A_∞-algebras, A_∞-categories and the twisted completion

Course by Raf Bocklandt, notes by Abel Stern, Esger Renkema, Han van der Ven

26th May 2015

1 A_∞-algebras and A_∞-categories

In this chapter we lay the groundwork for the Fukaya-category $\text{Fuk}(X)$, the A-part of mirror symmetry. We motivate and expand upon the notion of A_∞-algebras and A_∞-categories. Here A stands for ‘associative’ and ∞ for the relaxation thereof up to higher homotopies, without bound on the degree of the homotopies. In the next chapter, we will see that $\text{Fuk}(X)$ is a Calabi-Yau A_∞-category.

1.1 Motivation from Koszul duality

1.1.1 Algebra structure on Ext^*_A

We start off by (re)introducing some notions and definitions:

- A projective module is a module P that has the following lifting property (with f, g homomorphisms):

$$
\begin{array}{c}
P \\ \xrightarrow{f} \\
\downarrow \\
M
\end{array}
\xrightarrow{ \exists! \ g}
\begin{array}{c}
N \\
\xrightarrow{f} \\
\downarrow \\
M
\end{array}
$$

- A projective resolution P^\bullet is an exact sequence of projective modules P;
- The space Ext^*_A is defined as $H(\text{Hom}(P^\bullet, N))$, with P^\bullet a projective resolution of M.

Now let M be an A-module with projective resolution P^\bullet and let $f \in Z(\text{Hom}(P^k, M))$ (that is, $df = f \circ \pi_{k+1} = 0$):

$$
P_k \xleftarrow{\pi_{k+1}} P_{k+1} \xleftarrow{\pi_{k+2}} P_{k+2} \cdots \xleftarrow{f_{k+2}} P_{k+2} \cdots
$$

$$
M \xrightarrow{f} P_0 \xleftarrow{\pi_0} P_1 \xleftarrow{\pi_1} P_2 \cdots
$$
The projectivity of P^* gives the lift f_0 of f. Then, the surjectivity of π_1 on the image of $f_0 \circ \pi_{k+1}$ ($\text{im} \pi_1 = \ker f_0 \supset \text{im} f_0 \circ \pi_{k+1}$) gives us a second lifting f_1 of $f_0 \circ \pi_{k+1}$. Continuing this process, we obtain from f a chain map $f_k : P_{k+i} \to P_i$.

On $\text{Hom}(P^*,P^*)$, the obvious multiplication is given by the composition of maps; it has a grading $\text{Hom}(P^*,P^*)^n = \bigoplus_k \text{Hom}(P^{k+n},P^k)$ and a differential δ given by $\delta f = [d,f]$. This differential is a derivation, turning $\text{Hom}(P^*,P^*)$ into a differentially graded algebra.

Note that $\ker \delta$ are precisely the chain maps, the lifting of $f \in Z(\text{Hom}(P^k,M))$ is unique up to chain equivalence, and $f = dg$ on $Z(\text{Hom}(P^k,M))$ implies $f = \delta h$ (where h is the lifting of g, with all odd-numbered maps set to zero). Hence, we obtain an isomorphism $H(\text{Hom}(P^k,M)) \simeq H(\text{Hom}(P^*,P^*))$, that is, a DGA structure on Ext_A^*.

1.1.2 Example of Köszul duality: \mathbb{C} as $\mathbb{C}[x,y]$-module

Let $A = \mathbb{C}[x,y]$. A projective resolution of the module $\mathbb{C} \simeq A/(x,y)$ is given by

$$
\begin{array}{c}
\mathbb{C} & \xleftarrow{\pi} & A & \xleftarrow{(x,y)} & A \oplus A & \xleftarrow{(-y,x)} & A & \xleftarrow{0} & 0
\end{array}
$$

Consider a module map $f \in Z(\text{Hom}(A \oplus A, \mathbb{C}))$. As it must vanish on $A(-y,x)$ and x, y act as the zero map on \mathbb{C}, f must vanish away from the identity in either copy of A: let us write π for the projection onto \mathbb{C}, and define $a\xi + b\eta = (a\cdot \pi, b \cdot \pi) : A \oplus A \mapsto \mathbb{C}$, for $a, b \in \mathbb{C}$.

We see that $(a\xi + b\eta) \circ (c\xi + d\eta) = (bc - ad)\zeta$, where $\zeta = \pi$, but with the highest A in the projective resolution as domain. Hence, $\text{Ext}_A^*(\mathbb{C}, \mathbb{C}) \simeq \lambda(\xi, \eta)$, the exterior algebra in two variables.

In fact, $\text{Ext}_A^*(\mathbb{C}, \mathbb{C})$, as an algebra, has a representation on $\mathbb{C} = \text{Ext}_A^*(\mathbb{C}, \mathbb{C})/(\xi, \eta)$ which is zero except in the degree 0 part (i.e. $a\pi \cdot \lambda = a\lambda$, $a, \lambda \in \mathbb{C}$, $\xi\lambda = \eta\lambda = 0$), and $\text{Ext}^*_{\text{Ext}_A^*(\mathbb{C}, \mathbb{C})}(\mathbb{C}, \mathbb{C}) \simeq A$. This phenomenon is called Köszul duality, and A is called a Köszul algebra.

1.1.3 Example failing Köszul duality: \mathbb{C} as $\mathbb{C}[x]/\langle x^n \rangle$-module

Let $A = \mathbb{C}[x]/\langle x^n \rangle$. A projective resolution of the module $\mathbb{C} = A/(x)$ is given by

$$
\begin{array}{c}
\mathbb{C} & \xleftarrow{\pi} & A & \xleftarrow{x} & A & \xleftarrow{x^{-1}} & A & \xleftarrow{x^{-2}} & A \cdots
\end{array}
$$
This resolution never stops, corresponding to the fact that A is ‘not smooth’. Write t_k for the trivial module map $\pi : A \to \mathbb{C}$, applied in degree k, and write $t = t_1$.

From the above diagram, we learn that $t \circ t = x^{n-2}$ acting on A in degree 2. For $n = 2$ we get $t \circ t = t_2$, $\text{Ext}_A(\mathbb{C}, \mathbb{C}) \simeq \mathbb{C}[t]$. For $n > 2$, $\pi \circ x^{n-2} = 0$ so $t \circ t = 0$, $\text{Ext}_A(\mathbb{C}, \mathbb{C}) \simeq \mathbb{C}[t_1, \ldots]/(t_1 \circ t_1 = 0)$; note that this does not depend on n anymore. Thus, we conclude that the algebra structure of Ext only remembers the quadratic part of the relations on A.

1.2 Generalisation of associativity

In this section we discuss a few different ways to see associativity, and motivate a natural generalisation.

Let A be a graded vector space over a field k equipped with a set of maps $\mu_n : A^\otimes n \to A$, $n \geq 0$. We denote multinary (or n-ary) operators $\mu_k : A^\otimes n \to A$, i.e. it acts on n arguments. Note that the degree of such a map is

$$\deg \mu_n = 1 + \dim A - \dim A^\otimes n = 2 - n.$$

Let us consider a few perspectives on associativity. First, we represent the binary operator μ_2 by ‘$ullet \odot \bullet$’. Then we write for the associativity condition as

$$(x_1 \odot x_2) \odot x_3 = x_1 \odot (x_2 \odot x_3).$$

As a function, the same rule is written

$$\mu_2(\mu_2(x_1, x_2), x_3) - \mu_2(x_1, \mu_2(x_2, x_3)) = 0.$$

And as an operator we have

$$\mu_2 \circ (\mu_2 \otimes 1) - \mu_2 \circ (1 \otimes \mu_2) = 0.$$

Another way to write this rule is by means of a diagram. We write arguments x_1, \ldots, x_n as a series of arcs. Each μ_k contracts k such arcs. The associativity rule is then written like

$$\mu_2 \circ (\mu_2 \otimes 1) - \mu_2 \circ (1 \otimes \mu_2) = 0.$$

Of course, we mathematicians like to be minimalistic, so we usually do not write any of the labels. As an example, $\mu_4(x_1, \mu_2(x_2, x_3), x_4, x_5)$ is simply written as
Let us see what is happening here, so that we can cook up similar rules for higher operators $\mu_{k \geq 3}$. Note that the recipe for generalised associativity should contain the following ingredients:

(i) Applying pairs of operators μ_i, μ_j, with $i + j = k - 1$ to the arguments x_1, \ldots, x_k;
(ii) Doing so without changing the order of the arguments;
(iii) Alternate-summing over all configurations via some rule;
(iv) Having the result equal 0.

With R_k the k-th order associativity rule, it should look like

$$R_k := \sum_{1 \leq i, j \leq k-1} \sum_{i+j=k-1} \pm \mu_i \left(x_1, \ldots, x_{a-1}, \mu_j(x_a, \ldots, x_{a+j}), x_{a+j+1}, \ldots, x_k \right) = 0,$$

where \pm is the signature of each term. Now apply the power of the diagrams: write the first few R_k as defined in (2):

$$R_1 = \quad \text{(3)}$$

Note that this is nothing but the familiar rule $d^2 = 0$ for derivations.

$$R_2 = \quad \text{(4)}$$

Here we have the Leibnitz rule, writing $\mu_1 \equiv d$ and μ_2 as $\bullet \circ \bullet$ we regain the familiar form of the distributive law of derivations $d(x_1 \circ x_2) = (dx_1) \circ x_2 + x_1 \circ (dx_2)$.

$$R_3 = \quad \text{(5)}$$

When setting $dx_i = 0$ for all i, that is, when acting on closed forms and $\mu_3(x_1, x_2, x_3) = 0$, we retrieve the classical associative law.

As a remark: we have tacitly been assuming $\mu_0 : k \to A$ to be zero. In some cases, as we will see later in the course, we do need μ_0. We then must also consider diagrams in which new arcs are added, rather than contracted, e.g.,

1.3 A_∞ algebras

The above motivates the formal definition, where we follow [1]:

1. Since we are generalising associativity rules we do not count terms like $\mu_2(\mu_2(x_1, x_3), x_2)$.
Definition 1. Let \(k \) be a field. An \(A_\infty \)-algebra (also known as strongly homotopy associative algebra, or sha algebra), is a \(\mathbb{Z} \)-graded vector space

\[
A = \bigoplus_{p \in \mathbb{Z}} A^p
\]

endowed with graded maps \(\mu_n : A^{\otimes n} \to A \) (\(n \geq 1 \)) of degree \(2 - n \) satisfying

\[
\sum_{r+s+t = n} (-1)^{r+s+t} \mu_{r+1+t}(1^{\otimes r} \otimes \mu_s \otimes 1^{\otimes t})
\] (6)

For the purposes of this course, we will not be too precise about the signature, usually simply writing \(\pm \), rather than the full exponent.\(^2\) For our purposes, therefore, we can replace rule 6, by the pictorial

\[
\sum_{\text{arcs}} \pm x_1 \ldots x_n = 0,
\] (7)

where the summation runs over all possible arcs for \(\mu_s \). Note that equations (3,4,5) are in accordance with this definition.

From this, the following is immediate:

Corollary 1. For \(A_\infty \) algebra \(A \), we have special (familiar) cases:

- If \(\mu_{n \geq 2} = 0 \), \(A \) is a complex.
- If \(\mu_2 \neq 0 \), and \(\mu_{n \neq 2} = 0 \), \(A \) is an ordinary associative algebra.
- If \(\mu_{n \geq 3} = 0 \), \(A \) is a differential \(\mathbb{Z} \)-graded (dg) algebra.

We are interested in relations between \(A_\infty \) algebras. This motivates the definition of morphisms between different such algebras (still following \[1\]):

Definition 2. An \(A_\infty \)-morphism \(F : A \to B \) is a family

\[
F_n : A^{\otimes n} \to B
\]

of graded degree \(1 - n \) maps such that

\[
\sum_{r+s+t = n} (-1)^{r+s+t} F_{r+1+t}(1^{\otimes r} \otimes \mu_s \otimes 1^{\otimes t}) = \sum_{1 \leq i_1 \leq n; i_1 + \ldots + i_s = n} (-1)^{\sigma} \mu_{i_1}(F_{i_1} \otimes \ldots \otimes F_{i_s}),
\] (8)

\(^2\) Note that, in fact, additional signs appear, when applied to elements, due to the Koszul sign rule

\((f \otimes g)(x \otimes y) = (-1)^{\deg f \deg x} f(x) \otimes g(y) \),

for graded maps \(f, g \), and homogeneous elements \(x, y \).
where the signature $\sigma = (r-1)(i_1 - 1) + (r-2)(i_2 - 1) + \ldots + (i_{r-1} - 1)$ depends on the permutation of the i_j-indices. In pictures:

$$\sum_{\text{arcs}} \pm x_1^{x_2} \cdots x_{n-1}^{x_n} F_{n-s+1}^{\mu_s} = \sum_{r=1}^{n} \sum_{\text{arcs}} \pm x_1^{x_2} \cdots F_{i_2}^{F_{i_1} \cdots F_{i_{u}}^{\mu_r}}, \quad (9)$$

where we sum over all possible arcs for μ_s on the left, and all possible arcs for F_i, through F_{i_u}, for every r on the right.

The morphism F is a (quasi-)isomorphism if F_1 is a quasi-isomorphism, F is strict if $F_1 \neq 1 = 0$, and the strict morphism, such that $F_1 = 1_A$ is the identity morphism. Loosely speaking, we can see F as a map where F_1 is the core part, and $F_i \geq 2$ are (small) high order corrections, much like a Taylor series near its expansion point.

The composition of morphisms $G : A \rightarrow B, F : B \rightarrow C$ takes the form

$$(F \circ G)_n = \sum (-1)^{\sigma} F_{r} \circ (G_{i_1} \otimes \ldots \otimes G_{i_{u}}),$$

where the summation and σ are just as in the right hand side of (8).

In this course, we are mainly interested in complexes, up to quasi-isomorphism. We can pull a quasi-isomorphism through the algebra, inducing a quasi-isomorphism between complexes:

$$A \xrightarrow{\cong} B; \quad \mu_1 \xrightarrow{\cong} \bar{\mu}_1$$

The higher order operations are defined inductively; having defined $\bar{\mu}_n$, we define $\bar{\mu}_{n+1}$ in accordance with the generalised associativity rules (6).

2 Minimal Model

Let (A, μ_1) be a dg-algebra. Our goal is to construct an A_∞ structure on the homology of A that is quasi-isomorphic to A itself. We follow a special case of Kadeishvili’s construction. In this section, we write A^i for a module over A.

We start by noting that the degree-one map $\mu_1 : A \rightarrow A$ acts a differential on the A-modules A^i. For familiarity, in this section we will write $d \equiv \mu_1$. For differentials we know that $d^2 = 0$, meaning $B^i \equiv \text{im } d^{i-1} \subseteq \ker d^i \equiv Z^i$. Therefore, there are subspaces H^i such that $Z^i = B^i \oplus H^i$, and L^i such that

$$A^i = Z^i \oplus L^i = B^i \oplus H^i \oplus L^i,$$

where we have

- B^i the coboundaries in A^i;
• H^i a complement of the coboundaries B^i within the cocycles Z^i;
• L^i a complement of the cocycles B^i in A^i.

Note that the H^i and L^i are non-unique! The cochain complex is schematically depicted below.

For clarity, the $0 \in B^i$ has been added to the diagram. In this diagram, mappings by d^* cannot cross the drawn arrows.

We identify the homology $H(A) := \bigoplus H^n$, that is: the hatched part of the above diagram. Let $\iota : H(A) \hookrightarrow A$ be the inclusion map, and $\pi \equiv \pi_H : A \to H(A)$ be the projection map. Consider a homotopy $h : A \to A$ from $\mathbb{1}_A$ to π, and such that it satisfies, for every n

- $h^n|_{B^n} = 0$;
- $h^n|_{H^n} = \left(d^n|_{H^n}\right)^{-1}$;
- $h^n|_{L^n} = 0$.

Since h is a homotopy, it follows that $\pi = \mathbb{1}_A - (hd + dh)$; and from the restriction conditions above, we have that $h^{n+1}d^n = \pi_{L^n}$, and $d^{n-1}h^n = \pi_{B^n}$. It follows that $hdh = h$ (much like the Hodge star codifferential definition $\delta = \pm \star \ast^{-1} d\ast$).

The above definition of h can be summarized by the diagram obtained by simply reversing the arrows and writing 0 on top.

Using π and ι, we can go back and forth between A and $H(A)$. This will allow us to transfer the operators μ on A to $H(A)$.

Starting in $H(A)^{\otimes k}$, we do so by taking the sum of all possible ways to repeatedly apply μ operators from the original algebra A, such that we end up in $H(A)$. This
Figure 1: An example tree such as to be summed over (here $k = 7$). The formal expression of this specific chain of operations is $\pi(\mu_2(h\mu_3(h\mu_3(\iota(a_1),\ldots),\ldots),\iota a_7)$.

gives rise to operator $\mu_{H(A)} : H(A)^{\otimes k} \to H(A)$:

$$\mu_{H(A)}(a_1, \ldots, a_k) = \sum_{\text{trees}} \pm a_1 \ldots a_k. \quad (10)$$

By ‘trees’ we mean the application of μ’s in A mentioned above. Incoming external lines are identified with i so as to be able to work in A. Nodes are identified with μ_i, where i is the number of incoming lines. The (sole) outgoing external line is identified with π, so as to end back up in $H(A)$. Note that the degree of μ_i is 1, so that internal lines should be identified with h. Additionally, the property $h dh = h$ makes trivial nodes with μ_1 obsolete, saving us from infinite trees. An example tree is given in (fig.1).

These trees are a typical example of a nice expression that you would never want to explicitly calculate. Luckily, since we work in homology, we are saved by quasi-isomorphism arguments. In fact, a different choice of h generally leads to a different, but quasi-isomorphic, expression for $M_{H(A)}$. The general information is therefore contained in the structure, rather than in the explicit expression of the trees.

3 Alternative construction: Bar formalism

A_∞ structures can also be defined via the Bar coalgebra. However, we will need a few definitions before we can do that, please be patient:

The reduced tensor product $\bar{T}V$ over some vector space V is the direct sum $\bar{T}V := \bigoplus_{i=1}^{\infty} V^{\otimes i}$ that starts at 1 instead of 0. You can view this as a coalgebra: a coalgebra has a splitting operation $\Delta : A \to A \otimes A$ that is similar to the product of an algebra:

- algebra: $\mu : A \otimes A \to A$, $\mu(\mu \otimes 1) - \mu(1 \otimes \mu) = 0$
- coalgebra: $\Delta : A \to A \otimes A$, $(1 \otimes \Delta)\Delta - (\Delta \otimes 1)\Delta = 0$
In our case, $\tilde{T}V$ is a coalgebra by the following:

$$
\Delta(v_1 \otimes \cdots \otimes v_k) = \sum_{k=1}^{i-1} (v_1 \otimes \cdots \otimes v_k) \otimes (v_{k+1} \otimes \cdots \otimes v_i)
$$

and $\Delta(v_i) = 0$

On co-algebras we can co-have co-derivations: a coderivation is a map (perhaps regrettably also denoted d) $\tilde{T}V \rightarrow \tilde{T}V$ for which $\Delta d = (d \otimes 1)\Delta + (1 \otimes d)\Delta$.

Now let SA be the suspension of A. That is: $(SA)^k := A^{k+1}$, or A shifted by one degree. Then, finally, an A_∞-structure on A can be seen as a coderivation d on $\tilde{T}(SA)$ such that $d^2 = 0$. ($\tilde{T}(SA)$ is also called the Bar coalgebra $B(A)$.)

How would this map $d : \tilde{T}(SA) \rightarrow \tilde{T}(SA)$ look? Consider the restriction to a single degree $d_i : (SA)^\otimes i \rightarrow \tilde{T}(SA)$; we can split this into a sum $\oplus d_i^j$, where d_i^j takes out j degrees. It can be shown that the definition of a coderivation determines all d_i^j uniquely by d_i^1. In fact, from $d^2 = 0$ it follows that we can identify d_i^1 with μ_i by $\mu_i = S^{\otimes 1} \circ d_i^1 \circ S^{-1}$ (with S is the suspension isomorphism), thus giving the A_∞ structure we recognise.

For an ordinary algebra, the Bar resolution is the resolution of the algebra as a bimodule over itself:

$$
\tilde{T}(SA) : A \leftarrow A \otimes A \xleftarrow{\mu_2} A \otimes A \xleftarrow{\mu_2 \otimes 1 - 1 \otimes \mu_2} A \otimes A \leftarrow \cdots
$$

Clearly, the algebra structure coincides with the differential on the Bar resolution of A.

4 A_∞-categories

Any k-algebra can be seen as k-linear category C with one object, \bullet. In that view, the actual algebra corresponds to the morphisms $\text{Hom}_{\mathcal{C}}(\bullet, \bullet)$, where the composition of two morphisms corresponds to the algebra product.

In much the same way, an A_∞ algebra can be seen as A_∞ category with one object. Furthermore, it is possible to define an A_∞ functor as a generalisation of A_∞ morphisms. A more detailed discussion of A_∞ categories can be found on http://ncatlab.org/nlab/show/A-infinity-category, but is outside the scope of this chapter.

4.1 Representations of A_∞-categories and twisted completion

When we view an algebra as a category C with one object, we can view the morphisms of the category as the elements of its representation. The representation itself is from that point of view a functor $C \rightarrow \text{Vect}(\mathbb{C})$. This leads to the following category:
Definition 3. A-mod is the category that has representations (or modules) of A as objects and morphisms of modules as morphisms.

It is possible that different algebras have equivalent module categories; this is the subject of morita theory. For example, \mathbb{C} and $\text{Mat}_n(\mathbb{C})$ are morita equivalent, since in both cases A-mod is the category of complex vector spaces.

Switching to A_∞ algebras, a representation of A becomes an A_∞ functor $A \to \text{dgVect}$, where dgVect is the category of differentially graded vector spaces. Here, too, different algebras can have equivalent representations. In particular, the twisted completion $\text{Tw}A$ of A has the same representation.

The twisted completion of an A_∞ category A has as objects the pairs (M, δ), where M is the formal direct sum $\bigoplus e_i[j_i]$ with e_i objects in A and j_i a shift; δ is an (upper triangular) matrix of elements in $\text{Hom}_A(e_i, e_j)$ shifted by $j_j - j_i$. (δ must be upper triangular because $\mu_1(\delta) + \mu_2(\delta, \delta) + \cdots = 0$.)

References