1 = Ğ1 is that generally (5.3) does not imply the desirable property that
diam(suppG1u) . diam(suppu). Indeed, think of the application of a Hestenes
extension to a u with a small support that is not located near the interface.

To solve this and the corresponding problem for the adjoint extension, in any case
for u being any primal or dual wavelet, respectively, following [DS99] we will apply
our construction using the modified, scale-dependent univariate extension operator

(5.5) G1 : u 7→
∑

λ∈∇(`)
0,0

〈u, ψ̃(~0,~0)
λ 〉L2(I)Ğ1ψ

(~0,~0)
λ +

∑
λ∈∇(I)∪∇(r)

0,0

〈u, ψ̃(~0,~0)
λ 〉L2(I)η1ψ

(~0,~0)
λ .

Taking Ğ1 to be a Hestenes extension, under the condition of ρ being sufficiently
small, its first advantage is that its application in (5.5) does not “see” the cut-off
function ζ, which prevents potential quadrature problems.

Proposition 5.2. Assuming ρ to be sufficiently small, the scale-dependent exten-
sion G1 from (5.5) satisfies, for ~σ ∈ {0, . . . , bt+ 1

2c}
2, ~̃σ ∈ {0, . . . , bt̃+ 1

2c}
2

(5.6) G1ψ
(~σ,~̃σ)
µ =

{
η1ψ

(~σ,~̃σ)
µ when µ ∈ ∇(I) ∪∇(r)

σr,σ̃r
,

Ğ1ψ
(~σ,~̃σ)
µ when µ ∈ ∇(`)

σ`,σ̃`
.

Assuming, additionally, Ğ1 to be a Hestenes extension with βl = 2l, the resulting
adjoint extension G2 := (Id− η1G

∗
1)η2 satisfies

(5.7) G2(ψ̃(~σ,~̃σ)
µ (1 + ·)) =

{
η2(ψ̃

(~σ,~̃σ)
µ (1 + ·)) when µ ∈ ∇(I) ∪∇(`)

σ`,σ̃`
,

Ğ2(ψ̃
(~σ,~̃σ)
µ (1 + ·)) when µ ∈ ∇(r)

σr,σ̃r
.

We have G1 ∈ B(L2(0, 1), L2(−1, 1)), G1 ∈ B(Ht(0, 1),Ht(−1, 1)), and G∗1 ∈
B(H t̃(−1, 1),H t̃

(bt̃+ 1
2 c,0)

(0, 1)).
Finally, for µ ∈ ∇~σ,~̃σ, it holds that

diam(suppG1ψ
(~σ,~̃σ)
µ ) . diam(suppψ(~σ,~̃σ)

µ ),

diam(suppG2ψ̃
(~σ,~̃σ)
µ ) . diam(supp ψ̃(~σ,~̃σ)

µ ).(5.8)

Proof. By (W8)(ii), for µ ∈ ∇(I)∪∇(r)
σr,σ̃r

, λ ∈ ∇(`)
0,0, one has 〈ψ(~σ,~̃σ)

µ , ψ̃
(~0,~0)
λ 〉L2(I) = 0,

and so G1ψ
(~σ,~̃σ)
µ =

∑
λ∈∇~0,~0

〈ψ(~σ,~̃σ)
µ , ψ̃

(~0,~0)
λ 〉L2(I)η1ψ

(~0,~0)
λ = η1ψ

(~σ,~̃σ)
µ , the last equality

from Ψ(~0,~0) being a Riesz basis for L2(I), and η1 being L2-bounded.
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Similarly, for µ ∈ ∇(`)
σ`,σ̃`

, λ ∈ ∇(I) ∪∇(r)
0,0, it holds that 〈ψ(~σ,~̃σ)

µ , ψ̃
(~0,~0)
λ 〉L2(I) = 0,

and so G1ψ
(~σ,~̃σ)
µ =

∑
λ∈∇(~0,~0)

〈ψ(~σ,~̃σ)
µ , ψ̃

(~0,~0)
λ 〉L2(I)Ğ1ψ

(~0,~0)
λ = Ğ1ψ

(~σ,~̃σ)
µ .

If Ğ1 is a Hestenes extension with βl = 2l, then for v ∈ L2(I),

G∗1η2(v(1 + ·)) =
∑

λ∈∇~0,~0

〈G∗1η2(v(1 + ·)), ψ(~0,~0)
λ 〉L2(I)ψ̃

(~0,~0)
λ

=
∑

λ∈∇~0,~0

〈v(1− ·), (R2G1ψ
(~0,~0)
λ )(−·)〉L2(I)ψ̃

(~0,~0)
λ

=
∑

λ∈∇(`)
0,0

〈v(1− ·), (R2Ğ1ψ
(~0,~0)
λ )(−·)〉L2(I)ψ̃

(~0,~0)
λ

=
∑

λ∈∇(`)
0,0

〈
v(1− ·),

L∑
l=0

γlψ
(~0,~0)
λ (2l·)

〉
L2(I)

ψ̃
(~0,~0)
λ .(5.9)

For v = ψ̃
(~σ,~̃σ)
µ and µ ∈ ∇(I) ∪ ∇(`)

σ`,σ̃`
, (5.9) is zero by (W9), (W10), and (W8)(ii).

For v = ψ̃
(~σ,~̃σ)
µ and µ ∈ ∇(r)

σr,σ̃r
, one has

〈
v(1−·),

∑L
l=0 γl(ζψ

(~0,~0)
λ )(2l·)

〉
L2(I)

= 0 for

λ ∈ ∇(I)∪∇(r)
0,0 by (W9), (W10), and (W8)(ii). So for those µ, one has G∗1η2ψ̃

(~σ,~̃σ)
µ =

Ğ∗1η2ψ̃
(~σ,~̃σ)
µ , which completes the proof of (5.7).

Since span{ψ(~0,~0)
µ : µ ∈ ∇(I) ∪ ∇(r)

0,0} + span{ψ(~0,~0)
µ : µ ∈ ∇(`)

0,0} defines a stable
splitting of both L2(I) and Ht(I) into two subspaces, the statements about the
boundedness of G1 follow from (5.6) with (~σ, ~̃σ) = (~0,~0), (5.2), and (W8)(iii).

The mapping P : u 7→
∑
µ∈∇(I)∪∇(`)

σ`,σ̃`

〈u, ψ(~σ,~̃σ)
µ (1 + ·)〉L2(−1,0)η2(ψ̃

(~σ,~̃σ)
µ (1 + ·))

is in B(H t̃(−1, 1),H t̃(−1, 1)) by the assumption on Ψ̃(~σ,~̃σ) and (W8)(ii). Since
Ψ(~σ,~̃σ)(1 + ·) is a Riesz basis for L2(−1, 0),

R2(I − P )u =
∑

µ∈∇(r)
σr,σ̃r

〈u, ψ(~σ,~̃σ)
µ (1 + ·)〉L2(−1,0)ψ̃

(~σ,~̃σ)
µ (1 + ·).

We conclude that (G∗1 − Ğ∗1)η2R2(I − P ) = 0. Since G1 and Ğ1 are extensions,
we also have G∗1η1 = Id = Ğ − 1∗η1, and so G∗1(I − P ) = G∗1(η1R1 + η2R2)(I −
P ) = Ğ∗1(I − P ). Together with G∗1P = 0, from (5.2) we conclude that G∗1 ∈
B(H t̃(−1, 1),H t̃

(bt̃+ 1
2 c,0)

(0, 1)).
The last statement is a direct consequence of (5.6) and (5.7). �

Remark 5.3. Although implicitly claimed otherwise in [DS99, (4.3.12)], we note that
(5.7), and so (5.8), cannot be expected for Ğ1 being a general Hestenes extension
as given by (5.4), so without assuming that βl = 2l.

Moreover, (5.7), and so (5.8), are only guaranteed when, for (σ`, σ̃`) = (0, bt̃+ 1
2c),

for any λ ∈ ∇~σ,~̃σ for which either ψ(~σ,~̃σ)
λ or ψ̃(~σ,~̃σ)

λ “depends on” the boundary

conditions imposed at the left boundary, the primal wavelet ψ(~σ,~̃σ)
λ is extended

by the application of Ğ1. The reason to emphasize this is that with common
biorthogonal wavelet constructions on the interval, the number of dual wavelets
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that depend on the boundary conditions is larger than that of the primal ones.
Note that even if dual wavelets may not enter the computations, their locality
as given by (5.8) will be used to prove the forthcoming Theorem 5.6 about the
approximation rates provided by the primal piecewise tensor product wavelets.

Some examples of relevant Hestenes extensions with βl = 2l are:

• L = 0, γ0 = 1 (reflection). Satisfies (5.2) for t < 3
2 , t̃ < 1

2 ,
• L = 1, γ0 = 3, γ1 = −2. Satisfies (5.2) for t < 5

2 , t̃ < 1
2 ,

• L = 1, γ0 = −3, γ1 = 4. Satisfies (5.2) for t < 3
2 , t̃ < 3

2 ,
• L = 2, γ0 = −5, γ1 = 10, γ2 = −4. Satisfies (5.2) for t < 5

2 , t̃ < 3
2 .

In order to identify individual wavelets from the collections constructed by the
applications of the extension operators, we have to introduce some more notations.
For 0 ≤ q ≤ N , we set the index sets

∇(0)
k := ∇σ(k),σ̃(k) × {k} and, for q > 0,

∇(q)
k :=

{
∇(q−1)
k1

∪∇(q−1)
k2

if k = k̄,

∇(q−1)

k̂
if k ∈ {q, . . . , N} \ {k̄} and Ω(q)

k = Ω(q−1)

k̂
,

and, for (λ, p) ∈ ∇(q)
k , the primal and dual wavelets,

ψ
(0,k)
λ,p := ψ

(σ(p),σ̃(p))
λ (· − αp), ψ̃

(0,k)
λ,p := ψ̃

(σ(p),σ̃(p))
λ (· − αp),

and, for q > 0,

ψ
(q,k)
λ,p :=


{
E

(q)
1 ψ

(q−1,k1)
λ,p (λ, p) ∈ ∇(q−1)

k1

η
(q)
2 ψ

(q−1,k2)
λ,p (λ, p) ∈ ∇(q−1)

k2

}
if k = k̄,

ψ
(q−1,k̂)
λ,p if k ∈ {q, . . . , N} \ {k̄} and Ω(q)

k = Ω(q−1)

k̂
,

ψ̃
(q,k)

λ,p :=


{
η
(q)
1 ψ̃

(q−1,k1)
λ,p (λ, p) ∈ ∇(q−1)

k1

(Id− η
(q)
1 (E(q)

1 )∗)η(q)
2 ψ̃

(q−1,k2)
λ,p (λ, p) ∈ ∇(q−1)

k2

}
if k = k̄,

ψ̃
(q−1,k̂)
λ,p if k ∈ {q, . . . , N} \ {k̄} and Ω(q)

k = Ω(q−1)

k̂
,

Then, as we have seen,

(Ψ(q)
k , Ψ̃(q)

k ) := ({ψ(q,k)
λ,p ) : (λ, p) ∈ ∇(q)

k }, {ψ̃
(q,k)

λ,p : (λ, p) ∈ ∇(q)
k })

is a pair of biorthogonal Riesz bases for L2(Ω̂
(q)
k ), and for s ∈ [0, 1], Ψ(q)

k or Ψ̃(q)
k are,

properly scaled, Riesz bases for [L2(Ω̂
(q)
k ),

◦
Ht(Ω̂(q)

k )]s,2 and [L2(Ω̂
(q)
k ),

◦
H t̃(Ω̂(q)

k )]s,2,
respectively.

Proposition 5.4. With E(q)
1 being defined using the scale-dependent extension op-

erator as in Proposition 5.2, for 0 ≤ q ≤ k ≤ N , we have

(1) suppψ(q,k)
λ,p , supp ψ̃(q,k)

λ,p are contained in a hyperrectangle aligned with the
Cartesian coordinates with sides in length of order 2−|λ|1 , . . . , 2−|λ|n ,

(2) for any y ∈ Rn and j ∈ Nn0 , the hyperrectangle y +
∏n
i=1[0, 2

−ji ] is inter-
sected by the supports at most a uniformly bounded number of primal or
dual wavelets ψ(q,k)

λ,p , ψ̃(q,k)
λ,p with |λ| = j,
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(3) let

Vj(Ω̂
(q)
k ) := {u ∈

◦
Ht(Ω̂(q)

k ) : u(·+ αk′)|� ∈ ⊗ni=1V
(~0)
ji

(�k′ ⊂ Ω̂(q)
k )}

Zj(Ω̂
(q)
k ) := span{ψ(q,k)

λ,p : (λ, p) ∈ ∇(q)
k , |λ| ≤ j},

and e := (1, . . . , 1)> ∈ Rn. Then for some constants mq, Mq ∈ N0, for all
j ∈ {mq,mq + 1, . . .}n,

Vj−mqe(Ω̂
(q)
k ) ⊂ Zj(Ω̂

(q)
k ) ⊂ Vj+Mqe(Ω̂

(q)
k ).

Proof. Parts (1) and (2) follow from the locality and the locally finiteness of the uni-
variate primal and dual wavelets ((W5) and (W6)), and the locality of the extension
and the adjoint extension given by (5.6) and (5.7).

By construction of the wavelet basis, the second inclusion in (3) follows from
(5.6) and Ğ1 being a Hestenes extension with βl = 2l, (W10), (W9), and (W7). The
constant Mq can be taken to be less than or equal to 2L, or to L when the domain
has no cracks.

The first inclusion in (3) holds true for q = 0 with m0 = 0 by (W7). Suppose, for
somemq−1, it is true for q−1 and q−1 ≤ k ≤ N . For some constantmq ≥ mq−1 that
will be determined below, let v ∈ Vj−mqe(Ω̂

(q)

k̄
). Then R

(q)
1 v ∈ Vj−mqe(Ω̂

(q−1)
k1

) ⊂
Zj+(mq−1−mq)e(Ω̂

(q−1)
k1

), and so

(5.10) E
(q)
1 R

(q)
1 v ∈ Zj+(mq−1−mq)e(Ω̂

(q)

k̄
) ⊂ Zj(Ω̂

(q)

k̄
)

by definition of Ψ(q)

k̄
.

¿From (5.10), we have E(q)
1 R

(q)
1 v ∈ Vj+(mq−1+Mq−mq)e(Ω̂

(q)

k̄
), and so (I−E(q)

1 R
(q)
1 )v ∈

Vj+(mq−1+Mq−mq)e(Ω̂
(q)

k̄
), and therefore

R
(q)
2 (Id− E

(q)
1 R

(q)
1 )v

∈ {u ∈ L2(Ω̂
(q−1)
k2

) : u(·+ αk′)|� ∈ ⊗ni=1V
(~0)
ji+mq−1+Mq−mq

(�k′ ⊂ Ω̂(q−1)
k2

)}

Since, as shown in the proof of Proposition 4.2, (Id−E(q)
1 R

(q)
1 )v ∈ =(η(q)

2 | ◦
H

t
(Ω̂

(q−1)
k2

)
),

and so R
(q)
2 (Id − E

(q)
1 R

(q)
1 )v ∈

◦
Ht(Ω̂(q−1)

k2
), we infer that R(q)

2 (Id − E
(q)
1 R

(q)
1 )v ∈

Vj+(mq−1+Mq−mq)e(Ω̂
(q−1)
k2

) ⊂ Zj+(2mq−1+Mq−mq)e(Ω̂
(q−1)
k2

). By takingmq = 2mq−1+

Mq, we conclude that (Id − E
(q)
1 R

(q)
1 )v = η

(q)
2 R

(q)
2 (Id − E

(q)
1 R

(q)
1 )v ∈ Zj(Ω̂

(q)

k̄
) by

definition of Ψ(q)

k̄
. Together with (5.10), this completes the proof. �

Remark 5.5. The above proof shows that for L = 0 (reflection), Vj(Ω̂
(q)
k ) = Zj(Ω̂

(q)
k ).

Now we are ready to study the question, raised at the beginning of this section,
about the rate of approximation in

◦
Hm(Ω̂) from the span of Ψ := Ψ(N)

N .

Theorem 5.6. Let the E(q)
1 be defined using the scale-dependent extension opera-

tors as in Proposition 5.2. Then for any θ ∈ [0, d), and any 0 ≤ q ≤ k ≤ N , there
exists a (nested) sequence (∇(q)

k,M )M∈N ⊂ ∇(q)
k with #∇(q)

k,M h M , such that
(5.11)

inf
v∈span{ψ(q,k)

λ,p :(λ,p)∈∇(q)
k,M}

‖u− v‖
Hm(Ω̂

(q)
k )

. M−(d−m)

√√√√ ∑
�k′⊂Ω̂

(q)
k

‖u‖2
Hd

m,θ(�′
k)
,
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for any u ∈
◦
Hm(Ω̂(q)

k ) for which the right-hand side is finite (for q = k = N , i.e.,
for Ω̂(q)

k = Ω̂, this is equivalent to saying that u satisfies (5.1) (with κ = Id)).
For m = 0, the factor M−(d−m) in (5.11) has to be read as (logM)(n−1)( 1

2+d)M−d.

Proof. We prove the statement with the additional property that the index sets
∇(q)
k,M have the multiple tree property introduced in Theorem 3.2 for subsets of

∇(σ,σ̃), and that in the current generalized setting reads as: For any (λ, p) ∈ ∇(q)
k,M

and any j ∈ Nn0 with j ≤ |λ| , there exists a (λ′, p′) ∈ ∇(q)
k,M with |λ′| = j, and

suppψ(q,k)
λ,p ∩ suppψ(q,k)

λ′,p′ 6= ∅.
For q = 0, the so extended statement is equal to that of Theorem 3.2. Let us

assume that the statement is valid for some 0 ≤ q − 1 ≤ N − 1.
To prove the statement for q, it is sufficient to consider k = k̄. Let % be a

smooth function on Rn such that for some sufficiently small ε2 > ε1 > 0, % ≡ 1
within distance ε1 of the interface J between Ω̂(q−1)

k1
and Ω̂(q−1)

k2
, and vanishes

outside distance ε2 of J . Writing any function v on Ω̂(q)

k̄
as %v+ (1− %)v induces a

stable splitting of
◦
Hm(Ω̂(q)

k̄
) ∩
∏

�k′⊂Ω̂
(q)
k̄

Hd
m,θ(�k′) into two subspaces.

For functions u of type (1− %)v, one has u|
Ω̂

(q−1)
k2

∈
◦
Hm(Ω̂(q−1)

k2
), and, assuming

ρ to be sufficiently small, 〈u|
Ω̂

(q−1)
k1

, ψ̃
(q−1,k1)
λ,p 〉

L2(Ω̂
(q−1)
k1

)
= 0 for all (λ, p) ∈ ∇(q−1)

k1

with η
(q)
1 ψ

(q−1,k1)
λ,p 6= E

(q)
1 ψ

(q−1,k1)
λ,p . We conclude that for such functions (5.11) is

valid when

∇(q)

k̄,M
⊇ ∇(q−1)

k1,M
∪∇(q−1)

k2,M
.

In the remainder of this proof, we consider functions of type u = %v, so with
support inside some sufficiently small neighborhood of J . For q − 1 ≤ k ≤ N , we
set the biorthogonal projectors

P
(q−1)
k,M : v 7→

∑
(λ,p)∈∇(q−1)

k,M

〈v, ψ̃(q−1,k)
λ,p 〉

L2(Ω̂
(q−1)
k )

ψ
(q−1,k)
λ,p .

W.l.o.g. we assume J = {0} × J̆ and define the (scale-independent) extension
Ê

(q)
1 as E(q)

1 with G1 reading as Ĝ1, defined by Ĝ1v(−x) =
∑L
l=0 γlv(2

lx) and
Ĝ1v(x) = v(x) (x ∈ I). So Ĝ1 is the Hestenes extension Ğ1 without the smooth
cut-off function which is not needed here because of the assumption on suppu.

It holds that R(q)
2 (Id−Ê(q)

1 R
(q)
1 )u ∈

◦
Hm(Ω̂(q−1)

k2
) and R(q)

1 u ∈
◦
Hm(Ω̂(q−1)

k1
). Since

Ê
(q)
1 preserves the piecewise weighted Sobolev smoothness of a function supported

near the interface, we have∑
�k′⊂Ω̂

(q−1)
k2

‖R(q)
2 (Id− Ê

(q)
1 R

(q)
1 )u‖2

Hd
m,θ(�k′ )

+
∑

�k′⊂Ω̂
(q−1)
k1

‖R(q)
1 u‖2

Hd
m,θ(�k′ )

.
∑

�k′⊂Ω̂
(q)
k̄

‖u‖2
Hd

m,θ(�k′ )
.

(5.12)
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Setting u1 := P
(q−1)
k1,M

R
(q)
1 u, u2 := P

(q−1)
k2,M

R
(q)
2 (Id − Ê

(q)
1 R

(q)
1 )u, from [Ê(q)

1 η
(q)
2

] ∈
B(

◦
Hm(Ω̂(q−1)

k1
)×

◦
Hm(Ω̂(q−1)

k2
),

◦
Hm(Ω̂(q)

k̄
)) (see Proposition 4.2), we conclude that

‖u−(Ê(q)
1 u1 + η

(q)
2 u2)‖Hm(Ω̂

(q)
k̄

)

=

∥∥∥∥∥[Ê(q)
1 η

(q)
2

]

([
R

(q)
1

R
(q)
2 (Id− Ê

(q)
1 R

(q)
1 )

]
u−

[
u1

u2

])∥∥∥∥∥
Hm(Ω̂

(q)
k̄

)

.
√
‖R(q)

1 u− u1‖2

Hm(Ω̂
(q−1)
k1

)
+ ‖R(q)

2 (Id− Ê
(q)
1 R

(q)
1 )u− u2‖2

Hm(Ω̂
(q−1)
k2

)

. M−(d−m)

√√√√ ∑
�k′⊂Ω̂

(q)
k̄

‖u‖2
Hd

m,θ(�′
k)
,

(5.13)

the last inequality by the induction hypothesis and (5.12).
Next, we write

(5.14) u− (E(q)
1 u1 + η

(q)
2 u2) = u− (Ê(q)

1 u1 + η
(q)
2 u2) + (Ê(q)

1 − E
(q)
1 )u1.

By construction of G1 from Ğ1, we have that (Id − η
(q)
2 R

(q)
2 )(Ê(q)

1 − E
(q)
1 )u1 = 0,

and R(q)
2 (Ê(q)

1 − E
(q)
1 )u1 ∈

◦
Hm(Ω̂(q−1)

k2
), and so

(Ê(q)
1 −E(q)

1 )u1 =
∑

(λ̂,p̂)∈∇(q−1)
k2

〈R(q)
2 (Ê(q)

1 −E(q)
1 )u1, ψ̃

(q−1,k2)

λ̂,p̂
〉
L2(Ω̂

(q−1)
k2

)
η
(q)
2 ψ

(q−1,k2)

λ̂,p̂
.

We set

∇̂(q−1)
k2,M

:= {(λ̂, p̂) ∈ ∇(q−1)
k2

: 〈R(q)
2 (Ê(q)

1 − E
(q)
1 )u1, ψ̃

(q−1,k2)

λ̂,p̂
〉
L2(Ω̂

(q−1)
k2

)
6= 0,

for some u1 ∈ =P (q−1)
k1,M

}.

Below we will show that, even after a possible enlargement to ensure the multiple
tree property, it holds that #∇̂(q−1)

k2,M
. #∇(q−1)

k1,M
. Defining ∇(q)

k̄,M
:= ∇(q−1)

k1,M
∪

∇(q−1)
k2,M

∪ ∇̂(q−1)
k2,M

, the proof is completed.

If (λ̂, p̂) ∈ ∇̂(q−1)
k2,M

, then 〈R(q)
2 Ê

(q)
1 ψ

(q−1,k1)
λ,p , ψ̃

(q−1,k2)

λ̂,p̂
〉
L2(Ω̂

(q−1)
k2

)
6= 0 for some

(λ, p) ∈ ∇(q−1)
k1,M

with R
(q)
2 Ê

(q)
1 ψ

(q−1,k1)
λ,p ∈

◦
Hm(Ω̂(q−1)

k2
). Using Z|λ|(Ω̂

(q−1)
k1

) ⊂
V|λ|+Mq−1e(Ω̂

(q−1)
k1

) and the assumptions on the extension, we have

R
(q)
2 Ê

(q)
1 ψ

(q−1,k1)
λ,p ∈ V|λ|+(Mq−1+L)e(Ω̂

(q−1)
k2

) ⊂ Z|λ|+(Mq−1+mq−1+L)e(Ω̂
(q−1)
k2

)

and so |λ̂| ≤ |λ| + (Mq−1 + mq−1 + L)e. Here we applied both inclusions from
Proposition 5.4(3).

Thanks to the multiple tree property of ∇(q−1)
k1,M

, there exists a (λ′, p′) ∈ ∇(q−1)
k1,M

with |λ′|i = min(|λ̂|i, |λ|i) (1 ≤ i ≤ n) and suppψ(q−1,k1)
λ,p ∩ suppψ(q−1,k1)

λ′,p′ 6= ∅.
Note that because of |λ̂| ≤ |λ| + (Mq−1 + mq−1 + L)e, we have |λ′| ≤ |λ̂| ≤
|λ′|+ (Mq−1 +mq−1 + L)e.

The “localness” of Ψ(q−1)
k1

as given by Proposition 5.4(1), the assumptions on the

extension, and the “locally finiteness” of Ψ̃(q−1)
k2

as given by Proposition 5.4(2) show

that the number of (λ̂, p̂) ∈ ∇̂(q−1)
k2,M

with 〈R(q)
2 Ê

(q)
1 ψ

(q−1,k1)
λ,p , ψ̃

(q−1,k2)

λ̂,p̂
〉
L2(Ω̂

(q−1)
k2

)
6= 0
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on the same level |λ̂| ≤ |λ|+(Mq−1 +mq−1 +L)e is uniformly bounded. With this,
we conclude that with the above mapping (λ̂, p̂) 7→ (λ′, p′), an at most uniformly
bounded number of (λ̂, p̂) ∈ ∇̂(q−1)

k2,M
is mapped onto any (λ′, p′) ∈ ∇(q−1)

k1,M
, and so

that #∇̂(q−1)
k2,M

. #∇(q−1)
k1,M

.

Finally, to bound #∇̂(q−1)
k2,M

, we only used that for (λ̂, p̂) ∈ ∇̂(q−1)
k2,M

there ex-

ists a (λ, p) ∈ ∇(q−1)
k1,M

with suppR(q)
2 Ê

(q)
1 ψ

(q−1,k1)
λ,p ∩ supp ψ̃(q−1,k1)

λ̂,p̂
6= ∅ and |λ̂| ≤

|λ| + (Mq−1 + mq−1 + L)e. The same proof would have applied with the con-
dition about the non-empty intersection of the supports reading as the condition
that suppR(q)

2 Ê
(q)
1 ψ

(q−1,k1)
λ,p has non-empty intersection with some hyperrectangle,

containing supp ψ̃(q−1,k1)

λ̂,p̂
, that is aligned with the Cartesian coordinates with sides

of lengths of order 2−|λ̂|1 , . . . , 2−|λ̂|n . In view of this, if ∇̂(q−1)
k2,M

does not already
has the multiple tree property, then it can be enlarged to have this property while
retaining #∇̂(q−1)

k2,M
. #∇(q−1)

k1,M
. �

6. Regularity

We study the issue whether we may expect (5.1) for u being the solution of an
elliptic boundary value problem of order 2m = 2.

6.1. Two-dimensional case. Let Ω be a polygonal domain. This means that its
boundary is the union of a finite number of line segments, knowns as edges, with
ends known as corners. It is not assumed that Ω is a Lipschitz domain, so it may
contain cracks. We denote with E the set of edges, with C the set of corners, and
set for c ∈ C,

rc(x) := dist(x, c).
Following [CDN10], for m ∈ N0, we define the (non-homogeneous) weighted Sobolev
space Jmβ (Ω) as the set of u ∈ Lloc

2 (Ω) that have a finite squared norm

‖v‖2
Jm

β (Ω) :=
m∑
k=0

∑
|α|=k

‖{
∏
c∈C

rβ+m
c }∂αv‖2

L2(Ω).

(in [CDN10] the generalization is considered of β being possibly dependent on c).

Let A be a constant, real, symmetric and positive definite 2 × 2 matrix. Let
ED ⊂ E , and

V (Ω) :=
{
{v ∈ H1(Ω) : v|e = 0 ∀e ∈ ED} when ED 6= ∅,
{v ∈ H1(Ω) :

∫
Ω
v dx = 0} otherwise.

Given g ∈ V (Ω)′, let u ∈ V (Ω) denote the solution of

(6.1)
∫

Ω

A∇u · ∇v dx = g(v) (v ∈ V (Ω)).

Theorem 6.1. For m ∈ N0, there exists a b∗ ∈ (0,m + 2] such that for any
b ∈ [0, b∗), the mapping g 7→ u ∈ B(Jm−b+1(Ω), Jm+2

−b−1(Ω)).

The proof follows from [CDN10, formula (6.7)]. As stated in [CDN10, Example
6.7], for m sufficiently large, b∗ > 1

4 .
We refer to [CDN10, Sect. 7] for generalizations of Theorem 6.1 to differential

operators with variable coefficients and/or lower order terms.
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Concerning the smoothness condition on the right-hand side g, note that for
b ≤ m+ 1,

Hm(Ω) ↪→ Jm−b+1(Ω).

Let us now consider the situation that Ω = ∪Ki=1Ωi is an essentially disjoint subdi-
vision into subdomains, where Ωi = κi(�) with κi being a regular parametrization.
Let Ri denote the restriction of functions on Ω to Ωi.

Proposition 6.2. If κi ∈ Cm+2(�) and b ≤ m+ 1, then

κ∗iRi ∈ B(Jm+2
−b−1(Ω), Jm+2

−b−1(�)).

Proof. This follows from the smoothness of κi, and from the fact that κ∗i u|Ωi lo-
calized near corners of � that do not correspond to corners of Ω is a function in
Hm+2 ↪→ Jm+2

−b−1, the latter by −b− 1 +m+ 2 ≥ 0. �

The following Proposition demonstrates (5.1).

Proposition 6.3. For d ∈ N0, θ ≥ max(1, d− b/2), it holds that

J2d
−b−1(�) ↪→ Hd

θ−1(I)⊗Hd
θ(I) ∩Hd

θ(I)⊗Hd
θ−1(I) = Hd

1,θ(�).

Proof. This follows from max(xθ−1yθ, xθyθ−1) ≤ r2θ−1
0 ≤ r2d−b−1

0 when r0 ∈ [0, 1].
�

6.2. Three-dimensional case. As in the previous section we follow [CDN10]
closely. Let Ω be a polyhedral domain. This means that its boundary is the union of
a finite number of polygons, known as the faces; the segments forming their bound-
aries are the edges, and the ends of the edges are the corners. It is not assumed
that Ω is a Lipschitz domain, so it may contain crack surfaces. We denote with F ,
E , and C the set of faces, edges, and corners, respectively, and set for e ∈ E and
c ∈ C,

re(x) := dist(x, e), rc(x) := dist(x, c), rC(x) := min
c∈C

rc(x), rE(x) := min
e∈E

re(x).

There exists an ε > 0 small enough such that if we set

Ωe := {x ∈ Ω : re(x) < ε, rẽ(x) > re(x) (e 6= ẽ ∈ E), and rC(x) > ε
2}

Ωc := {x ∈ Ω : rc(x) < ε and rE(x) > ε
2rc(x)}

Ωce := {x ∈ Ω : rc(x) < ε and re(x) < εrc(x)}
ΩI := {x ∈ Ω : rE(x) > ε

2}

we have the following properties

Ωe ∩ Ωe′ = ∅, Ωce ∩ Ωce′ = {c} (e 6= e′ ∈ E , c ∈ C),

B(c; ε) ∩B(c′; ε) = ∅ (c 6= c′ ∈ C), Ω = ΩI ∪{c∈C} Ωc ∪{e∈E} Ωe ∪{c∈C, e∈E} Ωce.

In a neighborhood of any edge e ∈ E , we will take partial derivatives in an or-
thogonal coordinate system with one of the coordinate directions being parallel to
e. For a multi-index α in that coordinate system, |α⊥| will denote the sum of the
coordinates in the directions perpendicular to e, and |α||| := |α| − |α⊥|.



PIECEWISE TENSOR PRODUCT WAVELET BASES 23

For m ∈ N0, β > −m, and E0 ⊂ E , we define the anisotropic weighted Sobolev
space

Nm
β (Ω, C, E0) :=

{
u ∈ Lloc

2 (Ω) : ∀α, |α| ≤ m, ∂αu ∈ L2(ΩI),

rc(x)β+|α|∂αu ∈ L2(Ωc) ∀c ∈ C,

re(x)β+|α⊥|∂αu ∈ L2(Ωe) ∀e ∈ E0,

rc(x)β+|α|(re(x)/rc(x))β+|α⊥|∂αu ∈ L2(Ωce) ∀c ∈ C, e ∈ E0

re(x)max(β+|α⊥|,0)∂αu ∈ L2(Ωe) ∀e ∈ E \ E0,

rc(x)β+|α|(re(x)/rc(x))max(β+|α⊥|,0)∂αu ∈ L2(Ωce) ∀c ∈ C, e ∈ E \ E0

}
,

(6.2)

with squared norm being the sum over |α| ≤ m of the squared L2-norms over ΩI ,
Ωc, Ωe, Ωce, and c ∈ C, e ∈ E , respectively. (As in the two-dimensional case, this
definition can be generalized to β being possibly dependent on c and e).

The definition of Nm
β (Ω, C, E0) is a special case of a definition of Nm

β (Ω, C0, E0)
from [CDN10] for general C0 ⊆ C. In particular, the definition of the (fully) non-
homogeneous anisotropic weighted Sobolev spaceNm

β (Ω) := Nm
β (Ω, ∅, ∅) is obtained

from (6.2) by taking E0 = ∅, and by replacing rc(x)β+|α| by rc(x)max(β+|α|,0) on all
three occurrences. Obviously,

(6.3) Nm
β (Ω, C, E0) ↪→ Nm

β (Ω).

Let A be a constant, real, symmetric and positive definite 3 × 3 matrix. Let
FD ⊂ F , and

V (Ω) :=
{
{v ∈ H1(Ω) : v|f = 0 ∀f ∈ FD} when FD 6= ∅,
{v ∈ H1(Ω) :

∫
Ω
v dx = 0} otherwise.

Given g ∈ V (Ω)′, let u ∈ V (Ω) denote the solution of

(6.4)
∫

Ω

A∇u · ∇v dx = g(v) (v ∈ V (Ω)).

Theorem 6.4. Let E0 be the set of all e ∈ E that are an edge of an f ∈ FD. There
exists a b∗ ∈ (0, 1] such that for m ∈ N, m > 1, and for any b ∈ [0, b∗), the mapping
g 7→ u ∈ B

(
Nm

1−b(Ω, C, E0), Nm
−1−b(Ω, C, E0)

)
.

Indeed, with the isotropic weighted Sobolev spaces Jmβ (Ω) as defined in [CDN10,
Def. 5.9] (where we consider the value of β to be independent of the edges and
corners), [MR03, Th. 7.1] shows that g 7→ u ∈ B(J0

1−b(Ω), J2
1−b(Ω)), and thus that

g 7→ u ∈ B(J0
1−b(Ω), J1

1−b(Ω)). Using that Nm
1−b(Ω, C, E0) ↪→ J0

1−b(Ω)), we conclude
the statement of the theorem from the anisotropic regularity shift theorem [CDN10,
(5.25)(a)]. Here we used that the Assumptions 5.5 and 5.13 from [CDN10] for
e ∈ E0 or e ∈ E \ E0, respectively, are satisfied by an application of [MR03, Th.
7.2].

Concerning the smoothness condition on the right-hand side g, note that for
b ≤ 1,

Hm(Ω) ↪→ Nm
1−b(Ω, C, E0).

The fact, as proven in Thm. 6.4, that for sufficiently smooth right-hand side,
the tangential derivatives of sufficiently high order along the edges of Ω of the
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solution of (6.4) are in the (unweighted) L2(Ω) space, is essential for our goal of
proving approximation rates with piecewise tensor product approximation as for
one-dimensional problems.

Let us consider the situation that Ω = ∪Ki=1Ωi is an essentially disjoint conform-
ing subdivision into hexahedra that are images of � under trilinear diffeomorphisms
κi, with infx∈� |Dκi(x)| > 0.

Aiming at deriving a three dimensional analogue of Proposition 6.2, care has to
be taken that for κ∗iRiu to be in Nm

−1−b(�), its tangential derivatives along an edge
up to order m have to be in L2(�). Therefore, we have to ensure that if an edge of
� is mapped onto the boundary of Ω, then lines parallel to this edge are (smoothly)
mapped onto lines parallel to the boundary of Ω.

Proposition 6.5. Let for any i, κi be such that if it maps an edge e of � to an
edge of Ω, then it maps all three edges that are parallel to e to edges that are parallel
to κi(e). Then

κ∗iRi ∈ B(Nm
−1−b(Ω), Nm

−1−b(�)).

Proof. What has to be shown is that if an edge e of � is mapped to the boundary
of Ω, then the tangential derivatives along e of u ◦ κi up to order m are a smooth
functions of the tangential derivatives of u along κi(e) up to order m.

W.l.o.g., let e be one of the edges e(1), . . . , e(4) that are parallel to the first unit
vector. The vector ∂1κi(x) is a bilinear function of x2 and x3, and so in particular
constant on each of the e(j). These constant vectors are the differences of the
endpoints of κi(e(j)), and so, by assumption, multiples of ∂1κi|e. We conclude that
∂1κi(x) is a multiple of a bilinear scalar function and ∂1κi|e. �

Next we will show that the condition on the parametrizations imposed in Propo-
sition 6.5 can always be satisfied by making some refinement of the initial con-
forming subdivision into hexahedra: Let us cut each hexahedron in the partition
along 6 planes parallel to the 6 faces of the hexahedron on distance ζ > 0, see
Figure 5. When ζ is small enough, then the planes parallel to opposite faces of the

Figure 5. Hexahedron cut into 33 subhexahedra.

hexahedron do not intersect inside the hexahedron, and we obtain a subdivision
of the hexahedron in 33 hexahedra. Eight of these hexahedra share a corner with
the original hexahedron and so have three edges on edges of this hexahedron, and
so possibly three edges on edges of Ω. These hexahedra are parallelepipeds and so
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satisfy the condition from Proposition 6.5. Twelve other hexahedra have one edge
on an edge of the original hexahedron, and so possibly on an edge of Ω. For each
of these hexahedra, the edges opposite to this specific edge are parallel to this edge
and so satisfy the condition from Proposition 6.5. The remaining seven hexahedra
have no edges on edges of the original hexahedron, and thus no edge on an edge
of Ω. Six of them have a face on a face of the original hexahedron, whereas the
boundary of the remaining “interior” hexahedron has empty intersection with the
boundary of the original hexahedron.

Above subdivision of a hexahedron induces a subdivision of each of its faces into
32 quadrilaterals; 4 parallelograms at the corners, 4 trapezoids at the edges, and
one interior quadrilateral. Conversely, such a subdivision of 3 non-opposite faces of
the hexahedron, where the interior quadrilaterals are sufficiently large, determines
uniquely the subdivision of the hexahedron into 33 subhexahedra by making cuts
along planes parallel to the faces. So if we start with a subdivision of one hexahedron
and use the resulting subdivision of its faces to induce subdivisions of its neighbors,
then by choosing ζ small enough we obtain a refinement of the original conforming
decomposition into hexahedra to a conforming decomposition into hexahedra that
satisfy the conditions needed for Proposition 6.5.

What is left to show is whether the hexahedra in the refined subdivision are
images of � under trilinear diffeomorphisms κi, with infx∈� |Dκi(x)| > 0. When
the aforementioned parameter ζ tends to zero, the interior hexahedron converges
to the hexahedron in the original decomposition, which was assumed to have this
property. So for ζ small enough, the interior hexahedra have this property.

The other hexahedra in the refined subdivision have at least two parallel faces,
and so are instances of a prismatoid. Let us consider such a hexahedron with its
parallel faces, being convex quadrilaterals, on the planes z = 0 and z = 1. Let
q1, q2 : (0, 1)2 → R2 be bilinear parametrizations of the bottom and top face with
inf(x,y)∈(0,1)2 |Dqi(x, y)| > 0, and such that the images of each corner of (0, 1)2

under q1 and q2 are connected by an edge in the hexahedron. Then a trilinear
parametrization � → R3 is given by

κ(x, y, z) = (1− z)q1(x, y) + zq2(x, y)

and so inf(x,y,z)∈� |Dκ(x, y, z)| = inf(x,y,z)∈�(1− z)|Dq1(x, y)|+ z|Dq2(x, y)| > 0.
The following Proposition demonstrates (5.1).

Proposition 6.6. For d ∈ N0, θ ≥ max(1, d− b
3 ) where b > 0, it holds that

N3d
−1−b(�) ↪→ Hd

1,θ(�).

Proof. It is sufficient to show continuity of the embedding of the spaces restricted
to Ωc, Ωe, and Ωce intersected with (0, 1

2 )3, where c = (0, 0, 0) and e = e1.
For ‖α‖∞ ≤ d, the conditions on θ show that on Ωc ∩ (0, 1

2 )3,

max(xθ−1yθzθ, xθyθ−1zθ, xθyθzθ−1) ≤ rc(x)3θ−1 ≤ rc(x)max(−1−b+|α|,0),

and on Ωe ∩ (0, 1
2 )3,

max(yθzθ, yθ−1zθ, yθzθ−1) ≤ re(x)2θ−1 ≤ re(x)max(−1−b+α2+α3,0).

On Ωce ∩ (0, 1
2 )3, we have

max(xθ−1yθzθ, xθyθ−1zθ, xθyθzθ−1) ≤ rc(x)θre(x)2θ−1.
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To show that this right-hand side can be bounded on

rc(x)max(−1−b+|α|,0)−max(−1−b+α2+α3,0)re(x)max(−1−b+α2+α3,0)

we distinguish between 3 cases: For −1 − b + |α| ≤ 0, this results from θ ≥ 0 and
2θ − 1 ≥ 0. For −1 − b + |α| ≥ 0 ≥ −1 − b + α2 + α3, we have rc(x)θre(x)2θ−1 ≤
rc(x)3θ−1 ≤ rc(x)−1−b+|α| by θ ≥ d− b

3 . For −1−b+α2+α3 ≥ 0, rc(x)θre(x)2θ−1 ≤
rc(x)θ+

b
3 re(x)2θ−1− b

3 ≤ rc(x)α1re(x)−1−b+α2+α3 by θ ≥ d− b
3 . �

7. Numerical results

As the univariate building block of the piecewise tensor product wavelet construc-
tion, we apply the C1, piecewise quartic (so d = 5) (multi-) wavelets, with (dis-
continuous) piecewise quartic duals as constructed in [CS11]. The primal wavelets
satisfy Dirichlet boundary conditions of order 1 at both boundaries 0 and 1, i.e.,
~σ = (σ`, σr) = (1, 1), whereas at the dual side no boundary conditions can be
imposed, i.e., ~̃σ = (σ̃`, σ̃r) = (0, 0).

For the present work, we generalized this construction to obtain also wavelet
collections that satisfy no boundary conditions (at primal side) at either or both
boundaries, i.e., ~σ ∈ {0, 1}2 \ {(1, 1)}. Actually, we also slightly modified the
biorthogonal collections (Ψ(1,1),(0,0), Ψ̃(1,1),(0,0)) from [CS11] with the aim to min-
imize, for ~σ ∈ {0, 1}2 \ {(1, 1)}, the number of λ ∈ ∇~σ,(0,0) for which either
ψ

(~σ,(0,0))
λ 6∈ Ψ(1,1),(0,0) or ψ̃(~σ,(0,0))

λ 6∈ Ψ̃(1,1),(0,0). Indeed, recall from Remark 5.3
that the extension operator has to be applied to all primal wavelets with such in-
dices λ (at either left or right boundary). We obtained the result that the number
of such λ on each level at left or right boundary is equal to 2. One of them cor-
responds to a primal wavelet that does not vanish at the boundary and therefore
has to be extended to obtain a continuous extension, whereas the primal wavelet
corresponding to the other only has to be extended to guarantee locality of the
resulting dual wavelets by an application of Proposition 5.2.

As extension operator, we apply the simple reflection suited for 1
2 < t < 3

2 ,
0 < t̃ < 1

2 .
As domains, we consider the 2-dimensional slit domain Ω = (0, 2)2 \ {1}× [1, 2),

whose closure is the union of 4 squares τ + [0, 1]2 (τ ∈ Z2), the 3-dimensional
“thick” L-shaped domain Ω = (0, 2)2 × (0, 1) \ [1, 2)2 × (0, 1), whose closure is the
union of 3 cubes τ + [0, 1]3 (τ ∈ Z3), and the 3-dimensional Fichera corner domain
Ω = (0, 2)3 \ [1, 2)3, whose closure is the union of 7 cubes τ + [0, 1]3 (τ ∈ Z3).
Aiming at constructing Riesz bases for [H t̃(Ω),Ht

0(Ω)]s,2 (s ∈ [0, 1]), in particular
for H1

0 (Ω), we impose homogeneous Dirichlet boundary conditions of order 1 at ∂Ω.
In the slit domain case, we consider tensor product wavelet bases on (0, 1)2, on

{(1, 0)}+(0, 1)2 with no boundary conditions on its left edge, and on {(0, 1)}+(0, 1)2

and {(1, 1)}+ (0, 1)2 with no boundary conditions on their bottom edges, all with
homogeneous Dirichlet boundary conditions of order 1 on the remaining edges. By
applying the scale-dependent extension, first from {(1, 0)}+(0, 1)2 to (0, 2)× (0, 1),
and then from both top domains {(0, 1)} + (0, 1)2 and {(1, 1)} + (0, 1)2 over their
bottom edges to Ω (see Figure 6), we end up with a piecewise tensor product basis.

In the thick L-shaped domain case, we consider tensor product wavelet bases
on (0, 1)3, and on {(1, 0, 0)} + (0, 1)3 and {(0, 1, 0)} + (0, 1)3 with no boundary
conditions on their interface with (0, 1)3, all with homogeneous Dirichlet boundary
conditions of order 1 on the remaining faces. By applying the scale-dependent
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Figure 6. The direction and ordering of the extensions.

extension from {(1, 0, 0)}+(0, 1)3 to (0, 2)×(0, 1)2, and then from {(0, 1, 0)}+(0, 1)3

to Ω (see Figure 6), a piecewise tensor product basis is obtained.
In the Fichera corner domain case, we consider tensor product wavelet bases

on (0, 1)3, on {(1, 0, 0)} + (0, 1)3 with no boundary conditions on its left face, on
{(1, 0, 1)} + (0, 1)3 with no boundary conditions on its left and bottom faces, on
{(1, 1, 0)} + (0, 1)3 with no boundary conditions on its left and front faces, on
{(0, 0, 1)}+(0, 1)3 with no boundary conditions on its bottom face, on {(0, 1, 0)}+
(0, 1)3 with no boundary conditions on its front face, and on {(0, 1, 1)}+(0, 1)3 with
no boundary conditions on its front and and bottom faces, all with homogeneous
Dirichlet boundary conditions of order 1 on the remaining faces. By applying the
scale-dependent extensions in the order as indicated in Figure 6, a piecewise tensor
product basis is obtained.

Using these piecewise tensor product bases, we solved the Poisson problem of
finding u ∈ H1

0 (Ω) such that∫
Ω

∇u · ∇v = f(v) (v ∈ H1
0 (Ω))

by applying the adaptive wavelet-Galerkin method ([CDD01, Ste09]). This method
is known to produce a sequence of approximations from the span of the basis
that converges in H1(Ω)-norm with the best possible rate. Assuming a sufficiently
smooth right-hand side, Theorem 5.6 together with the regularity results from §6.1
or §6.2 show that this rate is d −m = 5 − 1 = 4 (indeed an even higher rate can
generally not be expected).

Furthermore, if the bi-infinite stiffness matrix of the PDE w.r.t. the basis is
sufficiently close to a sparse matrix, in the sense that it is s∗-compressible for some
s∗ > 4, then this adaptive method has optimal computational complexity. The
univariate wavelet basis from [CS11] was designed such that any second order PDE
on (0, 1)n with homogeneous Dirichlet boundary conditions gives rise, w.r.t. the
tensor product basis, to a bi-infinite stiffness matrix which is truly sparse. By losing
the Dirichlet boundary conditions on one side of each interface between subdomains,
and by the application of reflections, this sparsity, however, is partly lost in the
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sense that columns corresponding to wavelets that are non-zero at an interface
contain infinitely many non-zero entries. The sizes of these entries, however, decay
sufficiently fast as function of the difference in levels of the wavelets involved so
that, nevertheless, the stiffness matrix is s∗-compressible with s∗ = ∞, meaning
that indeed the adaptive method has optimal computational complexity.

In all three examples, to avoid approximating an infinite forcing vector, for our
convenience we took as right hand side function f = 1. As this right-hand side
nowhere vanishes on the boundary, it gives rise to all singular terms in the solution
associated to corners and edges. Our solution method does not take advantage of
symmetries in the solution due to those in the right-hand side, or of other special
properties of f = 1. As such, we expect that our results are representative for those
that are obtained for any smooth right-hand side function that nowhere vanishes
on the boundary.

To investigate how the application of the extensions, and the incorporation of
univariate wavelet bases without boundary conditions at either or both endpoints
affects the conditioning of the bi-infinite stiffness matrix, we computed numerically
the condition number of the stiffness matrix (“preconditioned” by its diagonal)
restricted to “full-grid” wavelet index sets. We considered the cases of the slit
domain (0, 2)2\{1}×[1, 2) subdivided into 4 squares, the square (−1, 1)2 subdivided
into 4 squares, and the square (0, 1)2 not being subdivided. The results, given in
Table 1, show the price to be paid for the construction of a piecewise tensor product
basis, as well as that seemingly a re-entrant corner does not negatively affect the
condition number.

J 0 1 2 3 4 5 6 7
(−1, 1)2 into 4 790 1180 1288 1816 2335 2827 3263 3650

slit domain into 4 378 634 860 1167 1509 1882 2258 2620
J 1 2 3 4 5 6 7 8

(0, 1)2 37 61 96 122 146 167 185 201
Table 1. Condition numbers of the diagonally preconditioned
stiffness matrix restricted to the square block corresponding to row
and column indices λ with ‖|λ|‖∞ ≤ J . The cardinality of this set
of row- or column-indices is (approximately) equal to 9.4J+2 (first
two cases) and 9.4J+1 (last case), respectively.

Let us now first consider the Poisson problem with f = 1 on the two-dimensional
slit domain. Its solution is illustrated in Figure 7.

In Figure 8 we give support lengths of the approximate solutions in piecewise ten-
sor product wavelet coordinates obtained by the adaptive wavelet-Galerkin scheme
vs. the (relative) `2-norm of their residual in the bi-infinite matrix vector system,
the latter being equivalent to the H1(Ω)-norm of the error. The optimal rate -4
indicated by the slope of the hypotenuse of the triangle is accurately approached
for the problems sizes near the end of the computation.

At the end of this computation, the cardinality of the set of adaptively selected
wavelets was approximately 1.5 · 105. The maximum of ‖|λ|‖∞ or ‖|λ|‖1 over
all λ from this set was equal to 39 or 78, respectively, essentially meaning that
locally, near the re-entrant corner the approximation space has the character of a
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Figure 7. The solution of the Poisson problem with f = 1 on the
slit domain (0, 2)2 \ {1} × [1, 2).
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Figure 8. Support length vs. relative residual of the approxima-
tions produced by the adaptive wavelet-Galerkin scheme for the
Poisson problem with f = 1 on the slit domain (0, 2)2 \ {1}× [1, 2)
with the piecewise tensor product basis.

“full-grid”. The smallest non-adaptive “full-grid” or “sparse-grid” index set that
contains all adaptively selected wavelets has cardinality equal to approximately
4.4 · 1025 and 6.8 · 1027, respectively, illustrating the strong local refinement.

Centers of supports of the piecewise tensor product wavelets that were selected
by the adaptive wavelet-Galerkin scheme are indicated in Figure 9.

Next, we give numerical results for the Poisson problem with f = 1 on the
thick L-shaped domain Ω = (0, 2)2 × (0, 1) \ [1, 2)2 × (0, 1). In Figure 10, we
give the support lengths, in piecewise tensor product wavelet coordinates, of the
approximate solutions obtained by the adaptive wavelet-Galerkin scheme vs. the
(relative) `2-norm of their residual in the bi-infinite matrix vector system, the latter
being equivalent to the H1(Ω)-norm of the error. The optimal rate -4 indicated by
the slope of the hypotenuse of the triangle is quite accurately approached for the
problems sizes near the end of the computation.
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Figure 9. Centers of the supports of the piecewise tensor prod-
uct wavelets that were selected by the adaptive wavelet-Galerkin
scheme for the slit domain. The number of wavelets is here 25339.
The right picture is a zoom in of the left one.
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Figure 10. Support length vs. relative residual of the approx-
imations produced by the adaptive wavelet-Galerkin scheme for
the Poisson problem with f = 1 on the thick L-shaped domain
Ω = (0, 2)2 × (0, 1) \ [1, 2)2 × (0, 1) with the piecewise tensor prod-
uct basis.

The centers of supports of the piecewise tensor product wavelets that were se-
lected by the adaptive wavelet-Galerkin scheme are illustrated in Figure 11.

At the end of the computation, the cardinality of the set of adaptively selected
wavelets was approximately 3 · 106. The maximum of ‖|λ|‖∞ or ‖|λ|‖1 over all
λ from this set was equal to 46 or 92, respectively. The maximum of ‖|λ|‖1 was
attained for λ with |λ| = (46, 46, 0), cf. the clustering of points around (1, 1, 1

2 )
in Figure 11. The smallest non-adaptive “full-grid” or “sparse-grid” index set that
contains all adaptively selected wavelets has cardinality equal to approximately
2.3 · 1044 and 2.8 · 1034, respectively.

Finally, we give numerical results for the Poisson problem with f = 1 on the
Fichera corner domain Ω = (0, 2)3 \ [1, 2)3. In Figure 12, we give the support
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Figure 11. Centers of the supports of the piecewise tensor prod-
uct wavelets that were selected by the adaptive wavelet-Galerkin
scheme for the thick L-shaped domain. The number of wavelets is
here 20421.

lengths, in piecewise tensor product wavelet coordinates, of the approximate solu-
tions obtained by the adaptive wavelet-Galerkin scheme vs. the (relative) `2-norm
of their residual in the bi-infinite matrix vector system, the latter being equivalent
to the H1(Ω)-norm of the error. Due to strong singularities caused by the re-
entrant corners and edges, even with a problem size at the end of our computation
of approximately 2.5 · 106, the rate is not yet very close to the asymptotic rate −4.
Nevertheless, we consider a reduction of the initial error by more than a factor 106

to be a convincing result for this notorious hard problem. Recall that a rate −4 in
the H1(Ω)-norm with an isotropic method would require approximation of order
13, if already attainable at all in view of regularity constraints.
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Figure 12. Support length vs. relative residual of the approx-
imations produced by the adaptive wavelet-Galerkin scheme for
the Poisson problem with f = 1 on the Fichera corner domain
Ω = (0, 2)3 \ [1, 2)3 with the piecewise tensor product basis.
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The centers of supports of the piecewise tensor product wavelets that were se-
lected by the adaptive wavelet-Galerkin scheme are illustrated in Figure 13. The

Figure 13. Centers of the supports of the piecewise tensor prod-
uct wavelets that were selected by the adaptive wavelet-Galerkin
scheme for the Fichera corner domain. The number of wavelets is
here 30104.

maximum of ‖|λ|‖∞ or ‖|λ|‖1 over all λ from the set of adaptively selected wavelets
at the end of our computation was equal to 32 or 64, respectively. The maximum
of ‖|λ|‖1 was attained for λ with |λ| equal to (32, 32, 0), (32, 0, 32) or (0, 32, 32), cf.
the clustering of points around (1, 1, 1)± 1

2ei (1 ≤ i ≤ 3) in Figure 13. The small-
est non-adaptive “full-grid” or “sparse-grid” index set that contains all adaptively
selected wavelets has cardinality approximately equal to 1.2 · 1032 and 3.6 · 1025,
respectively.
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