
Part I

Error Correcting Codes

1

Chapter 1

Finite fields

Finite fields are a very valuables source of combinatoric constructions, es-
pecially in coding theory and cryptography. In this first chapter we will
construct these fields and review their properties. This chapter is meant as
an overview and hence we only state results without proving them.

1.1 Prime fields

As we know a field F, +, · is an algebraic structure where F, + is a commuta-
tive group with neutral element denoted by 0 (i.e associative, commutative,
neutral element, inverses exist) and F \ {0}, · is a commutative group with
neutral element 1. Finally between the addition and the multiplication the
distributive laws holds. This means that in a random field one can do exactly
the same operations as one would do with the rational, real or complex num-
bers. The aim of this chapter is now to find examples of fields that contain
only a finite number of elements.

The starting point of our expedition is the ring of the integers, Z. Z has most
properties of a field, except that there are not inverses for the multiplication.
One can solve this problem by introducing fractions leading us to the field
of rational numbers Q. However in this way one obtains an infinite field.

3

4 CHAPTER 1. FINITE FIELDS

There is a second possibility to turn Z into a field. Although we cannot
always divide in Z, there is a division algorithm that given numbers a and p
produces a quotient q and a rest r such that

a = pq + r, 0 ≤ r < |p|

If we take a fixed p, the trick is now to treat numbers with the same rest
divided by p as the same, and define the addition and multiplication up to
the rests;

Definition 1.1. We say that a, b ∈ Z are equivalent modulo p ∈ N if the
differ only by a multiple of p.

a ≡ b mod p ⇔ p|a− b

The equivalence class of a modulo p is the set of integers that are equivalent
modulo p with a:

[a]p := {b ∈ Z|a ≡ b mod p}
The ring Zp := {[a]p|a ∈ Z} is the ring of rest classes modulo p together with
the obvious addition and multiplication.

[a]p + [b]p := [a + b]p, [a]p · [b]p := [a · b]p.

For sake of simplicity we will abandon the notation [a]p in favor of a when it
is obvious what we mean.

One can check that for every number in {0, . . . , p − 1} there is a unique
equivalence class so one can identify the classes with those numbers. Addition
and multiplication are a piece of cake: one computes it in the ring of integers
and then one takes the rest for division by p.

Computing inverses for the multiplication is more complicated. [b]p is the
inverse of [a]p if

[a]p[b]p = [1]p or ∃q ∈ Z : ab + pq = 1.

For random a and p such a b can only exists if their greatest common divisor
is 1 and in that case one can compute this b by using the algorithm of Euclid.

Algorithm 1.1 (The algorithm of Euclid). Suppose a and b two integers,
we compute their gcd and write it as a linear combination of a and b.

1.2. POLYNOMIAL RINGS 5

1. Set r0 the biggest of a and b in absolute value, and r1 the other one.
Put i = 1 and define

t0 = 1, t1 = 0

s0 = 0, s1 = 1

2. If ri 6= 0 divide ri−1 by ri and call the quotient qi and the rest ri+1.
Put also

ti+1 = −qiti + ti−1

si+1 = −qisi + si−1

increment i by 1 and repeat this until ri = 0. If this is the case ri−1 is
the greatest common divisor.

3. Because of the definition of the s and t we have for each j the identity

rj = tja + sjb

Especially for j = i−1 we have expressed the greatest common divisor
in terms of the original polynomials.

Because inverses only exist if the gcd is 1, Zp will only be a field if p is a
prime in this case every a 6= [0]p will have gcd(a, p) = 1.

Theorem 1.1. Zp is a field if and only if p is a prime, in that case we also
denote is by Fp.

Exercise 1.1. Write source code that enable you to add, subtract, multiply
and divide in Fp for a random prime p.

1.2 Polynomial rings

In the previous section we have already constructed a infinite number of finite
fields, but there are more. In order to find the others we will introduce here
polynomial rings over fields.

6 CHAPTER 1. FINITE FIELDS

Definition 1.2. The ring of polynomials over a field F is

F[X] := {
n∑

i=0

aiX
i|0 ≤ n < ∞, ai ∈ F}

Addition and multiplication are the usual like in R[X]. The degree of a
polynomial is the highest coefficient

Example 1.1. Adding polynomials over F2 is like adding normal polynomials
keeping in mind that 1 + 1 = 0 and hence

(X5 + X3 + X + 1) + (X4 + X3 + 1) = X5 + X4 + (1 + 1)X3 + X + (1 + 1)

= X5 + X4 + X.

The product of two polynomials is also obvious

(X2 + 1)(X3 + X + 1) = (X5 + X3 + X2) + (X3 + X + 1)

= X5 + X2 + X + 1

This structure is not a field because we still don’t have inverses but we have
overcome the problem of the zero divisors because the degree (the highest
non-zero power of X) of the product of two polynomials is the sum of the
degrees of those two polynomials. Nevertheless it is an important structure
in the way that all possible finite fields are derived from such rings.

Although we don’t have inverses in F[X], we can divide polynomials with the
division algorithm. Given two polynomials a(X), b(X) we can compute the
quotient q(X) and rest r(X) such that

a(X) = b(X)q(X) + r(X) and degr(X) < degb(X)

f.i. in F2

X4 + X2 + X + 1 = (X2 + X + 1)(X2 + X + 1) + X

Just as in normal division theory with the natural numbers, we can define
prime (or more correct irreducible) polynomials which have no nontrivial
divisors. Like with ordinary numbers we can decompose every polynomial in
his prime components.

X4 + X2 + X + 1 = (X + 1)(X3 + X2 + 1), (in F2).

1.3. QUOTIENT RINGS 7

We also can define te concept op greatest common divisor (gcd) and least
common multiple (lcm) of two or more polynomials. An important prop-
erty of the gcd is that we can express gcd(a(X), b(X)) as a combination of
multiples of a(X) and b(X). For this we again use the algorithm of Euclid,
adapted to polynomials. The lcm on the other hand can be calculated by
dividing the product of the two polynomials by its gcd.

1.3 Quotient rings

As we have seen a polynomial ring behaves more or less like the ring of
integers, Z. Therefore it can be used in the same way to construct new finite
fields.

Consider a polynomial g(X) of degree n in Fp[X] Two polynomials a(X) and
b(X) are said to be equivalent modulo g(X) if they have the same rest if
divided by g(X) or equivalently if their difference divides g(X). We write

a(X) = b(X) mod g(X)

We construct a new ring by looking again only up to equivalence modulo
g(X). We consider a new ring F2[X]/(g) which consists of elements

[a(X)]g := {b(X) ∈ F2[X]|a(X) = b(X) mod g(X)}

the addition and multiplication are defined as

[a(X)]g + [b(X)]g = [a(X) + b(X)]g, [a(X)]g · [b(X)]g = [a(X)b(X)]g

Because rests always have a lower degree than g, every polynomial is equiva-
lent with one of degree smaller than n. Therefore there are only pn elements
in this ring corresponding to all possible rests. The easiest way to work in
this ring is to work only with the rests and each time you multiply you must
calculate the rest of the product divided by g.

It is not necessarily true that this ring has no zero divisors because we could
have the situation that the product of two rests gives us a multiple of g(X)
f.i.

[X2]X4 [X3]X4 = [X5]X4 = [0]X4

8 CHAPTER 1. FINITE FIELDS

This is only possible when g(X) is not a prime polynomial because if g(X)
were prime and g(X)|a(X)b(X) then a(X) or b(X) must contain g(X) in its
prime decomposition and thus its rest will be zero. Computing inverses is
also done by using the algorithm of Euclid for polynomials.

For sake of simplicity we will drop the notation [·]g and denote [X]g by a
Greek letter f.i. ξ. We easily have that [a(X)]g := a(ξ).

Example 1.2. If we take g(X) := X2+X+1 the field F2[X]/(g(X)) will con-
sist of four elements: 0, 1, ξ, ξ+1 with the following tables for multiplication
and addition:

+ 0 1 ξ ξ + 1

0 0 1 ξ ξ + 1
1 1 0 ξ + 1 ξ
ξ ξ ξ + 1 0 1

ξ + 1 ξ + 1 ξ 1 0

· 1 ξ ξ + 1

1 1 ξ ξ + 1
ξ ξ ξ + 1 1

ξ + 1 ξ + 1 1 ξ

Example 1.3. If we take g(X) := X2 + 1 then F2[X]/(g(X)) is not a field
anymore) because X2 + 1 = (X + 1)2. it will consist again of four elements:
0, 1, ξ, ξ + 1, but ξ + 1 won’t be invertible because (ξ + 1)2 = 0.

· 1 ξ ξ + 1

1 1 ξ ξ + 1
ξ ξ 1 ξ + 1

ξ + 1 ξ + 1 ξ + 1 0

The number of elements in a finite field will be exactly pn with n the degree
of the prime polynomial. For p = 2, n = 2 we just have one irreducible
polynomial: X2 + X + 1. For n bigger this is not true anymore. If n is 3 we
have exactly 2 irreducibles:

X3 + X + 1, X3 + X2 + 1.

This does not mean that there are two different kinds of fields with 8 elements.
Mathematically F2[X]/(X3+X+1) and F2[X]/(X3+X2+1) are isomorphic.

1.3. QUOTIENT RINGS 9

This means that we can identify the elements of both fields. To put it more
clearly take ξ := [X]X3+X+1 and η := [X]X3+X2+1 than we see that

(ξ + 1)3 + (ξ + 1)2 + 1 = ξ3 + ξ2 + ξ + 1 + ξ2 + 1 + 1

= ξ3 + ξ + 1 = 0

So ξ + 1 fulfills the same equation in the first field as η in the second field.
Via this method we can identify all the elements of the two fields with each
other:

0 −→ 0 ξ2 −→ η2 + 1
1 −→ 1 ξ2 + 1 −→ η2

ξ −→ η + 1 ξ2 + ξ −→ η2 + η
ξ + 1 −→ η ξ2 + ξ + 1 −→ η2 + η + 1

One can prove that for every n there exists at least 1 irreducible polynomial
of degree n and that if there exists more of them they all induce isomorphic
fields.

Theorem 1.2. For every prime power q := pn there exists a unique finite
field with q elements, this is called the Galois field with q elements and is
denoted by Fq.

Miniature 1: Evariste Galois (1811-32)

Mathematican, born in Bourg-la-Reine, France. He
was educated privately and at the Collège Royal
de Louis-le-Grand. Despite mathematical ability
he failed the entrance for the Ecole Polytechnique
to study maths, and settled for the Ecole normale
Supérieure in 1829 to train as a teacher, but was ex-
pelled in 1830 for republican sympathies. He engaged
in political agitation, was imprisoned twice, and was
killed in a duel aged 21. His mathematical reputation
rests on original genius in the branch of higher algebra
known as group theory.

10 CHAPTER 1. FINITE FIELDS

1.4 Galois fields

We will now investigate some properties of those fields. In what follows we
will set q equal to pn.

Theorem 1.3. for a finite field Fq, F∗
q := Fq \ {0} will be a commutative

cyclic group with q − 1 elements.

This theorem states that there exists an element α ∈ F∗
q such that every

other element of F∗
q can be expressed as a power of α. For example in F8 we

can take ξ itself:

[0 = 0] ξ2 = ξ2

1 = ξ0 ξ2 + 1 = ξ6

ξ = ξ1 ξ2 + ξ = ξ4

ξ = ξ3 ξ2 + ξ + 1 = ξ5

Here we used all the powers of ξ until the sixth, if we compute the seventh
power we will see that its again 1 so we have for every element in F∗

8 an
infinite number of possibilities to express it as a power of ξ:

ξ + 1 = ξ3 = ξ10 = ξ17 = . . .

One can also take η because ξ3 = η thus ξ = ξ15 = η5 and so f.i.

ξ2 + ξ + 1 = ξ5 = η25 = η4.

However it is not true that one can always take the generator element of the
Galois field. Consider F16

∼= F2[X]/(X4 + X3 + X2 + X + 1) and take ξ to
be the equivalence class of X. One can compute that

ξ5 = ξ(ξ3 + ξ2 + ξ + 1)

= (ξ3 + ξ2 + ξ + 1) + ξ3 + ξ2 + ξ

= 1.

In general there is no algorithm to find a generator of the cyclic group, so
one has to do some trial and error.

1.4. GALOIS FIELDS 11

Consider an element α ∈ Fq. A polynomial a(X) ∈ F2[X] such that a(α) = 0
is called a characteristic polynomial for α, the characteristic polynomial of
least degree is called the minimal polynomial of α. One can show that the
minimal polynomial divides every other characteristic polynomial and that
it is irreducible. F.i. In F4 s(X) = X3 + 1 is a characteristic polynomial for
ξ because ξ3 = (ξ + 1)ξ = ξ + 1 + ξ = 1 but it is not its minimal polynomial
since

X3 + 1 = (X + 1)(X2 + X + 1) and ξ2 + ξ + 1 = 0.

The degree of an element of a finite field is defined as the degree of its minimal
polynomial. Not all the elements of a finite field have the same degree. In
F16 = F2[X]/(X4 + X + 1) ξ obviously has degree 4 but for ξ5 we have that

ξ10 = ξ2(ξ + 1)2 = ξ4 + ξ2 = ξ + 1 + ξ2 = ξ(ξ + 1) + 1 = ξ5 + 1.

So ξ5 has minimal polynomial X2+X+1. This implies also that F16 contains
a subfield generated by ξ5. This subfield contains the 4 elements 0, 1, ξ5 and
ξ5 + 1 and it is isomorphic to F4. Although F16 contains F4 it does not
contain F8. This is because if it would there would exist an element α such
that α7 = 1 suppose that this element can be written as ξj then ξ7j = 1 = ξ15

so 15 must divide 7j and thus also 15|j and α = 1 which is a contradiction.

Theorem 1.4. Generally one can embed Fpm in Fpn if and only if m|n, more-
over there is only one subfield of Fpn isomorphic to Fpm . If ξ is a generator
of F∗

pn and then F∗
pm will be generated by

ξ
pn−1
pm−1 .

Some elements of a finite field have the same minimal polynomial, in F4 e.g.
ξ and ξ + 1 both satisfy X2 + X + 1, ξ by definition, ξ + 1 because

(ξ + 1)2 + ξ + 1 + 1 = ξ2 + 1 + ξ + 1 = ξ + 1 + 1 + ξ + 1.

One can prove that every minimal polynomial of an element in a finite field
has as many roots as it’s degree. In F8 for example the minimal polynomial
of ξ is X3 + X + 1, but one can compute also that but ξ2 and ξ4 are roots of
the same polynomial.

(ξ2)3 + ξ2 + 1 = (ξ + 1)2 + ξ2 + 1 = ξ2 + 1 + ξ2 + 1 = 0

(ξ4)3 + ξ4 + 1 = (ξ + 1)4 + ξ4 + 1 = ξ4 + 1 + ξ4 + 1 = 0.

12 CHAPTER 1. FINITE FIELDS

this is also a general rule if α is a root of a polynomial then αp, αp2
, αp3

, . . .
will be also roots. Take care some, of those roots will be the same as previous
ones. In F8 We have that ξ8 = ξ, so there aren’t any new roots apart from
ξ, ξ2 and ξ4.

Because F∗
q is a cyclic group of q − 1 elements, we have that α ∈ F∗

q

∀α ∈ F∗
q : αq−1 = 1

This implies that every element of Fq, including the zero is a root of the
polynomial Xq −X. So all the minimal polynomials divide Xq + X so that
Xq + X is the product of all minimal polynomials of elements in Fq.

X9 −X = X︸︷︷︸
0

(X + 1)︸ ︷︷ ︸
1

(X3 + X + 1)︸ ︷︷ ︸
ξ,ξ2,ξ4

(X3 + X2 + 1)︸ ︷︷ ︸
ξ3,ξ5,ξ6

As we considered polynomials over the prime field Fp, we can also consider
polynomials over the field Fq. Most of the properties of these polynomials
are the same as those of Fp[X]. We again have a division algorithm and one
can also define irreducible polynomials, and we have a unique factorization
theorem. Notify however that a polynomial which is irreducible over F2 might
not be irreducible for a bigger field. In F4

X2 + X + 1 = (X + ξ)(X + ξ + 1).

In general when α is a root of a polynomial a(X) over a field then X − α
divides a(X). To calculate the quotient a(X)/(X + α) one uses the method
of Horner.

Example 1.4. Compute the quotient of f(X) := X4+ξX3+X2+(ξ+1)X+ξ
divided by X − ξ over F4

1 ξ 1 ξ + 1 ξ
+ ξ 0 ξ ξ
= 1 0 1 1 0

In the upper line we put the coefficients of f(X). The third line is the sum
of the two upper lines and the kth element of the second line is ξ times the
(k−1)th element of the third line. The coefficients of the quotient are all but
the last element of the third line, so here the qoutient is X3 + X + 1.

1.4. GALOIS FIELDS 13

One could also try to produce fields taking polynomials over Fq but those
fields will be isomorphic to the one we already found. For instance if we take
the polynomial X2 + X + ξ over F4 and represent α = [X]X2+X+ξ than we
can identify the new field with F16 because

α4 = (α + ξ)2

= α2 + ξ2

= α2 + ξ + 1

= α2 + α2 + α + 1

= α + 1

So α satisfies the polynomial X4 + X + 1 over F2 and so we can identify it
with an element of F16.

Exercise 1.2.

• Write source code that can add, multiply and divide over a finite field
Fp[X]/(g(X)) if p and g(X) are given.

• Write source code that can find a generator element of Fp[X]/(g(X))∗, ·
and produces a conversion table between the additive and the exponen-
tial notation of the finite field.

• Write source code that generates prime polynomials over Fp[X]

14 CHAPTER 1. FINITE FIELDS

Chapter 2

Linear Codes

2.1 Error correcting codes

Almost all systems of communication are confronted with the problem of
noise. This problem has many different causes both human or natural and
imply that parts of the messages you want to send, are falsely transmitted.
The solution to this problem is to transmit the message in an encoded form
such that contains as certain amount of redundancy which enables us to
correct the message if some errors have occurred.

Mathematically one can see a coded message as a sequence of symbols chosen
out of a finite set F . If an error occurs during the transmission, some of the
symbols will be changed, and the sequence received will differ at some posi-
tions from the original. If one would allow to transmit all possible sequences,
one could never correct any errors because one could always assume that the
received message is the one sent and that no errors have occurred.

To avoid this problem we restrict ourself to transmit only special sequences
which we call code words. If few errors occur during the transmission one
will see that the received message is not a codeword. In this way the receiver
knows that errors have occurred. To correct the message one searches for the
code word which is the closest to the received message, i.e. which differs at
the least number of positions with the received message.

15

16 CHAPTER 2. LINEAR CODES

Example 2.1. Suppose you have to navigate at distance a blind person
through a maze. One could use a morse like coding system:

Action Code

One step forward ..
One step Backward −−
Turn left .−
Turn right −.

This code is useful as long as no errors occur, because even if only a single
error occurs the blind person would not notice this, understand a different
command and probably walk against a wall.

To improve the system one could use this code

Action Code

One step forward ...
One step Backward −− .
Turn left .−−
Turn right −.−

All the codewords here contain an even number of bars, if one error occurs
during the transmission, there will be one bar more or less and the received
message will no longer be a code word. The blind person will notice this
and could ask for retransmission. However he will not be able to correct the
message himself because if he receives −.., the original message could be ...
or −.−. We call such a code a single error detecting code.

To do better we use the concatenation of the previous two codes.

Action Code

One step forward
One step Backward −−−− .
Turn left .− .−−
Turn right −..−−

2.1. ERROR CORRECTING CODES 17

If here one error occurs, the blind person can deduce what the original mes-
sage was because if the error occurred in the first two symbols he will see
that the last three digits form a code word of the second code and decode
the last tree symbols. If the error occurs in the last tree digits these will no
more be a code word of the second code, so he nows that the first two digits
are correct and take these to decode. This code is a single error correcting
code.

We ’ve seen that we can construct codes that are able to correct mistakes, but
the prize for it is redundancy. As we saw above we had to use five symbols to
transmit, symbols in stead of two, to produce a single error correcting code.

We will now formalize all this to get an exact definition of the concept code:

Definition 2.1. Suppose F is a finite set of symbols. A n-code C over F is
a subset of Fn. If F = F2 we call the code binary.

So for the last example the used code

C := {00000, 11110, 01011, 10101}

is a binary 5-code.

Definition 2.2. An error occurred at the ith place changes the ith entry of
a codeword. f.i.

11110 7→ 10110

is an error occurred at the second place.

Definition 2.3. The Hamming distance d(x, y) between two sequences of
symbols x, y is the number of places where they differ f.i.

d(11110, 01011) = 3

This function is really a distance function meaning that it satisfies the fol-
lowing easily to prove properties

• ∀x, y ∈ C : d(x, y) = d(y, x)

• ∀x, y ∈ C : d(x, y) = 0 ⇔ x = y

18 CHAPTER 2. LINEAR CODES

• ∀x, y, z ∈ C : d(x, y) ≤ d(x, z) + d(z, y)

When i errors occur the Hamming distance between the original code word
and the received message will be i. The normal procedure to correct the
received message is to assume that the least possible errors occurred so the
reconstructed codeword will be the one with the smallest Hamming distance
from the received message.

Example 2.2. If we are still using code C and you receive as message 11010
you will decode it as 11110 because

d(11010, 00000) = 3

d(11010, 11110) = 1

d(11010, 01011) = 3

d(11010, 10101) = 4

and it is most likely that only 1 error had occurred. If the chance of trans-
mitting a correct bit is 90% then the probability that only one error occurred
is

C1
5(.9)4(.1)1 = .32805

probability that 3 errors occurred:

C3
5(.9)2(.1)3 = .0081

is 400 times less so it will be most obvious to decode it the way we did.

Definition 2.4. The distance of a code is the minimum of the distances
between all codewords.

d(C) = {d(x, y)|x, y ∈ C}

The parameters of a code are formed by n the number of symbols used for a
code word, |C| the size of the code an d it’s minimal distance. in This case
we speak of an (n, |C|, d)-code

One can easily compute that in the example we are using d(C) = 3. If a code
has distance n it can detect every possible n−1 error-pattern. If we change at
most n− 1 bits the received message can never be again a codeword because
every codeword is at a distance at least n of the transmitted codeword.

2.1. ERROR CORRECTING CODES 19

If d = 2n + 1 then the code can correct every possible n-error pattern. If we
change at most n bits the Hamming distance between the received message
r and the transmitted codeword c will be equal or less than n. Suppose now
x is any other code word then

d(c, x) ≤ d(c, r) + d(r, x)

−d(c, r) + d(c, x) ≤ +d(r, x)

2n + 1− n ≤ d(x, r)

n + 1 ≤ d(x, r)

so the original codeword will still be the codeword closest to the received
message.

That the concept of error correcting codes is indeed very useful to transmit
messages over a noisy channel can be shown by a little computation. Suppose
again that the error rate is 10% and that we have to transmit messages, each
chosen out of 4 possibilities. if we use the simplest code

C = {00, 11, 01, 10}

the probability that one receives the correct message is here.

.92 = 81%

If we use the code

C := {00000, 11110, 01011, 10101}

the probability of finding the correct message will be

.95 + C1
5 .9

4.1 = 91%.

So the error rate is reduced by 50%.

Miniature 2: Richard W. Hamming

20 CHAPTER 2. LINEAR CODES

Richard W. Hamming received the 1968 Turing Award
for his work on error-correcting codes at AT& T Bell
Laboratories, where he worked for 30 years on a mul-
titude of research projects. He joined the Naval Post-
graduate School in Monterey, California, in 1976 as
Adjunct Professor, where he is currently involved in
teaching and writing books on probability and com-
binatorics. Hamming is a scientific generalist whose
aims have included to teach his students an attitude
of excellence toward science, not just technical skills.

2.2 Linear codes

In order to use the algebraical methods we introduced in the previous chapter,
we will now define the notion of a linear code.

Definition 2.5. A linear binary [n,m, d]-code C over the finite field Fq is an
m-dimensional subspace of Fn

q , which has a minimal distance d. By subspace
we mean that

∀x, y ∈ C : ∀a, b ∈ Fq : ax + by ∈ C.

The fact of being m-dimensional makes that C contains qm code words.

Example 2.3. • C := {000, 110, 011, 101} is a binary linear [3, 2, 1]-
code.

• C := {00000, 11110, 01011, 10101} is a binary linear [5, 2, 3]-code.

• C := {0000, 1110, 0101, 1001} isn’t linear because 1110 + 0101 =
1011 6∈ C.

• C := {00, 1ξ, ξξ2, ξ21} is a linear [2, 1, 2]-code over F4.

Definition 2.6. The weight w of a codeword is the total number of non-zero
elements in it’s sequence:

w(01101101) = 5

2.2. LINEAR CODES 21

In a linear code C the minimal distance is also the least weight of the code-
words in C because if d = d(x, y) then x− y will be nonzero at exactly those
places where x and y differ.

∀x, y ∈ C : d(x, y) = w(x− y).

Because x − y is in C there will be a vector which has weight equal to the
minimal distance. Vice versa we have that d(o, x) = w(x) so the minimal
weight will be the minimal distance.

On the vectorspace C we can also define a scalar product ·. This maps every
pair of codewords onto F2 in a bilinear way

Definition 2.7.

∀x := x1 · · · xn, y := y1 · · · yn ∈ Fn
q : x · y = x1y1 + · · ·+ xnyn ∈ Fq

two sequences whose scalar product is 0 are said to be orthogonal. The
orthogonal complement of a subset S ⊂ Fn

q is the set of all sequences that
are orthogonal to each sequence in S:

S⊥ := {x ∈ Fn
q |∀y ∈ S : x · y = 0}

Example 2.4. Here we first compute the scalar product of two sequences in
F2.

11001 · 01101 = 1 · 0 + 1 · 1 + 0 · 1 + 0 · 0 + 1 · 1
= 0 + 1 + 0 + 0 + 1 = 0

We can also compute the orthogonal complement of the code

C := {00000, 11110, 01011, 10101}
C⊥ := {00000, 11110, 01010, 10100,

11001, 00111, 10011, 11001, 01101}

Which is a again a linear code because of the distributivity of the scalar
product. this code is called the orthogonal code.

22 CHAPTER 2. LINEAR CODES

2.3 Basis and generator matrix

We will here review the concept of linearly dependence and see how it relates
to linear codes. If we consider some codewords x1, · · · , xk ∈ C then they are
said to be linear independent if there exists no numbers ai ∈ F2 such that

a1x1 + · · ·+ akxk = 0

and not all the ai are zero. Otherwise {xi} is said to be linear dependent.

Example 2.5.
0101, 0110, 0011

are linear independent because

a10101 + a20110 + a30101 = (0, a1 + a2, a2, a3) = 0000

implies that a1 = a2 = a3 = 0. On the other hand is

0111, 1111, 1110, 1001

linear dependent because

0111 + 1110 + 1001 = 0000

A subset S ⊂ C is said to be generating if all codewords in C can be expressed
as a linear combination of codewords in S. S is said to be a base if it is both
linear independent and generating. If this is the case any codeword in C can
be written as unique combination of base elements.

Example 2.6. If we consider the binary code

C := {00000, 11110, 01011, 10101}

then there are three possible bases containing all 2 elements

B1 := {11110, 01011}
B2 := {10101, 01011}
B3 := {11110, 10101}

2.3. BASIS AND GENERATOR MATRIX 23

A very easy way to handle vector spaces is using matrices. matrices over
binary fields multiply just the way they do over the real numbers, except
that you must use the calculation rules of the field (f.i. in F2 1 + 1 = 0).

Example 2.7.

(
1 0 1
1 1 0

)1 0
1 1
0 1

 =

(
1 · 1 + 0 · 1 + 1 · 1 1 · 0 + 0 · 1 + 1 · 1
1 · 1 + 1 · 1 + 0 · 0 1 · 0 + 1 · 1 + 0 · 1

)
=

(
0 1
0 1

)

Calculation the determinant of a matrix is also just in the ordinary way
(remember that we can replace all the minus signs by plus signs).

Det

(
1 1
0 1

)
= 1 · 1 + 1 · 0 = 1

Definition 2.8. When we have an m-dimensional code C with a base in it
then we can make a m × n-matrix. The rows of this matrix consists of the
base-vectors of the considered base. This matrix is called a generator matrix.

We know that there are qm code words so it is reasonable to consider the
set of messages equal to the space Fm

q Encoding the message means that we
assign to each message word a unique codeword. This can be done easily by
considering the message as a row-matrix and multiplying it with the generator
matrix. The encoding depends highly on the generator matrix, different
generator matrices give different encodings but use the same codewords.

In fact if we multiply the generator matrix on the left by an invertible m×m-
matrix we will obtain a new generator matrix because multiplying on the left
corresponds to a base change in the C.

One could also try to multiply on the right with an invertible matrix but doing
this will alter the corresponding code, such that the decoding capacities will
alter as well. However if we multiply on the right by a permutation matrix
(i.e. a matrix which has in every row and every column exactly one 1 and all
the other entries zero) this will correspond to a permutation of the columns
of the generator matrix. This means that we just considered a new code by
switching some of the bits around. This operation will not alter the minimal
distance of the code, we call this code an equivalent code.

24 CHAPTER 2. LINEAR CODES

Example 2.8. If we consider the code

C := {00000, 11110, 01011, 10101}

then there are 6 possible generator matrices two for each base

B1 7→
(

1 1 1 1 0
0 1 0 1 1

)
,

(
0 1 0 1 1
1 1 1 1 0

)
B2 7→

(
1 0 1 0 1
0 1 0 1 1

)
,

(
0 1 0 1 1
1 0 1 0 1

)
B3 7→

(
1 0 1 0 1
1 1 1 1 0

)
,

(
1 1 1 1 0
1 0 1 0 1

)
And if we take an invertible 2 × 2-matrix and multiply it with one of these
generator matrices(

1 1
1 0

)(
1 1 1 1 0
0 1 0 1 1

)
=

(
1 0 1 0 1
1 1 1 1 0

)
we obtain again one of the six generator-matrices. However is we multiply
on the left with a permutation matrix

(
1 1 1 1 0
0 1 0 1 1

)
0 1 0 0 0
0 0 0 1 0
1 0 0 0 0
0 0 0 0 1
0 0 1 0 0

 =

(
1 1 0 1 1
0 0 1 1 1

)

We obtain a generator matrix of a different code

C ′ := {00000, 11011, 00111, 11100}

This code is in fact equivalent to C and has thus the same mimimal distance:
3

Definition 2.9. A generator matrix G whose left part is the identity matrix,
i.e. G = [1mX], is said to be in normal position. For the code we considered
in the previous example, is (

1 0 1 0 1
0 1 0 1 1

)
a generator matrix in normal position. A code that admits a such generator
matrix is called a systematic code.

Theorem 2.1. Every code is equivalent to a systematic code.

2.4. THE PARITY CHECK MATRIX 25

2.4 The parity check matrix

When we have a code C then we can also consider it’s orthogonal complement
C⊥. C⊥ is again a code, so we can consider a generator matrix of this code.
If we call G the generator matrix of C and H a generator matrix of C⊥ then
the following identity holds:

GH t = HGt = 0

where ·t stands for the transposed of a matrix. We will call H the parity
check matrix of the code C. If G is a generator matrix is in standard form
[ImX] we can also choose a special form of the parity check matrix

H t =

(
−X
1n−m

)
because

(
1m X

)(X
1n−m

)
= (X −X) = 0

The parity check matrix is a very useful tool in decoding the code. Because
H is a generator matrix of the orthogonal code, the following holds

c ∈ C ⇔ Hct = o

Definition 2.10. For a random word x ∈ Fn
2 we define its syndrome as

s(x) := Hxt ∈ Fn−m
q .

The codewords are the words with zero syndrome.

Suppose we receive a word r then we can assume that it is of the form c+ e

where c is the transmitted codeword, and e is the error vector. So to remove
the errors from r we have to find e. If we look at the syndrome of r we see
that it only depends on the error vector and not on the codeword. So instead
of looking at the received word we should concentrate on the syndromes.

One should make a list of all possible syndromes and associate to each one
the error vector with the least weight producing that syndrome, and thus
the most likely to have occurred. It is not always true that there is such a
unique error vector, more than one error vector can have the same weight
and syndrome. If this is the case we denote this also in the list.

26 CHAPTER 2. LINEAR CODES

Algorithm 2.1 (Encoding and decoding a linear code). Suppose that C is
a systematic [n, m, d]-code and G is a generator matrix in normal position
with H the corresponding parity check matrix.

Encoding

Take the message word m ∈ Fm
2 and multiply it with G and transmit it.

Decoding

1. Make a list of syndromes and corresponding error vectors

2. Compute the syndrome of the received codeword s := Hrt.

3. Look in the list of syndromes which error vector e corresponds to s. If
there is only one code, subtract it from r. The message word m is most
likely to be the first m bits of r + e. If there are more error vectors,
all those give equally probable message words, so if possible one should
better ask for retransmission.

Example 2.9. Consider the [5, 2, 3]-code with generator matrix

G :=

(
1 0 1 1 0
0 1 0 1 1

)
The possible messages and there codewords are then

message code word

00 00000

10 10110

01 01011

11 11101

The parity check matrix is

H :=

1 0 1 0 0
1 1 0 1 0
0 1 0 0 1

 .

2.4. THE PARITY CHECK MATRIX 27

The list of possible syndromes and error vectors:

Syndrome error vectors

000 00000

100 00100

010 00010

110 10000

001 00001

101 11000, 00101
011 01000

111 10001, 01100

Suppose we receive 11011, computing the syndrome gives s := 110 so the
error vector is 10000 and the corrected code word is 01011 and the message
was 01.

Suppose we receive 00111, computing the syndrome gives s := 111. The are
two equally probable error vector, so the code word could either be 10110 or
01011.

28 CHAPTER 2. LINEAR CODES

Chapter 3

Perfect codes

3.1 Introduction

One of the main challenges of coding theory is to find the best possible codes,
but what are in fact the criteria for a good code? One wants to transmit as
fast as possible, as many as possible information over a channel, such that
there occur as few as possible mistakes.

So for a linear [n,m, d]-code over a field Fq one wants to increase both the
ratio m/n and d/n. As is expected one can not improve them both as much
as one wants, because there are inequalities that are satisfied between those
parameters.

One of those inequalities is called the sphere packing boundary. If the mini-
mum distance between two code words is d then one can draw around each
codeword c in Fn

q a sphere with radius (d− 1)/2.

Bc := {x ∈ Fn
q |d(x, c) ≤ d− 1

2
}

All those spheres are non-intersecting because otherwise there are two code
words at a distance less than d which is impossible. In each of these spheres

29

30 CHAPTER 3. PERFECT CODES

there are exactly
d−1
2∑

i=0

Cn
i (q − 1)i

words. This sum corresponds to the number of words with 0, 1, . . . , (d−1)/2
errors. For each sphere we have different elements and there are qm spheres
so

d−1
2∑

i=0

Cn
i (q − 1)i ≤ qn−m.

In the ideal situation this inequality would be an identity.

Definition 3.1. An (n, |C|, d)-code over F is perfect if the all the Bc cover
whole Fn. For a linear [n,m, d]-linear code over Fq this implies that

d−1
2∑

i=0

Cn
i (q − 1)i = qn−m.

In the previous chapter we’ve seen how to decode a linear code by using
a table of syndromes. To every syndrome corresponded one or more error
vectors. When we had a syndrome with more than one error vector, we could
not uniquely decode the received message.

In the case of perfect codes this last situation does not occur. In a perfect
code the number of possible error vectors is equal to qn−m which is the same
as the number of possible syndromes, so there is a bijection between them.

As we’ve seen perfect codes are in many ways very good, but unfortunately
these codes are very rare. In what follows we will describe all perfect linear
codes.

First notice that a code can never be perfect if its minimal distance is even.
If this were, there would exist words that are at distance d/2 of two code
words. so the syndrome decoding can’t be unique.

A trivial class of linear codes are the binary repetition codes

Definition 3.2. A binary repetion code is a code consisting of two code
words

C := {0 . . . 0, 1 · · · 1}

3.2. HAMMING CODES 31

A repetition code has as parameters [n, 1, n] and so it is easy to check whether
such a code is perfect.

Theorem 3.1. a binary repetition code is perfect if and only if n is odd.

Proof. We already know that n has to be odd so n = 2t + 1. We can use the
binomium of newton

t∑
i=0

Ci
n(2− 1)i =

t∑
i=0

1

2
(Cn

i + Cn
n−i)(1)

i

=
1

2

n∑
i=0

Cn
i = 2n−1.

�

3.2 Hamming codes

In this section, we consider an important family of perfect codes which are
easy to encode and decode.

We first start with binary hamming codes and afterward we define them for
arbitrary finite fields.

Definition 3.3. A binary code is a Hamming code if it has a parity check
matrix H ∈ Matr×2r−1(F2) consisting of all possible column vectors of Fr

2.(
v1 . . . vn

)
, vi ∈ Fr

2 − {0}

We denote this Hamming code as Ham(r, 2).

Example 3.1. if r= 2 this means that

H :=

(
1 1 0
1 0 1

)
⇒ G :=

(
1 1 1

)
.

So Ham(2, 2) is the binary repetition [3,1,3]-code. Notice that this is the only
hamming code that is a repetition code because d = 3 for a hamming code
and d = n for a repetition code.

32 CHAPTER 3. PERFECT CODES

Example 3.2. if r= 3 this means we can put H in standard form like

H :=

0 1 1 1 1 0 0
1 0 1 1 0 1 0
1 1 1 0 0 0 1

This gives us as generator matrix:

G :=

1 0 0 0 0 1 1
0 1 0 0 1 0 1
0 0 1 0 1 1 1
0 0 0 1 1 1 0

 .

Theorem 3.2. Ham(r, 2) is a perfect [2r − 1, 2r − r − 1, 3]-code.

Proof. By the dimension of the parity check matrix we know that n = 2r − 1
and m = 2r − 1 − r. We now have to prove that the minimal weight of a
codeword is 3. Suppose thus c is a codeword with weight one or two. Than we
should have that Hct = o. but Hct is the sum of maximum 2 column vectors
of H so this should mean that two columns of H are linearly dependent.
This is impossible because two different vectors over F2 are always linearly
independent. But the minimal weight is also equal to 3. H contains the
columns 100 . . . 0t,010 . . . 0t and 110 . . . 0t at the i, j, kth position. construct
the word c containing a 1 at those 3 places and zero’s everywhere else this
is a codeword because

cH t = 100 . . . 0 + 010 . . . 0 + 110 . . . 0 = o.

Finally we prove that Ham(r, 2) is perfect.

1∑
i=0

Ci
n = 1 + C2r−1

1 = 2r = 22r−1−(2r−r−1) = 2n−m

�

Encoding the Hamming code is done by using the generator matrix. Because
d = 3 the code is one error correcting and the possible error vectors are of
the form ej = 0 · · · 010 · · · 0 where the one is at position j. The syndrome of
ej is equal to the jth column of H. To decode we proceed like this:

3.2. HAMMING CODES 33

Algorithm 3.1 (Decoding the binary Hamming code). Suppose we receive
the word r and G and H are in standard position

1. calculate the syndrome s = Hrt

2. If s = o the original code word was r and the message words are the
first 2r − r − 1 symbols of r.

3. If s 6= o we suppose that one error has occurred. the position of this
error is the position of the column vector of H equal to s.

One can generalize binary Hamming codes to Hamming codes over arbitrary
fields. However one must take care in the construction of the parity check
matrix. One cannot take all possible vectors of Fr

q because then are two of
them that can be linear dependent of each other (take v ∈ F r

q \ {0} and kv
where k ∈ Fq \ {0, 1}). So one has to take for each ray of vectors only one
representative in H. the number of such rays is equal to the points of the
r − 1-dimensional projective space over Fq which is qr−1

q−1
.

Example 3.3. if r= 2 and q = 3 this means that

H :=

(
1 1 1 0
2 1 0 1

)
⇒ G :=

(
1 0 2 1
0 1 2 2

)
.

To compute G we use the fact that −1 = 2 mod 3. So Ham(2, 3) is a [4,2,3]-
code.

Example 3.4. if r= 2 and q = 4 this means that

H :=

(
1 1 1 1 0
ξ2 ξ 1 0 1

)
⇒ G :=

1 0 0 1 ξ2

0 1 0 1 ξ
0 0 1 1 1

 .

So Ham(2, 4) is a [5,3,3]-code.

Example 3.5. if r= 3 and q = 3 we can put H in standard form like

H :=

0 0 1 1 1 1 1 1 1 1 1 0 0
1 1 0 0 1 1 1 2 2 2 0 1 0
1 2 1 2 0 1 2 0 1 2 0 0 1

34 CHAPTER 3. PERFECT CODES

Just like the binary codes we have this theorem

Theorem 3.3. Ham(r, q) is a perfect [qr−1
q−1

, qr−1
q−1

− r, 3]-code over Fq

Exercise 3.1. Prove the theorem above

Exercise 3.2. Design a decoding algorithm for non-binary hamming codes.

Exercise 3.3. Write source code to encode and decode both binary and
non-binary Hamming codes.

3.3 The ternary Golay-code

Hamming-codes form an infinite series of codes that are perfect, apart from
these codes there are also a limited number of special linear codes. These
codes were discovered by Marcel Golay and hence they are called Golay codes.

First we construct the ternary Golay code. Consider the field F3 and take
the matrix

S5 :=

0 1 2 2 1
1 2 2 1 0
2 2 1 0 1
2 1 0 1 2
1 0 1 2 2

Definition 3.4. The ternary Golay code Gol(11, 3) is a [11, 6] code over F3

with generator matrix

G :=

1 0 0 0 0 0 1 1 1 1 1
0
0
0 15 S5

0
0

and parity check matrix

2 0 2 1 1 2 1 0 0 0 0
2 2 0 2 1 1 0 1 0 0 0
2 1 2 0 2 1 0 0 1 0 0
2 1 1 2 0 2 0 0 0 1 0
2 2 1 1 2 0 0 0 0 0 1

 .

3.3. THE TERNARY GOLAY-CODE 35

Theorem 3.4. The ternary golay code is a perfect 2 error correcting code.

Proof. One can compute that

GGt =

0 0 0 0 0 0
0 2 2 2 2 2
0 2 2 2 2 2
0 2 2 2 2 2
0 2 2 2 2 2
0 2 2 2 2 2

So if x := x1 · · · x6 is a message word xG will be a code word and hence

xG · xG = xGGtxt

= 2

(
6∑

i=2

xi

)2

.

Because 1 is the only non zero square in F3, xG · xG 6= 1. But in F3 xG · xG
is equal to the weight modulo 3. So the weight cannot be 1, 4, 7 or 10.

The weight of a codeword xG is always at least the weight of x because the
first 6 symbols of xG are x.

If x has weight 1, xG has weight at least 5 because all rows of G have weights
bigger than 4. Suppose that x has weight 2 then xG has weight bigger than
4. Take two rows Gi and Gj of G and look at the quotients of the last
five entries: Gi6/Gj6, · · · , Gi11/Gj11. There are at least 3 different quotients.
Every linear combination will have at least 2 nonzero symbols in the last 5
digits, so the weight is at least 4 and hence 5 or more.

if x has weight 3 one can do a similar thing using the fact that the submatrix
consisting of the last five digits of 3 rows of G has rank 3.

Now we’ve proved that the minimal weight is 5, we only have to check the
sphere packing identity:

2∑
i=0

C11
i 2i = 1 + 2C11

1 + 4C11
2

1 + 22 + 220 = 243 = 35 = 311−6

�

36 CHAPTER 3. PERFECT CODES

3.4 Binary Golay-codes

In this section we describe both the extended binary Golay code and the
perfect binary Golay code, because they are both of practical importance.

Let B be the 12× 12 matrix over F2

B :=

1 1 0 1 1 1 0 0 0 1 0 1
1 0 1 1 1 0 0 0 1 0 1 1
0 1 1 1 0 0 0 1 0 1 1 1
1 1 1 0 0 0 1 0 1 1 0 1
1 1 0 0 0 1 0 1 1 0 1 1
1 0 0 0 1 0 1 1 0 1 1 1
0 0 0 1 0 1 1 0 1 1 1 1
0 0 1 0 1 1 0 1 1 1 0 1
0 1 0 1 1 0 1 1 1 0 0 1
1 0 1 1 0 1 1 1 0 0 0 1
0 1 1 0 1 1 1 0 0 0 1 1
1 1 1 1 1 1 1 1 1 1 1 0

This matrix is symmetric and if one looks at the submatrix consisting op
the first 11 rows and columns one can easily check that the rows are cyclic
permutations of each other. another property of B is that B2 = 112.

Definition 3.5. The extended Golay-code Gol(24, 2) is a binary code with
generator matrix

G := [112B]

Because B is its own inverse, not only [B112] is a parity check matrix but G
itself as well. Also [B112] is a generator matrix for Gol(24, 2).

Theorem 3.5. The minimal weight of Gol(24, 2) is 8.

Proof. First we prove that the weight of a random codeword is a multiple of
4. Because GGt = 0 the inproduct of two code words is zero. This means
that the number of entries where they are both 1 is even. Suppose now that
x and y are two codewords of which the weight is a multiple of four then

w(x + y) = w(x) + w(y)− 2(#common 1′s between x and y)

3.4. BINARY GOLAY-CODES 37

This expression is again a multiple of four because all its terms are. Notice
that the rows of G all have weight 8 or weight 12, so every code word has
weight 4k, k ∈ N.

Now we prove that no code word can have weight four. Suppose xG = xxB is
a code word of weight four. Because [B112] is also a generator matrix, there
exists a y such that

xG = xxB = y[B112] = yBy = xy

Therefore either x or y must have a weight smaller or equal than 2. If this
is the case for x we know that xG is the sum of at most two rows of G and
can never have weight equal to 4. For w(y) ≤ 2 we proceed the same. �

We will now search for a decoding algorithm for Gol(24, 2). Because the
minimal weight is 8 we will be able to correct all error vectors with weight
smaller than 4. Take H := G to be the parity check matrix and suppose
we have an error vector e with weight at most 3. We will split up our error
vector in two parts of length 12 e := [e1, e2]. the syndrome of such and error
vector is

s = Get = e1
t + Be2

t

Because the weight of e is smaller than 4 either e1 or e2 has weight smaller
than 2

Suppose first that the weight of e2 is at most 1, then s the syndrome consist
of either a word of weight at most 3 (if e2 = o) or a row of B with at most
two digits changed.

If the weight of e1 is at most 1 then one can do the same but now using the
syndrome

t = [B112]e
t = Be1

t + e2
t = Bs

Algorithm 3.2 (Decoding the extended Golay code). We receive the word
r.

1. Compute the syndrome s = Grt

2. If w(s) < 3 then e := [s, o], stop.

38 CHAPTER 3. PERFECT CODES

3. If w(s + Bi) < 3 then e := [s + Bi, δi] where δi stands for the vector
with everywhere zero’s except on the ith place a 1. Stop.

4. Compute t := Bs.

5. If w(t) < 3 then e := [o, t], stop.

6. If w(t + Bi) < 3 then e := [δi, t + Bi], stop.

7. If e is not determined request retransmission.

Miniature 3: the voyager mission (1811-32)

In the late seventies NASA set up a mission to explore
the outer planets of the solar system. This mission vis-
ited Jupiter, Saturn, Uranus and Neptune. The im-
ages of those planets and their moons had to be trans-
mitted over several billions of kilometers. In order to
achieve good quality NASA used the binary extended
Golay code for encoding the photographs.

The last code we will see in this chapter is the binary Golay code.

Definition 3.6. The binary Golay code Gol(23, 2) has as generator matrix,
the generator matrix of Gol(24, 2) except for the last column which is omitted.
Because the minimal weight of Gol(24, 2) is 8 the minimal weight of this code
will be 7.

Theorem 3.6. Gol(23, 2) is a perfect [23, 12, 7]-code.

Proof. We only have to calculate the sphere packing identity.

3∑
i=0

C23
i 2i = 1 + C23

1 + C23
2 + C23

3

1 + 23 + 253 + 1771 = 2048 = 323−12

�

How do we decode Gol(23, 2)? We already have a decoding algorithm for
Gol(24, 2) so we can use this. suppose we receive r, we have to transform
it into a word of 24 bit. We know that both Gol(23, 2) and Gol(24, 2) can

3.5. FUNDAMENTAL THEOREMS 39

correct 3 errors. Because every error changes the weight of a word by 1 and
codewords in Gol(24, 2) have even weight, message words with an odd weight
will contain an odd number of errors.

If r contains at most 3 errors we want to add one bit in order to have a
message word for Gol(24, 2). We do this by adding a 0 or a 1 such that
w(r1) or w(r0) is odd. Call this new word r′. Because r′ has odd weight it
contains an odd number of errors and we know that it contained at most 3
errors in the first 23 digits, so it contains as a whole also at most 3 errors.
Knowing this we can decode r′ by algorithm ??.

In practice, the received word is almost always a code word, however r′ is
never a codeword. In that case computing the syndrome will give us the last
row of B. It is useful to check this at the start of the algorithm rather than
to wait until step 3.

3.5 Fundamental theorems

Have we in fact considered all possible perfect codes or are there other ones?
In the case of linear codes this is actually the case, but one can also de-
fine perfect non-linear codes. In general van Lint (and others) proved the
following theorem

Theorem 3.7 (van Lint-Tietäväinen). Every non-trivial perfect code over
q symbols where q is a prime power, has the parameters of a Hamming or a
Golay code (Gol(23, 2) or Gol(11, 3).

In 1975 Delsarte and Goethals proved that every code with the parameters
of a Golay code is in fact a Golay code. On the other hand one can prove
easily that every linear code with the parameters of a Hamming code is a
Hamming code.

Theorem 3.8 (van Lint-Tietäväinen). Every non-trivial perfect linear code
over Fq is a Hamming or a Golay code. (Gol(23, 2) or Gol(11, 3).

There exist however perfect non-linear codes that have the parameters of a
Hamming code. Those were constructed by Schönheim and Lindström in

40 CHAPTER 3. PERFECT CODES

1968-69. It remains an open question whether there exist perfect codes over
alphabets where the number of symbols is not a prime power.

Chapter 4

Cyclic Codes

4.1 Introduction

In the previous chapter we saw examples of linear codes, that are practical
to use and have good properties, but because these codes are, there one has
little flexibility in choosing appropriate parameters for the code you need. In
this chapter we will examine a vast variety of codes that are easy to construct
and adapt to different situations.

Definition 4.1. A linear [n,m]-code C is called cyclic if and only if for every
word x := x1 · · · xn

x1 · · · xn ∈ C ⇒ −→x := x2 · · · xnx1 ∈ C.

So every cyclic shift of a codeword is again a codeword.

This property seems very strict but in fact there are many codes that are
cyclic.

Example 4.1. The hamming code Ham(3, 2) as we have seen it in the previous
chapter is not cyclic but it is equivalent to a cyclic code if we take another
parity check and generator matrix. Take

H :=

1 0 1 1 1 0 0
0 1 0 1 1 1 0
0 0 1 0 1 1 1

 .

41

42 CHAPTER 4. CYCLIC CODES

One sees that the rows of this matrix are cyclic permutations of each other.
So the code with H as generator matrix is cyclic.

Because −→x · −→y = x · y the orthogonal complement of a cyclic code is cyclic
as well.

Because we introduced an extra property to the linear codes, we can put an
extra structure onto the vector space of code words we’re working with.

With every element of Fn
q one can associate a polynomial of degree at most

n− 1 like this

Fn
q → Fq[X] : c0 · · · cn−1 7→ c0 + c1X + · · ·+ cn−1X

n−1.

If we multiply a such a polynomial with X we see that all the coefficients
shift one position to the right. However because cn−1 also shifts one to the
right and not to the first position, the new polynomial does not correspond
anymore to a codeword. This problem is solved by identifying Xn with 1.
This means that one has to work in the quotient ring

Fq[X]/(Xn − 1)

rather than in Fq[X]. In this ring multiplying by X corresponds to a cyclic
shift of the coefficients. A cyclic code corresponds to a subset of Fq[X]/(Xn−
1) closed under addition and multiplication by X and hence multiplication
by every element of Fq[X]/(Xn − 1). Such a subset is called an ideal of
Fq[X]/(Xn − 1).

Theorem 4.1. There is a bijective correspondence between cyclic n-codes
over Fq and ideals in Fq[X]/(Xn − 1).

4.2 Generator polynomial and check polyno-

mial

For linear codes we had a generator matrix, in the case of cyclic codes one
can prove the following:

4.2. GENERATOR POLYNOMIAL AND CHECK POLYNOMIAL 43

Theorem 4.2. For every ideal (or cyclic code) c C Fq[X]/(Xn − 1) there
exists a polynomial g(X) ∈ Fq[X]/(Xn − 1) such that:

c := {a(X)g(X)|a(X) ∈ Fq[X]/(Xn − 1)}
Proof. Define g(X) to be the greatest common divisor of all code polynomials.
By the theorem of Euclid one can write g(x) as a linear combination of code
polynomials. Because an ideal c is closed under linear combinations, g(x)
is again a code polynomial. Because g(x) is the gcd it is also the codeword
with the lowest degree. �

Writing g(X) = g0+g1X+· · ·+gkX
k we see that g(X), Xg(X), . . . , Xn−k−1g(X)

form a basis for c and hence

G =

g0 g1 . . . gk

g0 g1 . . . gk

.
. . .

g0 g1 . . . gk

is a generator matrix for the code.

Theorem 4.3. For a non-trivial cyclic code cCFq[X]/(Xn−1) the generator
polynomial divides Xn − 1.

Proof. If g(X) doesn’t divide Xn− 1 then one can look at the rest of Xn− 1
divided by g(X). This rest r(X) has lower degree than g(X) but it is a
linear combination of g(X) and Xn− 1 so it is again an element of the code.
But this is impossible because g(X) is the element of the code with the least
degree. �

Definition 4.2. Define h(X) := Xn−1
g(X)

to be the check polynomial of c.

One can easily prove that c(X) is a code polynomial if and only if

h(X)c(X) ≡ 0 mod Xn − 1.

If we go back to the vector space representation we can model multiplication
by h(X) as matrix multiplication with

H =

hn−k hn−k−1 . . . h0

hn−k hn−k−1 . . . h0

.
. . .

hn−k hn−k−1 . . . h0

 .

44 CHAPTER 4. CYCLIC CODES

So this H is the parity check matrix for our code.

Example 4.2. Because the parity check matrix of the Hamming code in the
previous example

H :=

1 0 1 1 1 0 0
0 1 0 1 1 1 0
0 0 1 0 1 1 1

 .

We can deduce that h(X) := X4 +X2 +X +1 and g(X) := (X7−1)/h(X) =
X3 + X + 1

An interesting way of encoding a cyclic code is systematic encoding. If we
encode just by multiplying with g(X) the code word will not contain the
original message because of multiplication with g(X). To remedy this prob-
lem one tries to construct a codeword of our code that contains the original
message plus some check digits. this is done as follows:

Suppose u(X) is the message we want to encode and that n−k is the degree
of g(X). Xn−ku(X) will then be the message shifted to the last k of the n
digits of the codewords. However Xn−ku(X) itself is not a code word. If we
want to make a code word without destroying the digits from u(X) one has
to change the first n − k digits. Because of the division algorithm we have
the identity

∃q(X), r(X) : Xn−ku(X) = q(X)g(X) + r(X).

This implies that Xn−ku(X) − r(X) is a codeword satisfying our demands,
because the two terms of the sum do not overlap.

Another way of calculating a syndrome for a received word r(X) is looking
at its rest if we divide it by the generator polynomial. This has indeed the
properties of a syndrome polynomial because it is zero if and only if r(X)
is a multiple of g(X) and hence a codeword. In what follows we will always
use this syndrome to decode cyclic codes.

4.3 Decoding Cyclic Codes

In our study of linear codes, we saw that maximum likelihood decoding,
using syndrome-error pattern tables was complex, requiring a list that is

4.3. DECODING CYCLIC CODES 45

exponentially long compared to the codeword length. The syndromes for
cyclic codes have a special property that yields simpler decoder algorithms.
In particular, as the next theorem shows, if we know the syndrome for a
received vector, we can very easily calculate the syndrome for a cyclic shift
of the received vector, using the the original syndrome. This will allow us to
design a decoder that essentially corrects the received bits one by one.

Theorem 4.4 (Meggit). If s(X) is the syndrome of a received vector r(X) =
r0 + · · ·+ rn−1X

n−1, then the syndrome s′(X) of −→r (X) is the remainder left
after dividing Xs(X) by g(X)

Proof. We can write Xr(X) as follows

Xr(X) = rn−1(X
n − 1) +−→r (X).

Rearranging, and using the fact that Xn − 1 = g(X)h(X), we get

−→r (X) = Xr(X)− rn−1g(X)h(X).

Now divide by g(X), to expand each term into a quotient-remainder form.

c(X)g(X) + d(X) = X(a(X)g(X) + s(X))− rn−1g(X)h(X),

where the remainder d(X) is the syndrome for −→r (X). on the RHS all the
terms are divisible by g(X) except Xs(X), so d(X) is also the remainder of
Xs(X) divided by g(X). �

This theorem gives a convenient way to calculate the syndromes of shifted
versions of the received vector. In this way we can reduce the list of the
syndromes of which we have to know the error vector. One only has to know
1 syndrome for 1 of the possible shifts of the error vector. i.e. for a 1-error
correcting binary cyclic n-code one has to know 1 syndrome corresponding to
the error polynomial e(X) = 1 instead of the n syndromes corresponding to
the n possible error vectors ·10 · · · 0, . . . , ·0 · · · 10. For a two error correcting
codes there are up to cyclic shifts n− 1 error polynomials

e1(X) = 1 + X, e2(X) = 1 + X2, · · ·

and C2
n possible error vectors.

46 CHAPTER 4. CYCLIC CODES

Algorithm 4.1 (Meggit decoding of a cyclic code). Make a list of error
vectors up to cyclic shifts and calculate the corresponding syndrome. Suppose
now we receive a polynomial r(X). Set i := 0.

1. calculate the syndrome of r(X), i.e. s(X) := r(X) mod g(X).

2. If s(X) is in the list subtract the corresponding error vector from r(X).
Goto step 4 If i > n stop and ask for retransmission.

3. Shift r(X), increase i by 1. Set s(X) := Xs(X) mod g(X). Goto step
2

4. Shift r(X) i times backwards (or n− i times forwards)

Chapter 5

BCH Codes

5.1 BCH-codes

The Bose-Chaudhuri-Hocquenghem (BCH) codes are a multiple error correct-
ing generalization of Hamming codes. BCH codes are cyclic, and there are
several efficient algorithms for decoding them, based on their algebraic struc-
ture. There exist both binary and non-binary BCH codes. Reed-Solomon
codes are an important subclass of the non-binary BCH codes.

Let us start from the general problem of designing a t-error correcting cyclic
code. Consider a cyclic code with generator polynomial g(X) over Fq. Now
g has degree k, and the fundamental theorem of algebra says that g has k
zeros in a field extension Fqm . Let these k zeros be β1, . . . , βk. Then we can
write g(X) as follows.

g(X) = lcm(mβ1(X), . . . ,mβk
(X))

where mβi
is the minimal polynomial of βi over Fq and lcm denotes least

common multiple. Now let r(X) = v(X) + e(X) be a received polynomial,
corresponding to the transmitted code polynomial v(X), and error polyno-
mial e(X). If we evaluate r(x) at the elements βi ∈ Fqm , corresponding to
the zeros of g(X), we find that r(βi) = e(βi) because v(X) is a multiple of
g(X) and hence zero in βi. This leads to the following set of k simultaneous

47

48 CHAPTER 5. BCH CODES

equations, in the unknowns e0, e1, . . . , en−1.

e0 + e1β
1
1 + ... + en−1β

n−1
1 = r(β1)

e0 + e1β
1
2 + ... + en−1β

n−1
2 = r(β2)

...

e0 + e1β
1
k + ... + en−1β

n−1
k = r(βk)

The design problem for a t-error correcting code can now be phrased as
follows. Choose a generator polynomial g(X) with zeros β1, . . . , βk, such
that the k simultaneous equations from above can be solved (hopefully in an
efficient manner) whenever at most t of the ei are non-zero.

As it turns out, if α is a primitive element of Fqm , a suitable set of zeros is
βi = αi i = 1, . . . , 2t.

Theorem 5.1 (Primitive BCH Code). Let m and t < qm−1
2

be integers.
Then there is a q-ary BCH code with parameters

n = qm − 1

k ≥ n− 2mt

d ≥ 2t + 1.

This code is generated by g(X), the lowest degree polynomial over Fq having
as roots αc+i, i = 1, . . . , 2t where α is a primitive element of Fqm and c ∈ Z.
The parameter d = 2t + 1 is called the designed distance of the code.

Proof. If we take the special g(X) as above and suppose e(X) =
∑ν

l=1 eilX
il

is a polynomial of weight ν < 2t + 1 then this can never be a codeword
because then we would have as equations

ei1(α
c+1)i1 + ... + eiν (α

c+1)iν = 0

...

ei1(α
c+ν)i1 + ... + eiν (α

c+ν)iν = 0

These equations can be solved uniquely as long as the following determinant
is not zero.

det

(αc+1)i1 · · · (αc+1)iν

...
...

(αc+ν)i1 · · · (αc+ν)iν

 = α(c+1)(i1+···+iν)det

 (αi1)0 · · · (αiν)0

...
...

(αi1)ν−1 · · · (αiν)ν−1

5.2. CODE CONSTRUCTION 49

= α(c+1)(i1+...iν)
∏
κ 6=λ

(αiκ − αiλ)

The last identity is obtained by using formula for the Vandermonde deter-
minant. Because the αiκ 6= αiλ whenever iκ 6= iλ and both exponents are
smaller than qm−1 the determinant is not zero and the only possible solution
is the zero solution. So a polynomial of weight smaller then 2t + 1 can never
be a codeword.

The parameters can be obtained in the following way: we take n as big as
we can because of the condition on the iκ this must be qm − 1. The degree
of g is smaller than 2mt because the degree of α is m. �

Recall that in F2m , the elements α and α2 are conjugates, and have the same
minimal polynomial. For a binary BCH code we can form the generator
polynomial by considering only the odd powers of the primitive element α

g(X) = lcm(mα1(X), mα3(X), . . . ,mα2t−1(X))

You should be aware that BCH codes as defined are only one class of BCH
codes, namely the primitive ones. The element α can also be selected as a
non-primitive root of unity (i.e. αn = 1, where n < qm−1), yielding a length
n code. When n = qm − 1, we say that the code is primitive. If c = 0, the
code is known as a narrow sense BCH code.

5.2 Code Construction

Given previous theorem, we have the following procedure for designing a
t-error correcting narrow sense BCH code of length qm − 1.

1. Find a degree m primitive polynomial π(X) over Fq.

2. Use π(X) to construct Fqm .

3. Let α be a primitive element of Fqm

4. Find mαi(X), the minimal polynomial for αi, for i = 1, 2, . . . , 2t

50 CHAPTER 5. BCH CODES

5. Let g(X) be the minimal degree polynomial with the mαi(X) as factors,
g(X) = lcm(mα1(X), mα2(X), . . . ,mα2t(X)).

Example 5.1 (Single error correcting binary BCH code). Let π(X) be a
degree m binary primitive polynomial, such that π(X) is also the minimal
polynomial of a primitive element, α in F2m . This is not always the case f.i.
the roots of X4 + X3 + X2 + X + 1 are not primitive elements over F24 .

If it is the case π(X) generates a (2m − 1, 2m −m− 1) code. This code is in
fact the Hamming code because it has the same parameters.

Example 5.2 (Double error correcting binary BCH code.). Let π(X) =
1 + X + X4. Let t = 2 and m = 4. Then

g(X) = lcm(mα, mα3)

= (X4 + X + 1)(X4 + X3 + X2 + X + 1)

= X8 + X7 + X6 + X4 + 1.

Hence we have designed a (15,7) BCH code with d ≥ 5. Note however that
g(X) has weight 5, and since g(X) is a codeword, the code has d = 5.

Example 5.3 (Triple error correcting binary BCH code). Using again π(X)
from the previous example, we can let t = 3, m = 4 to design a triple error
correcting code. This time the generator polynomial is given by

g(X) = lcm(mα, mα3 , mα5)

= (X4 + X + 1)(X4 + X3 + X2 + X + 1)(1 + X + X2)

= X10 + X8 + X5 + X4 + X2 + X + 1.

The generator has weight 7, and hence the code has minimum distance ex-
actly 7. This is a (15, 5, 7) code.

BCH codes are cyclic, and we could use any general decoding technique
designed for cyclic codes. The special structure of narrow sense BCH codes
yields decoders of even lower complexity. The generator polynomial g(X) for
BCH codes was chosen specifically such that it has zeros at α, α2, . . . , α2t ,
where α is a primitive element of Fqm . In the introduction to the codes, we
saw that this implies

r(αi) = e(αi), i = 1, 2, . . . , 2t,

5.2. CODE CONSTRUCTION 51

where r(X) and e(X) are the received polynomial and error polynomial re-
spectively. For j = 1, . . . , 2t, define

Sj = r(αj) =
n∑

l=1

el(α
j)l,

to be the j-th syndrome for the received polynomial r(X). Suppose that a
total of ν ≤ t errors occurred, located at positions i1, i2, , . . . , iν ,

e(X) = ei1X
i1 + ei2X

i2 + · · ·+ eiνX
iν .

Then the powers of X define the error locations, and the coefficients deter-
mine the error magnitudes. Note that in the case of binary codes, the error
magnitudes are all equal to 1. We can now write

S1 = ei1α
i1 + ei2α

i2 + · · ·+ eiνα
iν

S2 = ei1(α
i1)2 + ei2(α

i2)2 + · · ·+ eiν (α
iν)2

...

S2t = ei1(α
i1)2t + ei2(α

i2)2t + · · ·+ eiν (α
iν)2t

We need to solve this set of equations for the αil and the eil . Once these have
been found, we can take logarithms (base α) in Fqm to find the error location
numbers il, and correct the symbols at these positions by subtracting the
corresponding error magnitudes. In order to avoid a profusion of subscripts
and superscripts, it is usual to introduce at this point the error location
variables Xl = αil and the error magnitude variables Yl = eil , Using this
notation, we have

S1 = Y1X1 + Y2X2 + · · ·+ YνXν

S2 = Y1X
2
1 + Y2X

2
2 + · · ·+ YνX

2
ν

...

S2t = Y1X
2t
1 + Y2X

2t
2 + · · ·+ YνX

2t
ν

This system of 2t non-linear equations are symmetric functions of X1, X2, . . . , Xν

known as power-sum symmetric functions. Any method of solving these equa-
tions is a decoding method for BCH codes. Note that if the error location
variables are known, the above system of equations is linear in the Yl, and
can be solved using regular techniques from linear algebra. The hard part of
the decoding process is to find the error locations.

52 CHAPTER 5. BCH CODES

5.3 The Peterson-Gorenstein-Zierler Decoder

Direct solution of this system is not easy, but by carefully choosing an inter-
mediate variable, we can use a change of variables to linearize the system.
This was first done for binary codes by Peterson, then extended to non-binary
codes by Gorenstein and Zierler.

Let Λ(X) be the polynomial which has as its roots the inverses of the error
location variables Xl.

Λ(x) =
ν∏

l=1

(1−Xlx)

= Λνx
ν + Λν−1x

ν−1 + · · ·+ Λ1x + 1.

This polynomial is known as the error-locator polynomial, since its roots are
directly related to the error location variables. The coefficients Λl are however
unknown, and must be determined (hopefully in some efficient manner) from
the syndromes. Although finding the roots of polynomials is in general a hard
problem (over the reals there is no general solution for degree 5 of higher),
finite field polynomials have the advantage that we can find the roots by
exhaustive search over {0, 1, α, α2, . . . , αqm−1}. Such a search is known as
a Chien search. So far, we have turned the problem of solving the power
sum symmetric functions into determining the coefficients of Λ(X). Setting
x = X−1

l , and multiplying by YlX
j+ν
l , we get

0 = YlX
j+ν
l Λ(X−1

l)

= YlX
j+ν
l (ΛνX

−ν
l + Λν−1X

1−ν
l + · · ·+ Λ1X

−1
l + 1)

= YlΛνX
j
l + YlΛν−1X

j+1
l + · · ·+ YlΛ1X

j+ν−1
l + YlX

j+ν
l .

This equation hold for any l and j. Summing up these equations over l =
1, . . . , ν, we get

0 =
ν∑

l=1

(YlΛνX
j
l + YlΛν−1X

j+1
l + · · ·+ YlΛ1X

j+ν−1
l + YlX

j+ν
l)

= Sj+ν + Λ1Sj+ν−l + · · ·+ ΛνSj.

Provided that 1 ≤ j ≤ t, these syndromes are known. Hence we have the

5.3. THE PETERSON-GORENSTEIN-ZIERLER DECODER 53

following set of linear equations for the Xl.
S1 S2 S3 · · · Sν−1 Sν

S2 S3 S4 · · · Sν Sν+1

S3 S4 S5 · · · Sν+1 Sν+2
...

...
Sν Sν+1 Sν+2 · · · S2ν−2 S2ν−1

Λν

Λν−1

Λν−2
...

Λ1

 =

−Sν+1

−Sν+2

−Sν+3
...

−S2ν

Provided that the matrix of syndromes on the left is non-singular, this system
can be solved by matrix inversion. The following theorem (which we give
without proof) is key for development of decoding process.

Theorem 5.2. The matrix of syndromes

Mµ =

S1 S2 S3 · · · Sµ−1 Sµ

S2 S3 S4 · · · Sµ Sµ+1

S3 S4 S5 · · · Sµ+1 Sµ+2
...

...
Sµ Sµ+1 Sµ+2 · · · S2µ−2 S2µ−1

is non-singular if µ is equal to ν, the number of errors that occurred. If
µ > ν, the matrix is singular.

We can now describe the decoding algorithm.

Algorithm 5.1 (Peterson-Gorenstein-Zierler Decoder).

1. Let r(X) be the received polynomial. Calculate the syndromes Sj =
r(αj), j = 1, 2, . . . , 2t. Let µ = t and Construct the matrix Mµ.

2. Calculate ∆ = detMµ.

3. If ∆ = 0 let µ = µ − 1. If µ = 0 a detectable error pattern did
not occur, so stop. Otherwise construct the matrix Mµ. This can be
obtained from Mµ+1 simply be deleting row µ + 1 and column µ + 1.
Go back to step 2.

4. Determine the coefficients of the error location polynomial via
Λµ

Λµ−1
...

Λ1

 = M−1
µ

−Sµ+1

−Sµ+2
...

−S2µ

 .

54 CHAPTER 5. BCH CODES

5. Find the error location variables Xl, by determining the inverses of the
zeros of Λ(X).

6. Calculate the error magnitudes according to
Y1

Y2
...

Yµ

 =

X1 X2 · · · Xµ

X2
1 X2

2 · · · X2
µ

...
...

Xµ
1 Xµ

2 · · · Xµ
µ

−1

S1

S2
...

Sµ

 .

7. For each j = 1, 2, . . . , µ, let i be the base α logarithm of Xj. Correct
ri by subtracting Yj.

Note that for binary codes, Step 6 is not required, since all the error mag-
nitudes are equal to 1. The complexity of this algorithm resides in the need
to calculate two matrix inverses over Fqm . The complexity of this decoder
increases with the cube of the number of errors corrected. We can simplify
the decoding process a bit by using elementary properties of finite field

Theorem 5.3. For a BCH code over Fq,

Sqj = Sq
j

Proof. Using the fact that ·q is an automorphism of Fqm gives

Sqj =
v∑

l=1

Y q
l Xqj

l =

(
v∑

l=1

YlX
j
l

)q

= Sq
j

�

Example 5.4 (Single error correction). If a single error occurred,

S1Λ1 = −S2

and hence Λ1 = −S2/S1. If the code is binary the previous theorem results
in Λ1 = −S1, and hence Λ(X) = 1− S1X, which has a single zero (equal to
the inverse of the error locator) at 1/S1. Hence if S1 = αi, the error locater
is X1 = αi and the error is at location i.

5.4. REED-SOLOMON CODES 55

Example 5.5 (Double Error Correction). If errors occurred at two locations,

M2 =

(
S1 S2

S2 S3

)
is a non-singular matrix and we can determine the coefficients of Λ(X) ac-
cording to (

Λ2

Λ1

)
=

1

S1S3 − S2
2

(
S3 −S2

−S2 S1

)(
−S3

−S4

)
Thus

Λ1 =
S2S3 − S1S4

S1S3 − S2
2

, Λ2 =
−S2

3 − S2S4

S1S3 − S2
2

.

For binary codes, we can use the simplification to find

Λ1 = S1, Λ2 =
S3 + S3

1

S1

.

In either case, double error correction requires finding the roots of a quadratic
equation over Fqm , which requires an exhaustive search.

5.4 Reed-Solomon Codes

Reed-Solomon codes are an important sub-class of the non-binary BCH
codes. These codes are frequently used in applications. Reed-Solomon codes
can be defined simply as follows.

Definition 5.1 (Reed-Solomon Code). A Reed-Solomon code is a BCH code
over the field Fq with generator polynomial

g(X) =
2t−1∏
j=0

(X − αj)

Where α is a primitive element of Fq. The big difference with a general BCH
code is that the roots of g(X) are now all in the field where g(X) is defined,
so we need not to consider any field extensions. Notice as well that we start
with the root α0 = 1 instead of with α. This is to apply some algebraic
methods.

56 CHAPTER 5. BCH CODES

Theorem 5.4. An (n, k) Reed-Solomon code is maximal distance separable,
i.e. it has the greatest possible minimal distance for a given n and k.

Proof. The minimal distance is at least 2t + 1 by construction. Because the
degree of g(X) is 2t n − k = 2t so d ≥ n − k + 1. On the other hand
for a general linear (n, k)-code d ≤ n − k + 1. This is because the parity
check matrix has n − k rows it has rank at most n − k So there is a linear
combination of n−k+1 column of H that gives us 0. This linear combination
can be written as Hxt = 0 for a certain vector x with weight n− k + 1. This
implies that x is a codeword and hence d ≤ n− k + 1. �

This does not however imply that RS codes are the best codes that exist.
There are other combinations of n and k that do not yield RS codes, but have
better minimum distance. Combining the above results, we have proved the
following theorem, concerning the parameters of Reed-Solomon codes.

Theorem 5.5. A t-error correcting Reed Solomon code over Fq has the
following parameters:

n = q − 1

k = q − 1− 2t

d = 2t + 1

In the previous section we made an explicit algorithm to decode BCH codes,
in this section we will describe more efficient algorithms to decode Reed
Solomon codes. We define the syndrome polynomial as

S(X) =
2t−1∑
l=0

SlX
l

Consider the ring Fq[X]/(X2t). The polynomial 1− αjX is not divisible by
X and hence invertible. Its inverse is by Taylor expansion chopping of at
X2t ≡ 0

1

1− αjX
≡

2t−1∑
l=0

(αjX)l mod X2t.

5.4. REED-SOLOMON CODES 57

Using this identity we get

S(X) =
2t−1∑
l=0

SlX
l

=
2t−1∑
l=0

ν∑
k=1

eik(α
ikX)l

=
ν∑

k=1

eik

(
2t−1∑
l=0

(αikX)l

)

≡
ν∑

k=1

eik

1− αikX
mod X2t.

We define the error evaluator polynomial as

Ω(X) =
ν∑

k=1

eik

∏
l 6=k

(1− αilX)

this polynomial has no zeros in common with the error locater polynomial
Λ(X) because

Ω(α−ik) = eik

∏
l 6=k

(1− αil−ik)

So gcd(Λ(X), Ω(X)) = 1. The degree of Λ(X) is equal to the number of
errors ν ≤ t, the degree of Ω(X) is smaller.

We can relate Λ(X), S(X) and Ω(X) in the following way

Ω(X) = Λ(X)
ν∑

k=1

eik

1− αikX
≡ Λ(X)S(X) mod X2t.

To find Ω(X) and Λ(X) out of S(X) we will use the algorithm of Euclid. As
we saw in the first chapter this algorithm enables us to find the gcd elements
by division.

Suppose thus that a(X) and b(X) are polynomials of Fq then the algorithm
of Euclid supplies us with series ri(X), si(X) and ti(X) (i = 1, . . . , κ + 1)
such that

si(X)a(X) + ti(X)b(X) = ri(X) and deg ti(X) + deg ri−1(X) = deg a(X)

58 CHAPTER 5. BCH CODES

With r0(X) = a(X), rκ(X) = gcd(a(X), b(X)) and rκ+1(X) = 0.

Theorem 5.6. Suppose t(X) and r(X) are nonzero polynomials over Fq

satisfying the following conditions:

1. gcd(t(X), r(X)) = 1,

2. deg t(X) + deg r(X) < deg a(X),

3. t(X)b(X) = r(X) mod a(X).

Then there exists an index h ∈ N and a constant c ∈ FQ such that

t(X) = cth(X) and r(X) = crh(X).

Where the rh(X) and the th(X) are coming from the algorithm of Euclid on
t(X) and a(X).

Proof. First observe that the deg ri(X) strictly decreases when i increases.
by condition 2 we have that deg r < deg a and hence there is an index h such
that

deg rh(X) ≤ deg r(X) < deg rh−1(X).

From condition 3 and Euclid’s algorithm we have that

∃s(X) ∈ Fq[X] : s(X)a(X) + t(X)b(X) = r(X)

sh(X)a(X) + th(X)b(X) = rh(X)

Multiplying the equations by th(X) and t(X) and subtracting the two results
we obtain

(t(X)sh(X)− th(X)s(X))a(X) = t(X)rh(X)− th(X)r(X)

By the conditions on the degrees, the right equation has a degree strictly
smaller then deg a(X). Therefore both sides must be zero and

t(X)rh(X) = th(X)r(X).

Because deg th(X)+deg rh−1(X) = deg a(X) th 6= 0 and by condition 1 r(X)
divides rh(X) but it has the same or a higher degree so it is a scalar multiple
of rh(X). Dividing the previous equation by rh(X), we see that t(X) is also
a multiple of th(X). �

5.4. REED-SOLOMON CODES 59

Based on this theorem, we can find Λ(X) and Ω(X) because they satisfy
necessary the conditions if we identify

a(X) := X2t, b(X) := S(X), t(X) := Λ(X), r(X) := Ω(X)

The constant c must be chosen such that cth(0) = Λ(0) = 1. We claim that
h is the unique index such that

deg rh < t ≤ deg rh−1.

Indeed, smaller values of i would result in a polynomial Ω(X) = cri(X) whose
degree is larger than t− 1. On the other hand we have for every i > h

deg ti ≥ deg th+1 = deg a− deg rh > t

So then Λ(X) will have a degree larger than t.

After we have found Λ(X) and Ω(X) we proceed by searching the error
locations αil , whose inverses are the roots of Λ(X).

To find the error magnitudes we will have to recall formal derivations in Fq

For a polynomial a(X) =
∑s

i=0 aiX
i we define

a′(X) =
s∑

i=1

iaiX
i−1

Where we take i modulo the characteristic of Fq. For these formal derivatives
the same properties, like the product rule, hold as in the normal case. We
can now calculate that

Λ′(X) =
∑

k

−αik
∏
l 6=k

(1− αilX),

so by the definition of Ω(X)

Λ′(α−ik) = −αik
∏
l 6=k

(1− αil−ik) =
−αik

eik

Ω(α−ik)

This gives us the following expression for the error magnitudes

eik =
−αikΩ(α−ik)

Λ′(α−ik)
.

If we put every thing together we get the following algorithm

60 CHAPTER 5. BCH CODES

Algorithm 5.2 (Berlekamp-Massy-Forney).

1. Compute the syndrome polynomial S(X) out of the received word
m(X).

2. Use the algorithm of Euclid for X2t and S(X) to find an index h such
that deg rh < t ≤ deg rh−1.

3. Define Λ(X) = th(X)/th(0) and Ω(X) = rh(X)/th(0). Find the ik
such that α−ik is a root of Λ(X). There has to be deg Λ(X) distinct
roots otherwise to many errors have occured and you must ask for
retransmission.

4. Define

eik =
−αikΩ(α−ik)

Λ′(α−ik)
.

The corrected polynomial is

m(X)−
∑

k

eikX
ik .

Miniature 4: Elwyn E. Berlekamp (1940-)

Elwyn R. Berlekamp, professor at Berkeley was born
in Dover, Ohio on September 6, 1940. In the early
1970s, Dr. Berlekamp founded Cyclotomics, Inc., a
research and engineering firm specializing in the de-
velopment and implementation of high-performance
error control systems for digital communications and
mass data storage. Cyclotomics designed and devel-
oped a variety of innovative electronic subsystems and
full-custom integrated circuits that implement novel
algorithms for error-correcting codes, deskewing, and
synch acquisition for aerospace and commercial ap-
plications. In 1984, Cyclotomics ”Bit-Serial” Reed
Solomon encoders were formally adopted as the NASA
standard for deep space communications. On the com-
mercial side, all compact disk players use RS Codes
with Berlekamp decoding.

Part II

Cryptography

61

Chapter 6

History and Background

6.1 The Main Problem

Cryptography is the art or science of secret writing, or more exactly, of
storing information (for a shorter or longer period of time) in a form which
allows it to be revealed to those you wish to see it yet hides it from all
others. A cryptosystem is a method to accomplish this. Cryptanalysis is
the practice of defeating such attempts to hide information. Cryptology
includes both cryptography and cryptanalysis. The original information to be
hidden is called ”plaintext”. The hidden information is called ”ciphertext”.
Encryption is any procedure to convert plaintext into ciphertext. Decryption
is any procedure to convert ciphertext into plaintext.

A cryptosystem is designed so that decryption can be accomplished only
under certain conditions, which generally means only by persons in possession
of both a decryption engine (these days, generally a computer program) and
a particular piece of information, called the decryption key, which is supplied
to the decryption engine in the process of decryption. Plaintext is converted
into ciphertext by means of an encryption engine (again, generally a computer
program) whose operation is fixed and determinate (the encryption method)
but which functions in practice in a way dependent on a piece of information
(the encryption key) which has a major effect on the output of the encryption
process. In this process the encryption key and the decryption key may or

63

64 CHAPTER 6. HISTORY AND BACKGROUND

may not be the same. When they are the cryptosystem is called a ”symmetric
key” system; when they are not it is called an ”asymmetric key” system.
The most widely-known instance of a symmetric cryptosystem is DES (the
so-called ”Data Encryption Standard”).

6.2 Time Line

In this section we give a short review of the main cryptographic developments
in history.

• About 1900 BC: an Egyptian scribe used non-standard hieroglyphs in
an inscription.

• 50-60 BC: Julius Caesar (100-44 BC) used a simple substitution with
the normal alphabet (just shifting the letters a fixed amount) in gov-
ernment communiciations. This cipher was less strong than a reversed
alphabet substitute cipher system, by a small amount, but in a day
when few people read in the first place, it was good enough. He also
used transliteration of Latin into Greek letters and a number of other
simple ciphers.

• 1518: Johannes Trithemius wrote the first printed book on cryptology.
He invented a steganographic cipher in which each letter was repre-
sented as a word taken from a succession of columns. The resulting
series of words would be a legitimate prayer. He also described polyal-
phabetic ciphers in the now-standard form of rectangular substitution
tables. He introduced the notion of changing alphabets with each let-
ter.

• 1918: The ADFGVX system was put into service by the Germans near
the end of WW-I. This was a cipher which performed a substitution
(through a keyed array), fractionation and then transposition of the
letter fractions. It was broken by the French cryptanalyst, Lieutenant
Georges Painvin.

• 1933-45: The Enigma machine was not a commercial success but it
was taken over and improved upon to become the cryptographic work-

6.2. TIME LINE 65

horse of Nazi Germany. [It was broken by the Polish mathematician,
Marian Rejewski, based only on captured ciphertext and one list of
three months worth of daily keys obtained through a spy. Continued
breaks were based on developments during the war by Alan Turing,
Gordon Welchman and others at Bletchley Park in England.] Enigma
was mainly used in the U-Boats and it was the job of Turing and other
mathematicians of the time to break the communication cipher code
to prevent further losses in Allied shipping.

• 1976: FIPS PUB-46; a design by IBM, based on the Lucifer cipher
and with changes (including both S-box improvements and reduction
of key size) by the US NSA, was chosen to be the U.S. Data Encryption
Standard. It has since found worldwide acceptance, largely because it
has shown itself strong against 20 years of attacks. Even some who
believe it is past its useful life use it as a component – e.g., of 3-key
triple-DES.

• 1977: One night in April, Ron Rivest was laid up with a massive
headache and the RSA algorithm came to him. He wrote it up and
sent it to Shamir and Adleman the next morning. RSA is a practical
public-key cipher for both confidentiality and digital signatures, based
on the difficulty of factoring large numbers. They submitted this to
Martin Gardner on April 4 for publication in Scientific American. It
appeared in the September, 1977 issue. The Scientific American article
included an offer to send the full technical report to anyone submit-
ting a self-addressed, stamped envelope. There were thousands of such
requests, from all over the world.

• 1991: Phil Zimmerman released his first version of PGP (Pretty Good
Privacy) in response to the threat by the FBI to demand access to
the cleartext of the communications of citizens. Although PGP offered
little beyond what was already available in products like Mailsafe from
RSADSI, PGP is notable because it was released as freeware and has
become a worldwide standard as a result.

• 2000: NSA accepted Rijndael, an encryption system by the Belgians
Rijmen and Daemen, as the new standard for cryptography replacing
DES.

66 CHAPTER 6. HISTORY AND BACKGROUND

6.3 Basic Methods

The two main historical methods of encryption are substitution and trans-
position and most known modern methods are a mixture of both.

Substitution: When individual letters or n-grams of plaintext are replaced
by letters or n-grams of ciphertext.

e.g. replace any letter in a string with its following letter in the alphabet.

hello −→ ifmmp

One can of course shift further in the alphabet, ciphers obtained in this way
are called Caesar substitutions

Transposition: when the characters of the original message are rearranged
according to some particular pattern.

e.g. reverse the order of all the characters in the string

hello −→ olleh

Monoalphabetic Substitution

A monoalphabetic substitution is one where a letter of plaintext always pro-
duces the same letter of ciphertext. The simplest example of monoalphabetic
substitutions is probably the Caesar Cipher. These are special cases, of the
more general substitution, so you may like to read the description of these
first. In general, an example of a monoalphabetic substitution is shown be-
low.

Example 6.1 (Monoalphabetic Substitution).
alphabet a b c d e f g h i j k l m

cipher Q R S K O W E I P L T U Y

alphabet n o p q r s t u v w x y z

cipher A C Z M N V D H F G X J B

PLAINTEXT: there is a house in new orleans

6.3. BASIC METHODS 67

CIPHERTEXT: DIONO PV Q ICHVO PA AOG CNUOQAV

You may naively think that this cipher is secure, after all there are 26! differ-
ent cipher alphabets (4 · 1026) to choose from, however the letter frequencies
and underlying patterns will be unchanged - and as such the cipher can be
solved by pen and paper techniques. In English the 10 most common let-
ters ordered by their frequency are ETAIN SHRDL. To solve a monoalphabetic
substitution, one tries to match the most common letters in the ciphertext
to this sequence of letters. The match is however not perfect because of
statistical deviations in the letter frequencies.

Monoalphabetical substitution can also be applied on other alphabets such
as the set of all digraphs (i.e. pairs of letters). An interesting example of
this sort is the Playfair cipher.

Example 6.2. The Playfair cipher was invented by a rather clever person
by the name of Wheatstone - but Playfair’s name is attached to it as he is
the one who was a vocal supporter of it in government circles. Playfair first
demonstrated this cipher at a dinner in 1854. The dinner was given by a lord
Granville, and a notable guest was Lord Palmerston. The cipher is a form of
monoalphabetic substitution, but relies on digraphs rather than single letters
- and it is simple to master. The Playfair cipher is believed to be the first
digraphic system. We start with a keyword - for instance using ”Palmerston”
as a keyword we obtain: PALMERSTONBCDFGHIKQUVWXYZ and then place the
remaining letters in a 5x5 square Note that I and J are considered as the
same letter. This system of generating the square degenerated into simply
entering the keyword directly into the 5 by 5 square (this is the method we
shall use for demonstration purposes, however you should be aware that any
method of placing letters into the grid may be used).

P A L M E

R S T O N

B C D F G

H I K Q U

V W X Y Z

To encipher some text, that text must first be split into digraphs - double
letters are separated, here I’ve used an x - so each digraph will consist of

68 CHAPTER 6. HISTORY AND BACKGROUND

different letters. If it turns out that the last letter is on its own an x is
added to the end of the message. So the message Lord Granville’s dinner

party, when split into digraphs will become lo rd gr an vi lx le sd in

ne rp ar ty. Now the text is ready to encipher. For example, in order to
encipher ay we must locate a and y in the square, and find the letter which
is in the same row as a and the same column as y.

P A L M E

. . . O .

. . . F .

. . . Q .

. . . Y .

Hence the first letter of the enciphered digraph is M, the second letter is found
by examining the column containing the first letter and the row containing
the second. So in this case the second letter is W. Therefore ay becomes MW.
You may like to think of this by imagining the plaintext letters as being one
corner of a rectangle, and the ciphertext letters as being the other corners of
the rectangle.

What happens if the two letters fall in the same row or column? If they fall
in the same row then the letters to the right are taken, and if they fall in the
same column then the letters underneath are taken. Note that the table has
the topology of a torus, so Y is to the right of X, Z is to the right of Y, and V

is to the right of Z. Thus el becomes PM. Note that the order of the letters
in the digraph is important and should be preserved. Using these rules the
message is encoded as follows:

lo rd gr an vi lx le sd in ne rp ar ty

MT TB BN ES WH TL MP TC US GN BR PS OX

and becomes "MTTBBNESWHTLMPTCUSGNBRPSOX". (Note the encoding of LX to
avoid a double letter). To decode the same rules are used in reverse.

What are the advantages of such a system? The prime reason is that one
of the main weapons of the cryptanalyst is weakened. You will have noticed
for example, that the letter ”e” does not always encipher to the same letter -
how it enciphers depends upon what it is paired with - much more ciphertext

6.3. BASIC METHODS 69

must be obtained in order to make use of digraphic frequency analysis (and
there are many more digraphs than single letters). In other words it COULD
be broken using the same techniques as a single-letter monoalphabetic sub-
stitution, but we’d need more text. (Note that this is not the best way to
crack playfair!) Also we now have less elements available for analysis in a
100 letter message enciphered using a single letter substitution we have 100
message elements (from a choice of 26) for analysis - if the message had been
enciphered using digraphs then we’d only have 50 message elements (from
a choice of 676). The cipher had many advantages, no cumbersome tables
or apparatus was required, it had a keyword which could be easily changed
and remembered and it was very simple to operate. These considerations
lend the system well to use as a ’field cipher’. Apparently Wheatstone and
Playfair presented this system to the Foreign office for diplomatic use, but
it was dismissed as being too complex. Wheatstone countered by claiming
that he could teach three schoolboys out of four to use the system in less
that fifteen minutes - the under secretary at the FO replied ”That is very
possible, but you could never teach it to attachés.” The cipher was mentioned
at Granville’s party with a view to its use in the Crimean War. The system
was not used in the Crimean war, but there are reports that it served in the
Boer war.

Polyalphabetic substitution

In polyalphabetic substitution the cleartext letters are enciphered differently
depending upon their placement in the text. As the name polyalphabetic
suggests this is achieved by using several cryptoalphabets instead of just
one, as is the case in most of the simpler cryptosystems. Which cryptoal-
phabet to use at a given time is usually guided by a key of some kind, or
the agreement can be to switch alphabet after each word encrypted (which,
of course, presumes that the word boundaries are kept intact or indicated in
some way), but the latter is seldom practiced in real life. Several systems
exists, and I shall try and explain some of the more common.

Example 6.3 (Gronsfeld’s system). One of the simplest polyalphabetic sub-
stitution ciphers is Gronsfeld’s system. Gaspar Schott, a German 17-century
cryptographer, tells that he was taught this cipher during a trip between
Mainz and Frankfurt by count Gronsfeld, hence the name. Gronsfeld’s sys-

70 CHAPTER 6. HISTORY AND BACKGROUND

tem uses a numeric key - usually quite short - e.g. 7341, and this key is
repeated, one figure at a time, above the individual letters of the cleartext,
like this:

Key: 7 3 4 1 7 3 4 1 7

Text: G R O N S F E L D

To encrypt, one simply count forwards in the alphabet from the letter to be
encrypted, the number of steps given by the key figure above, the resulting
letter being the crypto. If one happens to reach the last letter of the alphabet,
still having remaining steps to count, one begins from the beginning of the
alphabet. It helps to think of the alphabet as a ring of letters, instead of a
row.

Key: 7 3 4 1 7 3 4 1 7
Text: G R O N S F E L D
Crypto: N U S O Z I I M K

Decryption is the reverse process. One writes out the key figures above the
letters of the cryptogram and counts backwards in the alphabet instead to
reach the cleartext. Gronsfeld’s system can be made more secure against en-
emy decryption by using a differently ordered alphabet instead of the normal
sequence. There are numerous ways to design an unordered alphabet, I will
show only one method. Using the key (or, preferably, another key of one’s
own choosing) from the example above, the following table is constructed:

7 A E I M Q U Y

3 B F J N R V Z

4 C G K O S W

1 D H L P T X

Writing the letters out, row by row, and starting with the row having the
lowest keyfigure gives the following unordered sequence:

DHLPTXBFJNRVZCGKOSWAEIMQUY.

6.3. BASIC METHODS 71

The encryption example from above will, when counting in this unordered
alphabet, look like this:

Key: 7 3 4 1 7 3 4 1 7

Text: G R O N S F E L D

Crypto: I C E R U R U P F

Example 6.4 (Vigenère). Instead of using a sequence of numbers to add we
can also use a codeword a which add the letter values. If this is the case such
a system is called a Vigenère cipher.

• Standard Vigenère
In standard Vigenère the value letter of the key word minus 1 are add
up by the letters of the message. Here is an example with the codeword
PYRAMID.

Key letters: P Y R A M I D P Y R A M I D P

Cleartext: A T T A C K A T S U N D O W N

Crypto: P R K A O S D I Q L N P W Z C

• Vigenère with unordered alphabets
As is the case with Gronsfeld’s system, the cipher produced by Vigenère
will be harder to break by the enemy if unordered alphabets are used
instead of the normal alphabetic sequence. Either the mixed sequence
is written down in a fashion similar to the Vigenère table above, or
the mixed sequence is written on the top line and down, forming a new
leftmost column, which are then used when locating the key-, cleartext,
and cryptoletters.

Exercise 6.1. The standard Vigenère was the main cryptographic system
used by the Confederated States during the American Civil War, and the
following four key phrases used by the Confederates have survived to this
day: IN GOD WE TRUST, COMPLETE VICTORY, MANCHESTER BLUFF and, as the
war-luck turned: COME RETRIBUTION.

Decipher the following example of a real Confederate message (the key being
one of the four mentioned above):

72 CHAPTER 6. HISTORY AND BACKGROUND

Jackson, May 25th, 1863 Lieut. Genl. Pemberton:

My XAFV. USLX was VVUFLSJP by the BRCYIJ 200,000 VEGT.

SUAJ. NERP. ZIFM. It will be GFOECSZQD as they NTYMNX.

Bragg MJ TPHINZG a QKCMKBSE. When it DZGJX N will YOIG.

AS. QHY. NITWM do you YTIAM the IIKM. VFVEY. How and

where is the JSQML GUGSFTVE. HBFY is your ROEEL.

J. E. Johnston

Transposition ciphers

Transposition ciphers are rarely encountered nowadays. They differ from
both code systems and substitution ciphers; in a transposition cipher the
letters of the cleartext are shifted about to form the cryptogram. This can
be done in a number of ways and some systems exist where even whole
words are transposed, rather than individual letters. To encrypt Chinese, for
instance, one can use a transposition cipher operating on the individual signs
of written Chinese (using a substitution cipher for a language like Chinese
would be awkward if not impossible).

• Single columnar transposition
One of the easiest ways to achieve transposition is the single columnar
transposition cipher. To use it one needs a keyword or phrase, whose
letters are numbered according to their presence in the alphabet. The
keyword ’Osymandias’ is numbered in the following way:

O S Y M A N D I A S

7 8 10 5 1 6 3 4 2 9

That is, the first occurrence of the letter A is numbered 1, the second
2. There are no B’s or C’s so the next letter to be numbered are the D
followed by I, and so on.

Next the plaintext are written in rows under the numbered keyword,
one letter under each letter of the keyword. Let’s say that the plaintext
to be encrypted is ’Company has reached primary goal’. It will look
like this:

6.3. BASIC METHODS 73

O S Y M A N D I A S

7 8 10 5 1 6 3 4 2 9

c o m p a n y h a s

r e a c h e d p r i

m a r y g o a l

Now the letters of the plaintext are copied down by reading them off
columnwise in the order stated by the enumeration of the keyword and
the result is the finished cryptogram, which - of course - are put into
groups of five letters, like this:

AHGAR YDAHP LPCYN EOCRM OEASI MAR

To decrypt a received message enciphered by this method one first must
calculate the number of letters present in the cryptogram. This is done
to see how many letters there originally were in the last row. As can
be seen above, the last two columns - the ones numbered 8 and 9 - only
contain two letters and this is important. Now the cryptogram above
contains 28 letters and as a legitimate user of the cryptosystem one
knows that the keyword is ten letters wide, therefore the last row must
consist of eight letters only, the last position being empty. Keeping
that in mind - or better still, marking the last two positions of row
three in some way to indicate that it should not be used - one numbers
the keyword letters just as when encrypting and then start by writing
the first three letters of the cryptogram under keyword letter number
one, thus:

O S Y M A N D I A S

7 8 10 5 1 6 3 4 2 9

. . . . a

. . . . h

. . . . g . . . * *

Continue in the same way by writing the next two! letters under key-
word letter number two, and so on up to keyword letter ten. Now the
cleartext can be read in the normal way, row by row.

Usually when employing a transposition cipher like the above, one adds
dummy letters to make the final group five letters long if it isn’t already

74 CHAPTER 6. HISTORY AND BACKGROUND

full. It is important to do this before transposing the letters, otherwise
the receiver can’t calculate the columns that haven’t a full number of
letters if the last row isn’t complete. In some cases the last row is
always made complete by adding dummy letters, but that reduces the
security of the cipher and isn’t recommended (now, this cipher is quite
easy to break anyhow...).

• Double columnar transposition

Double columnar transposition is similar to single columnar transpo-
sition, but the process is repeated twice. One either uses the same
keyword both times or, preferably, a different one on the second occa-
sion. Let’s encrypt the text ’Send armoured car to headquarters’ using
the keywords ’Agamemnon’ and ’Mycenae’:

A G A M E M N O N

1 4 2 5 3 6 7 9 8

s e n d a r m o u

r e d c a r t o h

e a d q u a r t e

r s j

(Note dummy letter j added at the end to make the total number of
letters a multiple of five) This first encryption gives:

srer-nddj-aau-eeas-dcq-rra-mtr-uhe-oot.

These letters are written under the second keyword, thus:

M Y C E N A E

5 7 2 3 6 1 4

s r e r n d d

j a a u e e a

s d c q r r a

m t r u h e o

o t

And, finally this gives the cryptogram:

6.3. BASIC METHODS 75

DEREE ACRRU QUDAA OSJSM ONERH RADTT

Double columnar transposition is substantially safer against crypt-
analysis than single columnar transposition (not impossible, though).

Product ciphers

Product ciphers are combinations of substitution and transposition tech-
niques chained together. In general they are far too hard to do by hand.
However one famous product cipher, the ADFGVX cipher, was used in WW1
by the German army. More generally, wider used use had to wait for the ci-
pher machines.

Example 6.5 (ADFGVX Product Cipher). The cipher is named this way
since only letters ADFGVX are used. These letters are chosen since have
very distinct morse codes. The code was used by the German’s for the great
offensive in 1918. It was broken for the Allies by a French cryptoanalist
Georges Painvin. It uses a fixed substitution table to map each plaintext
letter to a letter pair (row-col index).

A D F G V X

A K Z W R 1 F

D 9 B 6 C L 5

F Q 7 J P G X

G E V Y 3 A N

V 8 O D H 0 2

X U 4 I S T M

Then uses a keyed block transposition to split letter pairs up ciphertext then
written in blocks and sent

Plaintext: PRODUCTCIPHERS

Key: DEUTSCH

Intermediate Text: FGAGVDVFXADGXVDGXFFGVGGAAGXG

Keyed Block Columnar Transposition Matrix

76 CHAPTER 6. HISTORY AND BACKGROUND

D E U T S C H

2 3 7 6 5 1 4

F G A G V D V

F X A D G X V

D G X F F G V

G G A A G X G

Ciphertext: DXGX FFDG GXGG VVVG VGFG CDFA AAXA

Chapter 7

Enigma

The efficiently of the German’s armed forces in the second world war was only
made possible by the use of radio communications. Messages sent this way
had to be enciphered, and the encryption system they used was developed
from one that was commercially available before the war. The Enigma was a
portable cipher machine used to encrypt and decrypt secret messages. More
precisely, Enigma was a family of related electro-mechanical rotor machines
there were a variety of different models.

The Enigma was used commercially from the early 1920s on, and was also
adopted by the military and governmental services of a number of nations
most famously by Nazi Germany before and during World War II.

The German military model, the Wehrmacht Enigma, is the version most
commonly discussed. The machine has gained notoriety because Allied cryp-
tologists were able to decrypt a large number of messages that had been
enciphered on the machine. The intelligence gained through this source co-
denamed ULTRA was a significant aid to the Allied war effort. The exact
influence of ULTRA is debated, but a typical assessment is that the end of
the European war was hastened by two years because of the decryption of
German ciphers.

77

78 CHAPTER 7. ENIGMA

7.1 Description of the Enigma machine

Plain text messages were enciphered and deciphered using a machine called
Enigma. This consisted of the following components:

• A 26 letter keyboard.

• A 26 letter lamp board.

• A device called a ”scrambler” that was made of three rotating wheels
on a common spindle.

• A plugboard known as a ”Steckerboard” that added an additional level
of security.

These were wired up in the following way. The keyboard and lampboard
were both connected to a common cabling bus containing 26 wires. When
no keys were being held down all the lamps were connected to the bus and
current present on any particular wire would cause it’s lamp to glow. When a
key was pressed current was placed on it’s wire, but the corresponding lamp
was disconnected from the bus.

The nature of Enigma was that no letter could ever be enciphered to itself, so
this common keyboard/lampboard bus worked well. When a key was pressed
one wire on the bus would have current applied to it, and the other 25 could

7.1. DESCRIPTION OF THE ENIGMA MACHINE 79

respond with the enciphered letter. The one that did respond was the result
of the other components.

The original commercial Enigma did not have the plugboard, so let us start
by considering the machine without this. The 26 wire bus was connected to
a circular set of contacts that sat to the right hand side of the three rotor
scrambler. These three rotors were identical except in their internal wiring.
Each rotor had two sets of 26 connectors one on the left side, and the other on
the right. The current from the keyboard would flow along one of the wires,
for example let us say A, this would arrive at the circular set of 26 contacts
that were next to the rightmost rotor. The internal wiring of this rotor
would change this input setting on the right to a different output setting on
the left. For reasons that will soon become clear this first rotor was known
as the ”fast” rotor. The current would then exit from the fast rotor on a
different contact, let us say G. This would enter the middle (medium) rotor
and be changed again from G to let us say W. Again the current would be
translated by the third (slow) rotor on the left from W to perhaps C. When
the current exited from the left hand side of the slow rotor it entered into a
device called the ”reflector”. Here the current was returned back to the left
hand side of the slow rotor but on a different contact. This mapping provided
a further level of enciphering, but, unlike the rotors, because there are only
one set of contacts in the reflector the mapping was always reciprocal. So
our C might now be a K. This now passed through the slow rotor to become
perhaps an A, and then the medium rotor to become perhaps an L, and finally
through the fast rotor to become another letter, say a Z. This would go into
the final set of contacts and back onto the keyboards/lampboard bus and
light the Z lamp.

All three rotor wheels could be rotated by hand in the Enigma machine. On
each rotor there were a set of 26 letters on the outer edge that indicated which
way the rotor was set, and because each rotor could be set independently
there were 26 × 26 × 26 possible rotor settings. This in itself would not
have provided a secure ciphering system because the letter frequency of the
ciphered output would quickly have revealed the message. To prevent this
every time a key was pressed the fast rotor was advanced one position, so
if one were to encipher the same character three times the result would be
three different characters. When the fast wheel got to a certain position it
would cause the middle wheel to be rotated one position, which could in turn

80 CHAPTER 7. ENIGMA

cause the slow wheel to move, like in an odometer of a car (in fact there was
a subtle difference but we will not go into this).

There were two additional complications with the rotors. The first was that
their position could be changed in the Enigma machine, allowing six different
orderings. The second was that there were actually five rotors, any three of
which could be used at one time, giving ten possible selections. As each of
these could be placed into the machine six different ways this made sixty
different possible rotor configurations. (This is in fact an over simplification
because there were several different versions of Enigma, but the differences
are not hugely important here.) So basically we now have 263 × 60 possible
initial machine settings.

The Enigma plugboard or steckerboard was a simple additional device which
sat between the keyboard/lampboard bus, and the scrambler. Its function
was to swap letter pairs. So, for instance, A could be swapped with H (which
would also mean that H was swapped with A). It is useful in describing Enigma
to refer to this process as ”Steckering”, so one might say that A was steckered
to B (which means the same as A being steckered to A). Letters that were not
plugged would remain unchanged. Each Enigma box had several plug leads (I
am not exactly sure how many, but more than 5 and less than the maximum
13) and using these the number of Steckerboard combinations was in the
trillions.

7.2. WORK BY THE POLES TO BREAK ENIGMA 81

Sitting between the keyboard/lampboard bus, and the scrambler caused the
Steckerboard to be used twice, just as the rotors were. So now there are a
huge number of possible settings. I am simplifying things a little, but the
basic way Enigma was used was to have a monthly code book which contained
a daily setting that was used for all messages in each 24 hour period. If just
one message could be broken the daily setting would be know which could
enable all the other messages that day to be read.

With the level of sophistication highlighted above Enigma should have been
unbreakable, but the Germans had a number of procedural flaws which al-
lowed the British (and the Polish before them) to break the cipher. Some of
these were plain stupid, like reusing the monthly code book settings, but the
others were less obvious and this allowed several decryption tricks.

7.2 Work by the Poles to break Enigma

During the 1930s, Polish mathematicians worked to determine the inner
wiring of the rotors without having the rotors themselves. The names of
some of these mathematicians were Marian Rejewski, Henryk Zygalski and
Jerzy Rozycki.

Here we summarize the mathematical reasoning that was done to deduce the
wiring of the rotors.

Mathematically we can describe all the operations that occur by permuta-
tions on the alphabet Define A := {A, · · · , Z} and SA the set of all permu-
tations of A. We will use the cycle convention to write down permutations
so the permutation σ := (ADCG)(TEL)(XS) will map

Letter :ABCDEFGHIJKLMNOPQRSTUVWXYZ

Image :DBGCLFAHIJKTMNOPQRXEUVWSYZ

Every rotor of the enigma machine can be represented by a permutation
which we we will denote by ρ1, . . . , ρ5. Also the steckerbox and the reflector
can be seen as permutation σ and τ . τ and σ are involutions (i.e. σ2 = τ 2 =
1) because they are products of cycles of length 2 (switching 2 letters). At

82 CHAPTER 7. ENIGMA

last we take π to be the cyclic shift (AB · · · YZ). πk cyclicly shifts the letters
by k positions.

If a rotor is in its original position i.e. A, it will act like its permutation ρi. If
it is rotated to position f.i. K, everything will be shifted 10 times so we have
to conjugate the permutation with π10.

So if we take the example of rotors 3-4-1 in positions B-G-S and for the
steckerboard we interchange D/F, G/M, U/I, A/E, H/Y, K/Q, the permu-
tation corresponding to the enigma machine will be σε341

BGSσ with

σ := (DF)(GM)(UI)(AE)(HY)(KQ)

ε341
BGS := (π−18ρ−1

1 π18)(π−6ρ−1
4 π6)(π−1ρ−1

3 π)τ(π−1ρ1π)(π−6ρ1π
6)(π−18ρ1π

18)

We see that every such a permutation is also an involution so (ε341
BGS)

2 = 1.

The method the Poles used to break the enigma code was based on a weak-
ness in the decoding system of the Germans. Every day there was a daily
code stating the order of the rotors used (f.i. 2-1-3), the start positions
of the rotor (f.i. A-C-D) and the ways the steckerboard was plugged (f.i.
σ =(AH)(MU)(LP)(EQ)(IR)(DF)). For every code of that day the same ro-
tors and steckerboard were used but the starting positions were different and
were sent at the beginning of each message and coded in the daily code. The
three letters of the start position were transmitted twice so for example

MOO

σε213ACDσ

��

DOO

σε213ACEσ

��

COO

σε213ACFσ

��

MOO

σε213ACGσ

��

DOO

σε213ACHσ

��

COO

σε213ACIσ

��
S X D L E P

Because the first and the forth letter, etc are the same we can conclude the
following identities which depend only on the coded text

σε213ACGε
213
ACDσ(S) = L

σε213ACHε
213
ACEσ(X) = E

σε213ACIε
213
ACFσ(D) = P

If we receive enough messages for the day we can construct the three per-
mutations σε213ACGε

213
ACDσ, These permutations still depend on both the the

7.2. WORK BY THE POLES TO BREAK ENIGMA 83

steckerboard and the rotor arraignment. We want to exclude the stecker-
board because it has to much possibilities to check, and hence we want to
look at something that is independent of σ. Because the action of sigma is by
conjugation we can look at the conjugation classes of the three permutations.

Theorem 7.1. Every conjugation class in Sn is completely determined by
its Young partition (which is a decompsition of n in an unordered sum of
natural numbers e.g. 7 = 1+1+2+3). The young partition of a permutation
corresponds to the length of its cycles:

(1456)(379) ∈ S10 −→ 10 = 4 + 3 + 1 + 1 + 1

Exercise 7.1. Write a program to compute how many young partitions there
are for a given n.

The number of young partitions of 26 is 2436. Up to conjugation with σ
the three permutations we deduced give us an ordered sequence of 3 young
partitions. There are 24363 such triples which is far more than the 6 × 263

(because at that time there were only 3 rotors) so we probably can determine
the start positions by its triple.

Therefore the Polish cryptographers, which had a copy of the enigma ma-
chine by espionnage, made a list of all possible starting positions and their
corresponding triples. every day they used the messages to derive the three
young partitions and then looked them up in their table to find the starting
position of the day.

Once the starting positions of a message were known, you can try to decode
it by typing the encrypted text in the enigma machine with the rotor in the

84 CHAPTER 7. ENIGMA

exact position and without any steckers. This decoding will give you

Message GOO

σε213ACDσ

��

EOO

σε213ACEσ

��

NOO

σε213ACFσ

��

EOO

σε213ACGσ

��

ROO

σε213ACHσ

��

AOO

σε213ACIσ

��

LOO

σε213ACIσ

��
Coded WOO

ε213ACD

��

XOO

ε213ACE

��

EOO

ε213ACF

��

SOO

ε213ACG

��

HOO

ε213ACH

��

NOO

ε213ACI

��

IOO

ε213ACI

��
Decoded G L N L R Q E

Because σ is made of 6 swaps, 14 letters will remain unchanged, the same
holds for ε213ACDσε213ACI. If we consider the ε213ACD as random permutations then we
have 14/26 > 50% chance that a message letter L is decoded as σ(L). Of
these 14/26 there are again 14 letter out of 26 for which σ(L) = L. About
one third of letters are decoded correct, and one can with some luck find
comprehensible phrases and use these to determine the swaps of σ.

It took the Poles about a year to construct the table, once they had it it was
very usefull but by the end of the ’30s the Germans had introduced 2 new
rotors which multiplied the possible rotor combination by a factor 10 so with
the same velocity the poles would have had their new table finished by the
year 1949 which was rather late. More drastic methods were needed.

7.3 The Turing bomb

Due to the work of the Poles, along with captured Enigma machines, the
English were aware of the wirings of all of the rotors. Their work concerned
trying to determine the initial rotor setting (initial state) of the machine,
along with the plugboard settings, for a given day. Many techniques were
used, but we will mainly focus on one that was made possible by a machine
called the Turing Bomb.

Another weakness in the communication system of the Germans was the
rigidity of the messages sent. The officers frequently used the same phrases

7.3. THE TURING BOMB 85

in their messages, f.i. a message to general . . . would always start with
ANGENERAL... so one could always find a piece of text of which one knows
the decryption, such a sample is called a crib. In this section we will use the
following example

Nr 1 2 3 4 5 6 7 8 9 10 11 12 13

Text K E I N E Z U S A E T Z E

Code D A E D A Q O Z S I Q M M

Nr 14 15 16 17 18 19 20 21 22 23 24 25

Text Z U M V O R B E R I Q T

Code K B I L G M P W H A I V

Take a rotor combination 2-3-5 and define ε1 := ε245AAA, ε2 := ε245AAB, ε3 :=
ε245AAC,

If the rotor settings are correct then there exists a k ∈ N. Such that

σεk+1σ(K) = D

σεk+2σ(E) = A

σεk+3σ(I) = E

...

where σ is again the steckerboard permutation, The problem is now to find
k without knowing σ.

Using the crib we can construct a graph having as vertices the letters of
the alphabet and as edges the different couples of a plaintext letter and its
encryption.

V

25

P
20

B
15

U
7

O

T

11

R
22

H

Q
24

I
3,10

NNNNNNNNNNNNNN

NNNNNNNNNNNNNN

N
4

D
1

K
14

Z
8

12 OOOOOOOOOOOOOO

6

�������
S

9
A E

5,2 21
W

M

13

pppppppppppppp

86 CHAPTER 7. ENIGMA

For a given k the vertex with number i, corresponds to the permutation

σεk+iσ. To every path p in the graph (f.i. S
8

Z
6

Q) we can associate a
permutation φp (by combining the permutations of the edges (σεk+8σσεk+6σ =
σεk+8εk+6σ)

We now take as base letter, the letter with the most cycles through so in this
case E. We then make a list of the cycles through E and the corresponding
permutations

E
13

M
12

Z
8

S
9

A
2

E σεk+13εk+12εk+8εk+9εk+2σ

E
13

M
12

Z
8

S
9

A
5

E σεk+13εk+12εk+8εk+9εk+5σ

E
13

M
12

Z
6

Q
24

I
3

E σεk+13εk+12εk+6εk+24εk+3σ

E
13

M
12

Z
6

Q
24

I
10

E σεk+13εk+12εk+6εk+24εk+10σ
...

...

Every cycle implies an equality:

σεk+13 . . . εk+2σ(E) = E or εk+13 . . . εk+2σ(E) = σ(E)

So if we define Fix(π) := {p|π(p) = p}, we have that

σ(E) ∈
⋂

c is a cycle through E

Fix(εk,c)

if k is the correct initial setting. If k is not equal to the initial setting,
the chance that this intersection in non-empty is not bigger than 261−#cycles

because a random permutation has a chance 1/26 for fixing a given letter
and there are 26 possible letters that can be fixed.

The permutation εk,c, k = 0, . . . could be easily constructed by connecting
different enigmas in the different rotor positions without a steckerboard in
the same way as the graph. To vary k one had to rotate all enigmas once at
the same time.

The first Turing bomb consisted of such cycles of connected enigmas and
a device that checked whether there was one letter that was mapped onto
itselve by all the cycles. If this was the case the machine stopped rotating
and the position was written down. Of course there could be more than one

7.3. THE TURING BOMB 87

position that had this property so out of the list that was written down the
crackers had to find manually the correct rotor positions.

This version of the Turing bomb had some disadvantages. First of all it was
useles if the crib didn’t contain any cycles and secondly it didn’t give any
clues about the steckerboard except for σ(E). In order to take these problems
in account Turing and this mates constructed a more powerfull version.

The idea was to construct a machine that could deduce the steckerboard
permutation out of the rotor positions and some other assumptions. If one
had some initial assumptions about σ then one could deduce conclusions
using the different paths in the graph of the crib. F.i. if we suppose that
σE = P then we also know that

σM = εk+13σE = εk+13P.

In general we have a set of 26× 26 statements of the form σ(L1) = L2 which
can be ordered in a table

A · · · Z

A σ(A) = A · · · σ(A) = Z
...

...
...

A σ(Z) = A · · · σ(Z) = Z

For every edge L1
l
− L2 of the graph of the crib we have implications

σL1 = L3 ⇒ σL2 = εk+lL3

Apart from that we also have implications

σL1 = L3 ⇒ σL3 = L1

because σ is an involution. If we now make a graph Γk with as vertices the
couples of letters A×A and as edges{

(L1, L3)− (L2, εk+lL3) if L1
l
− L2 is in the crib graph

(L1, L2)− (L2, L1) ∀L1, L2 ∈ A

88 CHAPTER 7. ENIGMA

If for a certain k we can deduce the statement

σL1 = L3 ⇒ σL2 = L4

this means that in the graph Γk , the vertices (L1, L3) and (L2, L4) will be
connected.

If k is the correct rotor setting and σL1 = L2 there will be no contradictions
in the deductions so none of the vertices (L1, L3), L1 6= L3 will be connected
with (L1, L2). So there will be a connected component of Γk that hits every
horizontal row vertices {L1} × A in at most 1 (not exactly one because it is
possible that you can not deduce σ completely out of the crib. Turing applied
this graph theoretical result to construct his machine. The trick was to turn
this graph into an electrical circuit. If this was done one chooses the letter
L1 where the crib graph has the most edges and chooses a couple (L1, L2) and
puts an electric potential on it, then all the vertices that are connected with
(L1, L2) will also have this potential.

If k was the correct position and (L1, L2) was part of the steckerboard, the
horizontal line of L1 had no other vertex with this potential.

If k was correct but (L1, L2) was not part of the steckerboard, the implication
σL1 = L2 probably led to contradictions and in almost all cases everything of
the horizontal line would be under potential e

¯
xcept the correct steckerboard

plug.

If k was not a correct rotor setting every possible σL1 = L2 would lead to
contradictions and in almost all cases everything of the horizontal would be
under potential.

The graph could be easily constructed by attaching enigma machines to a
square board with 262 contacts corresponding to the letter couples on it. For
every edge of the crib graph two horizontal lines of contacts were connected
by an enigma machine. Apart from that two contacts are also connected by
a wire if their couples are swaps of each other.

On the row of one letter there was an electric circuit that put a potential
on one of the contacts and that could detect whether only one or all but
one contact was under potential. Now the enigma machines rotated all at
the same time and the electric circuit stopped the rotation whenever such an
incident happened.

7.3. THE TURING BOMB 89

If this was the case the code cracker read of the rotor and steckerboard po-
sitions, and tried to decode the whole coded message using this information.

90 CHAPTER 7. ENIGMA

Chapter 8

Modern Cryptography and
Complexity

Cryptography is about communication in the presence of an adversary. It
encompasses many problems (encryption, authentication, key distribution
to name a few). The field of modern cryptography provides a theoretical
foundation based on which we may understand what exactly these problems
are, how to evaluate protocols that purport to solve them, and how to build
protocols in whose security we can have condence. We introduce the basic
issues by discussing the problem of encryption.

8.1 The problem

The most ancient and basic problem of cryptography is secure communica-
tion over an insecure channel. Party A wants to send to party B a secret
message over a communication line which may be tapped by an adversary.
The traditional solution to this problem is called private key encryption. In
private key encryption A and B hold a meeting before the remote transmis-
sion takes place and agree on a pair of encryption and decryption algorithms
E and D, and an additional piece of information S to be kept secret. We shall
refer to S as the common secret key. The adversary may know the encryption
and decryption algorithms E and D which are being used, but does not know

91

92 CHAPTER 8. MODERN CRYPTOGRAPHY AND COMPLEXITY

S.

After the initial meeting when A wants to send B the cleartext or plaintext
message m over the insecure communication line, A encrypts m by computing
the ciphertext c = E(S, m) and sends c to B. Upon receipt, B decrypts c by
computing m = D(S, c). The line-tapper (or adversary), who does not know
S, should not be able to compute m from c.

Let us illustrate this general and informal setup with an example familiar
to most of us from childhood, the substitution cipher. In this method A
and B meet and agree on some secret permutation f : Σ → Σ (where Σ is
the alphabet of the messages to be sent). To encrypt message m = m1 . . . mn
where mi ∈ Σ, A computes E(f, m) = f(m1) . . . f(mn). To decrypt c = c1 . . . cn
where ci ∈ Σ, B computes D(f, c) = f−1(c1) . . . f−1(cn) = m1 . . . mn = m. In
this example the common secret key is the permutation f . The encryption
and decryption algorithms E and D are as specified, and are known to the
adversary. We note that the substitution cipher is easy to break by an
adversary who sees a moderate (as a function of the size of the alphabet Σ)
number of ciphertexts.

A rigorous theory of perfect secrecy based on information theory was devel-
oped by Shannon in 1943. In this theory, the adversary is assumed to have
unlimited computational resources. Shannon showed that secure (properly
defined) encryption system can exist only if the size of the secret informa-
tion S that A and B agree on prior to remote transmission is as large as the
number of secret bits to be ever exchanged remotely using the encryption
system.

An example of a private key encryption method which is secure even in
presence of a computationally unbounded adversary is the one time pad. A
and B agree on a secret bit string pad = b1b2 . . . bn, where bi ∈ {0, 1} = F2

with uniform probability. This is the common secret key. To encrypt a
message m = m1m2 . . . mn ∈ Fn

2 , A computes E(pad, m) = m + pad (i.e. bitwise
exclusive or). To decrypt ciphertext c ∈ Fn

2, B computes D(pad, c) = pad +
c = pad+(m+pad) = m. As the pad was randomly chosen the the adversary
cannot decrypt c without knowing pad because for every possible message
m′ ∈ F2 one can decrypt c as m′ using the pad c + m′. From this, it can be
argued that seeing c gives no information about what has been sent.

8.2. COMPLEXITY THEORY 93

Now, suppose A wants to send B an additional message n. If A were to
simply send c = E(pad, n), then the sum of the lengths of messages m and n

will exceed the length of the secret key pad, and thus by Shannon’s theory
the system cannot be secure. Indeed, the adversary can compute E(pad, m)+
E(pad, n) = m+ n which gives information about m and n (e.g. can tell which
bits of m and n are equal and which are different). To fix this, the length
of the pad agreed upon a-priori should be the sum total of the length of all
messages ever to be exchanged over the insecure communication line.

Miniature 5: Claude Shannon

Claude Elwood Shannon is considered as the founding
father of information theory. He joined the staff of Bell
Telephone Laboratories in 1942. While working at
Bell Laboratories, he formulated a theory explaining
the communication of information and worked on the
problem of most efficiently transmitting information.
The mathematical theory of communication was the
climax of Shannon’s mathematical and engineering in-
vestigations. The concept of entropy was an important
feature of Shannon’s theory, which he demonstrated to
be equivalent to a shortage in the information content
in a message.

8.2 Complexity theory

Modern cryptography abandons the assumption that the Adversary has avail-
able infinite computing resources, and assumes instead that the adversary’s
computation is resource bounded in some reasonable way. In particular, in
these notes we will assume that the adversary is an algorithm that runs in
polynomial time. Similarly, the encryption and decryption algorithms de-
signed run in polynomial time.

Computational complexity theory is part of the theory of computation deal-
ing with the resources required during computation to solve a given problem.
The most common resources are time (how many steps does it take to solve
a problem) and space (how much memory does it take to solve a problem).

94 CHAPTER 8. MODERN CRYPTOGRAPHY AND COMPLEXITY

In an intuitive way we can say that an algorithm A is a computer program
which transforms a binary input string i ∈ ∪n∈NFn

2 := F• to an output
u =∈ F•. The length of the input or output is denoted by |i| or |u| and is
equal to its number of binary digits. A defines a function fA : F• → F• which
assigns to every input its output.

Note that we could also allow more than one input or output string, is this
case fA is a function from (F•)k to (F•)l for some fixed k, l. Denote the set
of all such algorithms with Ak,l.

The time that an algorithm A takes to compute the output from a given input
i is defined as the number of operations (binary logical operations as AND,
OR, NOT) that the program has to perform on the bits and this is denoted
by TA(i). An algorithm A is in polynomial time if ∀i : TA(i) ≤ g(|i|) for
some polynomial g(X).

Exercise 8.1. Show that the standard algorithms for addition, multiplica-
tion and division are in polynomial time.

A problem P is a function f : F• → F• and it is called a decision problem if
the output is in F2 ⊂ F•.

In this theory, the class P consists of all those decision problems that can be
solved by a computer program in an amount of time that is polynomial in
the size of the input. Formally

P ∈ P ⇔ ∃A ∈ A1,1 : ∃g(X) ∈ R[X] : fA = P and ∀i ∈ F• : TA(i) ≤ g(|i|).

The class NP consists of all those decision problems whose positive solutions
can be verified in polynomial time given the right information, or equivalently,
whose solution can be found in polynomial time on a non-deterministic ma-
chine. Formally

P ∈ NP ⇔ ∃A ∈ A2,1 : ∃g(X) ∈ R[X] :

∀i :

{
P(i) = 1 ⇒ ∃y : fA(i, y) = 1 and TA(i, y) ≤ g(|i|)
P(i) = 0 ⇒ ∀y : fA(i, y) = 0

8.3. NP-COMPLETE PROBLEMS 95

Analogously we define say that a problem P is in coNP if ¬P ∈ NP .

The biggest open question in theoretical computer science concerns the rela-
tionship between those two classes:

P ?
= NP .

Most people think that the answer is probably ”no”; some people believe
the question may be undecidable from the currently accepted axioms. A
$1, 000, 000 prize has been offered for a correct solution.

In essence, the P = NP question asks: if positive solutions to a YES/NO
problem can be verified quickly, can the answers also be computed quickly?
Here is an example to get a feeling for the question. Given two large numbers
X and Y , we might ask whether Y is a multiple of any integers between 1 and
X, exclusive. For example, we might ask whether 69799 is a multiple of any
integers between 1 and 250. The answer is YES, though it would take a fair
amount of work to find it manually. On the other hand, if someone claims
that the answer is Y ES because 223 is a divisor of 69799, then we can quickly
check that with a single division. Verifying that a number is a divisor is much
easier than finding the divisor in the first place. The information needed to
verify a positive answer is also called a certificate. So we conclude that given
the right certificates, positive answers to our problem can be verified quickly
(i.e. in polynomial time) and that’s why this problem is in NP . It is not
known whether the problem is in P . The special case where X = Y was first
shown to be in P in 2002.

8.3 NP-complete problems

An important role in this discussion is played by the set of NP-complete
problems (or NPC) which can be loosely described as those problems in NP
that are the least likely to be in P .

A decision problem P is NP-complete if it is in NP and if every other
problem in NP is reducible to it. Reducible here means that for every NP-
problem L, there is a polynomial-time algorithm which transforms instances
of L into instances of P, such that the two instances have the same values. As

96 CHAPTER 8. MODERN CRYPTOGRAPHY AND COMPLEXITY

a consequence, if we had a polynomial time algorithm for P, we could solve
all NP-problems in polynomial time.

To prove that a problem is NP-complete, one shows that one can reduce
another problem that is known to be NP-complete, to this problem. A
standard problem that is known to be NP-complete is the boolean circuit
problem

A boolean circuit is a directed graph without oriented cycles of which the
vertices of the forms below such that there is onle one output vertex ��������u .

��������i //

// ��������u

��@
@@

@@
@@

@

'&%$!"#∧ //??~~~~~~~~

��@
@@

@@
@@

@

'&%$!"#∨ //??~~~~~~~~

// ��������¬ //

The evaluation of a circuit given values in F2 for every input vertex ��������i , assigns
to every other vertex a binary value such that for the operator vertices the
value is the result of the operation on the incoming vertices and the vertex��������u has the same value as the one it is connected to.

It is easy to encode every circuit as a binary string. Given an appropriate
encoding method, the circuit decision problem CIRC : F•

2 → F2 the maps a
string to 1 if and only if the string corresponds to a circuit and there exist
input values such that the circuit evaluates the output vertex as one.

Theorem 8.1. CIRC is NP-complete.

Proof. (Sketch) First of all it is in NP , because evaluation of a circuit given
a certain input is an algorithm in polynomial time.

Now suppose that we have a decision problem P in NP , then there exists
an algorithm A ∈ A2,1 in polynomial time satisfying the requirements of the
NP-definition. We can transform this algorithm into a new algorithm Ã that
gives as output a boolean circuit that has for each input bit (of the second
argument) an input vertex and such that the evaluation of the circuit with
the input bit gives the same value as A. This new algorithm is in polynomial
time because the old one was. The proof finishes with the observation that
P = CIRC ◦ fÃ.

8.3. NP-COMPLETE PROBLEMS 97

As we already said, the easiest way to prove that some new problem is NP-
complete is to reduce some known NP-complete problem to it. Therefore,
it is useful to know a variety of NP-complete problems. Here are a few:

• SAT: given a boolean expression (e.g. (x1 ∧ x2)∨¬x3), does there exist
an assignment to the variables such that the expression is true.

• 3-SAT: given a boolean expression of the form

(x1 ∨ x2 ∨ ¬x3)︸ ︷︷ ︸
3 terms

∧ · · · ∧ (xi ∨ ¬xj ∨ ¬x3)︸ ︷︷ ︸
3 terms

does there exist an assignment to the variables such that the expression
is true.

• CLIQUE: A clique in a graph is a set of pairwise adjacent vertices. The
k-Clique Problem is simply the problem of deciding if a graph has a
clique of size k.

• VCOVER: A vertex cover of a graph is a subset of the vertices of the
graph which contains at least one of the two endpoints of each edge.
The vertex cover problem is to decide for a given graph and given k
whether there is a cover with k or less vertices.

• HAM: a hamiltonian cycle in a graph is a path that runs through every
vertex once. HAM decides whether a given graph has a hamiltonian
cycle.

• The knapsack problem: given a set of items, each with a cost and a
value, determine the number of each item to include in a collection so
that the total cost is less than some given cost and the total value is as
large as possible. The decision problem form of the knapsack problem
is the question ”can a value of at least V be achieved without exceeding
the cost C?”

The special status of NP-complete problems in complexity theory is the
following: to settle the P = NP question one either has to prove that an
NP-complete problem is in P or that it cannot be in P .

98 CHAPTER 8. MODERN CRYPTOGRAPHY AND COMPLEXITY

We end this section with some remarks on the factorization problem. We
can turn the factorization question into a decision problem by defining

FACTOR(p, s) = 1 ⇔ ∃d ∈ [2, s[: d|p.

A related problem is PRIMES:

PRIMES(p) = 1 ⇔ ∀d ∈ [2, p[: d 6 |p.

As already mentioned, FACTOR is in NP but more surprising is that also
¬PRIMES ∈ NP . To prove this we need a fact from number theory.

p is prime ⇔ Z∗
p,× is a cyclic group

This means that there exists a 1 < k < p such that kp−1 = 1 mod p and
ka 6= 1 mod p for all divisors of p− 1.

So to provide a certificate to check that p is a prime we can supply a k and
a factorization of p− 1. However to check the factorization we need to show
that the prime factors of p − 1 are indeed primes. Therefore we need to
provide for every prime factor again an r and a factorization and so on. Now
the total number of prime factors we need, will not exceed log2 p and as the
checking for every prime is polynomial in log2 p as well as the exponentiation
modulo p, we know that the checking algorithm as a whole is polynomial in
log2 p.

In a similar way one can prove that ¬FACTOR ∈ NP. Experts in complexity
think therefore that is unlikely that factorization is anNP-complete problem:
an NP-complete problem in NP ∩ coNP would imply that NP = coNP .

8.4 Real Life Computation

All of the above discussion has assumed that P means ”easy” and ”not in P”
means ”hard”. While this is a common and reasonably accurate assumption
in complexity theory, it is not always true in practice, for several reasons:

• It ignores constant factors. A problem that takes time 101000n is P
(in fact, it’s linear time), but is completely intractable in practice. A

8.5. TRAPDOOR FUNCTIONS 99

problem that takes time 100,0000002n is not P (in fact, it’s exponential
time), but is very tractable for values of n up into the thousands.

• It ignores the size of the exponents. A problem with time n1000 is P,
yet intractable. A problem with time 2n/1010 is not P , yet is tractable
for n up into the thousands.

• It only considers worst-case times. There might be a problem that
arises in the real world. Most of the time, it can be solved in time
n, but on very rare occasions you’ll see an instance of the problem
that takes time 2n. This problem might have an average time that is
polynomial, but the worst case is exponential, so the problem wouldn’t
be in P .

• It only considers deterministic solutions. There might be a problem
that you can solve quickly if you accept a tiny error probability, but a
guaranteed correct answer is much harder to get. The problem would
not belong to P even though in practice it can be solved fast. This is
in fact a common approach to attack NP-complete problems.

• New computing models such as quantum computers, which also work
probabilistically, may be able to quickly solve some problems not known
to be in P .

8.5 Trapdoor functions

In secure encryption schemes, the legitimate user is able to decipher the
messages (using some private information available to him: the key) So there
exists a polynomial time decryction algorithmD which has as input the coded
text and the key. Yet for an adversary (not having this private information)
the task of decrypting the ciphertext (i.e., breaking the encryption) should
be infeasible. Clearly, the breaking task can be viewn as an NP problem
where the extra information is the key. Yet, the security requirement states
that breaking should not be feasible, namely could not be performed by a
polynomial-time algorithm.

Hence, the existence of secure encryption schemes implies that there are
tasks performed by non-deterministic polynomial-time machines yet cannot

100 CHAPTER 8. MODERN CRYPTOGRAPHY AND COMPLEXITY

be performed by deterministic polynomial-time machines, which corresponds
more or less to NP-problems that are not in P .

However, the above mentioned necessary condition (e.g., P 6= NP) is not a
sufficient one. P 6= NP only implies that the encryption scheme is hard to
break in the worst case. It does not rule-out the possibility that the encryp-
tion scheme is easy to break in almost all cases. In fact, one can easily con-
struct encryption schemes for which the breaking problem is NP-complete
and yet there exist an efficient breaking algorithm that succeeds on 99% of
the cases. Hence, worst-case hardness is a poor measure of security. Security
requires hardness on most cases or at least average-case hardness. Hence,
a necessary condition for the existence of secure encryption schemes is the
existence of languages in NP which are hard on the average. Furthermore,
P 6= NP is not known to imply the existence of languages in NP which are
hard on the average.

Therefore instead of using the class of polynomial time algorithms it is some-
times more interesting to look at probabilistic polynomial time algorithms
but this is beyond the scope of the course.

The mere existence of problems which are hard on the average does not
suffice. In order to be able to use such problems we must be able to gener-
ate such hard instances together with auxiliary information which enable to
solve these instances fast. Otherwise, the hard instances will be hard also
for the legitimate users and they gain no computational advantage over the
adversary. Hence, the existence of secure encryption schemes implies the ex-
istence of an efficient way (i.e. probabilistic polynomial-time algorithm) of
generating instances with corresponding auxiliary input so that

1. it is easy to solve these instances given the auxiliary input,

2. it is hard on the average to solve these instances (when not given the
auxiliary input).

In order to construct secure encryption scheme one can start from special
functions meeting these conditions.

The most basic primitive for cryptographic applications is a one-way function.
Informally, this is a function which is easy to compute but hard to invert. It is

8.6. A SHORT LIST OF CANDIDATE ONE WAY AND TRAPDOOR FUNCTIONS 101

a function which can be computed using a polynomial time algorithm but any
(probabilistic) polynomial time algorithm attempting to invert the one-way
function on a element in its range, will succeed with negligible probability.
Formalizing this definition requires a lot more statistics and complexity and
will be beyond the scope of this course.

Informally, a trapdoor function f is a one-way function with an extra prop-
erty. There also exists a secret inverse function (the trapdoor) that allows its
possessor to efficiently invert f at any point in the domain of his choosing.
It should be easy to compute f on any point, but infeasible to invert f on
any point without knowledge of the inverse function . Moreover, it should
be easy to generate matched pairs of f ’s and corresponding trapdoor. Once
a matched pair is generated, the publication of f should not reveal anything
about how to compute its inverse on any point.

Formally, A trapdoor function is a one-way function f such that there exists
a polynomial g(X) ∈ R[X] and a (probabilistic) polynomial time algorithm
I such that for every k ∈ N there exists a string tk ∈ ∪i{0, 1}i, |tk| ≤ g(k)
such that I(f(x), tk) = x for all strings x of length smaller than k.

8.6 A Short List of Candidate One Way and

trapdoor functions

As we said above, the most basic primitive for cryptographic applications is
a one-way function which is easy to compute but hard to invert. (For public
key encryption, it must also have a trapdoor.) By easy, we mean that the
function can be computed by a probabilistic polynomial time algorithm, and
by hard that any probabilistic polynomial time (PPT) algorithm attempting
to invert it will succeed with small probability (where the probability ranges
over the elements in the domain of the function.) Thus, to qualify as a
potential candidate for a one-way function, the hardness of inverting the
function should not hold only on rare inputs to the function but with high
probability over the inputs. Several candidates which seem to posses the
above properties have been proposed.

Algebra and Number theory provides a source of candidates for one way and

102 CHAPTER 8. MODERN CRYPTOGRAPHY AND COMPLEXITY

trapdoor functions.

1. The discrete log problem.

2. Factoring numbers and RSA.

3. Word problems in discrete groups like braid groups.

4. DES with fixed message.

In the next chapters we will study those functions and their corresponding
cryptosystems.

Chapter 9

The discrete log problem

9.1 The discrete log problem for finite fields

From the theory of finite fields we know that F∗
p is the cyclic group in p− 1

elements. This means that there exists a g ∈ F∗
p such that every element in

F∗
p can be expressed as a power of g.

The function f : x 7→ gx mod p is a good candidate for being a one-way func-
tion. It can be calculated in polynomial time using repeated squaring: to cal-
culate gx we can look at the binary expansion of x = x02

0 + . . . xk−12
k−1 and

calculate g2, g4, . . . , g2k−1
mod p by repeated squaring gx is than the product

of the g2j
where xj 6= 0. So one need to do less than 2k multiplications mod-

ulo p. The number op steps to perform a multiplication mod p of 2 numbers
smaller than p is polynomial in p so smaller than a given function C(|p|). So
the amount of time to perform f is smaller than 2C(|p|)k = 2C(|p|)|x| or
polynomial.

Given a y and a g in Zp finding the u such that y = gu mod p is a lot
more complicated and this problem is called the discrete logarithm problem
or shortly DLP. There are several ways to tackle this problem:

1. Exhaustive search: The most obvious algorithm for DLP is to suc-
cessively compute g0, g1, g2, . . . until y is obtained. This method takes

103

104 CHAPTER 9. THE DISCRETE LOG PROBLEM

O(n) multiplications, where n is the order of g, and is therefore ineffi-
cient if n is large (i.e. in cases of cryptographic interest).

2. Pollards algorithm: Construct the following sequence (xi)i∈N: x0 = 1
and

xi+1 =

yxi if xi mod 3 = 0

gxi if xi mod 3 = 1

x2
i if xi mod 3 = 2.

xi can be written as a product of powers of g and y: xi = gaiybi where
(a0, b0) = (0, 0) and

(ai+1, bi+1) =

(ai, bi + 1) if xi mod 3 = 0

(ai + 1, bi) if xi mod 3 = 1

(2ai, 2bi) if xi mod 3 = 2.

Instead of looking at xi mod 3 we kan take whatever subdivision of F∗
p

in three set of more or less the same size (such that the last one doesn’t
contain 1.

Find the first i such that xi = x2i. Looking at the exponentials we have
that

ai + bix = a2i + b2ix mod p− 1

so we can calculate

u =
ai − a2i

b2i − bi

mod p− 1

provided gcd(b2i − bi, p− 1) = 1. If the latter is not the case we simply
restart the algorithm with a different x0 = ga0xb0 . However the prob-
ability this happens is small (≈ 1−µ(p−1)

p−1
) where µ(k) is the number of

invertible elements in the ring Z/(kZ).

What is the expected size of this i? The sequence (xi) starts of more
or less randomly but repeats itself as soon as one value occurs twice:

∃k, ` : ∀i ≥ k : xi = xi+`.

We will call k the headlength of the sequence and ` the period. The
first i such that xi = x2i will be j` where (j−1)` ≤ k ≤ j` so i ≤ k+ `.

9.1. THE DISCRETE LOG PROBLEM FOR FINITE FIELDS 105

The probability that k + ` > n is

(1− 0

p− 1
) · (1− 1

p− 1
) · · · (1− n− 1

p− 1
)

if p− 1 >> n >> 1 we can approximate this by

e−
1

p−1 · · · e−
n−1
p−1 = e−

1
2

n(n−1)
p−1

Therefore there is around 95% chance that the algorithm will stop be-
fore

√
2 ln .95(1− p). We can say that the complexity of the algorithm

is O(
√

p).

Example: Pollard’s rho algorithm for logarithms in a subgroup of F383.
The element α = 2 is a generator of the subgroup G order n = 191.
Suppose β = 228 The following table shows the values of xi, ai, bi ,
x2i, a2i, b2i at the end of each iteration. Note that x14 = x28 = 144. Fi-
nally, compute r = b14− b28 mod 191 = 125, r−1 = 125−1 mod 191 =
136, and r−1(a28 − a14) mod 191 = 110. Hence, log2 228 = 110.

i xi ai bi x2i a2i b2i

1 228 0 1 279 0 2
2 279 0 2 184 1 4
3 92 0 4 14 1 6
4 184 1 4 256 2 7
5 205 1 5 304 3 8
6 14 1 6 121 6 18
7 28 2 6 144 12 38
8 256 2 7 235 48 152
9 152 2 8 72 48 154
10 304 3 8 14 96 118
11 372 3 9 256 97 119
12 121 6 18 304 98 120
13 12 6 19 121 5 51
14 144 12 38 144 10 104

3. Index calculus algorithm: The indexcalculus algorithm is the most
powerful method known for computing discrete logarithms. Denote by
S the set of the first t primes. Make a list ki such that all gki mod p

106 CHAPTER 9. THE DISCRETE LOG PROBLEM

products are of factors from S. From this list one can determine the
discrete logarithms of the elements in S.

Now we search for an l such that yl mod p is also composed of factors
from S. Using the discrete logarithms for the elements in S we can
determine the discrete logarithm of y.

Example: Let p = 229. The element g = 6 is a generator of Z∗
229, · · ·

of order n = 228. Consider y = 13. Then log6 13 is computed as

follows, using the indexcalculus technique.

(a) The factor base is chosen to be the first 5 primes: S = {2, 3, 5, 7, 11}.
(b) The following six relations involving elements of the factor base

are obtained (unsuccessful attempts are not shown):

6100 mod 229 = 180 = 22 · 32 · 5
618 mod 229 = 176 = 24 · 11

612 mod 229 = 165 = 3 · 5 · 11

662 mod 229 = 154 = 2 · 7 · 11

6143 mod 229 = 198 = 2 · 32 · 11

6206 mod 229 = 210 = 2 · 3 · 5 · 7.

These relations yield the following six equations involving the log-
arithms of elements in the factor base:

100 = 2 log6 2 + 2 log6 3 + log6 5(mod 228)

18 = 4 log6 2 + log6 11(mod 228)

12 = log6 3 + log6 5 + log6 11(mod 228)

62 = log6 2 + log6 7 + log6 11(mod 228)

143 = log6 2 + 2 log6 3 + log6 11(mod 228)

206 = log6 2 + log6 3 + log6 5 + log6 7(mod 228).

(c) Solving the linear system of six equations in five unknowns (yields
the solutions log6 2 = 21, log6 3 = 208, log6 5 = 98, log6 7 = 107
and log6 11 = 162.

(d) Suppose that the integer k = 77 is selected. Since y · gk = 13 · 677
mod 229 = 147 = 3·72 , it follows that log6 13 = (log6 3+2 log6 7−
77) mod 228 = 117.

9.2. THE DISCRETE LOG PROBLEM FOR ELLIPTIC CURVES 107

Computing the complexity of this algorithm is a boring and compli-
cated task which we will not do in this course, but one can prove that
this algorithm is not in polynomial time. As this is the fastest algorithm
known we can conclude that x → gx mod p is a valable candidate for
a one way function.

4. Pohlig Hellman algorithm

However we have to take care that p−1 have some large factors because
otherwise we can use the fact that p− 1 = p1

e1 · · · pk
ek with pk << p to

solve the DLP in a faster way.

If x = logα β then x is determined modulo n = p−1 and if we know all
the xi := x mod pei

i we can reconstruct x using the chinese remainder
theorem.

Each integer x i is determined by computing the digits l0, l1, . . . , lei−1

in turn of its piary representation: xi = l0 + l1pi + · · ·+ lei−1
p

ei−1

i where
0 ≤ lj ≤ pi − 1.

First we calculate α′ = αn/pi , this is a generator of the subgroup of
order pi. to to calculate l0 we can compute

logα′ β
n/pi = logα′ α

xn/pi = logα′(α
′)l0+kpi = l0.

Knowing l0, . . . , lj−1 we can compute lj as

logα′(
β

αl0+l1pi+···+ljpj−1
i

)n/pj+1
i .

Because pi << p computing these logarithms is much faster for pi than
for p and therefore this algorithm works efficiently when p−1 is smooth
i.e. has only small factors.

9.2 The discrete log problem for elliptic curves

Consider a finite field Fq. An elliptic curve over Fq is the set of solutions
(x, y) to an equation of the form y2 = x3 + Ax + B, together with an extra
point O which is called the point at infinity. This point corresponds to the
point on the line at infinity corresponding to the vertical direction x = 0.

108 CHAPTER 9. THE DISCRETE LOG PROBLEM

We usually write E for the equation y2 = x3 + Ax + B and use the notation
E(Fq) for the set of points together with O. For the sake of simplicity we
will assume that p mod 2, 3 6= 0.

E is called nonsingular if x3 + Ax + B = 0 has three distinct roots (possibly
in a field extension of Fq). This is the same as the condition 4A3 + 27B2 6=
0. To prove this say that α is a double root so α3 + Aα + B = 0 and
(x3 +Ax+B)′(α) = 3α2 +A = 0 these equations imply that 4A3 +27B2 = 0.

The set of points on an elliptic curve forms a commutative group under a
certain addition rule, which we write using the notation +. The point O is
the identity element of the group. The addition rule can be constructed using
the thumb rule that if three points P1,P2 and P3 lie on a line the sum of the
points is zero. remember that vertical lines contain the point at infinity and
therefore the inverse of a point P = (x, y) is the intersection of the elliptic
curve with the vertical line through P and hence −P = (x,−y).

So to add two different points P and Q we first draw the line through them
and intersect it with E(Fq). The point obtained is than −(P + Q) so to get
P + Q we simply switch the second coordinate. If P = Q we have to draw
the tangent line through P (because this intersects the curve twice in P).

The construction of the sum is always defined because a line that intersects
the curve already twice will intersect it also a third time because the degree
of E is 3.

The construction is obviously commutative and it is also associative (try this
as an exercise).

9.2. THE DISCRETE LOG PROBLEM FOR ELLIPTIC CURVES 109

We give an example: Let E be y2 = x3 + 1 find E(F5). It helps to know the
squares in F5: 02 = 0, 12 = 1, 22 = 4, 32 = 4, 42 = 1.

x x3 + 1 y p
0 1 ±1 (0, 1), (0, 4)
1 2 no
2 4 ±2 (2, 2), (2, 3)
3 3 no
4 0 0 (4, 0).

So we have 6 points in E(F5) and hence the group structure will be Z6. Over
a finite field you can add points using lines or addition formulas. If G = (2, 3)
then 2G = (0, 1), 3G = (4, 0), 4G = (0, 4) (note it has same x coordinate as
2G so 4G = −2G), 5G = (2, 2), 6G = O. So G = (2, 3) is a generator of
E(F5).

Given a generating point G = (2, 3) and a public key (0, 4) find n such that
nG = (0, 4) (of course you wouldn’t work with such small numbers). This
problem is called the elliptic curve discrete logarithm problem (ECDLP) and
it is currently harder to solve than the discrete log problem in the nonzero
elements of a finite field. Another advantage here is that for a given finite
field there can be lots of associated elliptic curves. Take care, it is sometimes
possible that E(Fq) is not a cyclic group, so one has to restrict to a subgroup
.

Consider y2 = x3 + 1 over F7 . 02 = 0, (±1)2 = 1, (±2)2 = 4, (±3)2 = 2.

x x3 + 1 y p
0 1 ±1 (0, 1), (0, 6)
1 2 ±3 (1, 3), (1, 4)
2 2 ±3 (2, 3), (2, 4)
3 0 0 (3, 0)
4 2 ±3 (4, 3), (4, 4)
5 0 0 (5, 0)
6 0 0 (6, 0)

110 CHAPTER 9. THE DISCRETE LOG PROBLEM

So E(F7) has 12 points.

R = (5, 0) 2R = O
Q = (1, 3) Q + R = (2, 3)

2Q = (0, 1) 2Q + R = (4, 4)
3Q = (3, 0) 3Q + R = (6, 0)
4Q = (0, 6) 4Q + R = (4, 3)
5Q = (1, 4) 5Q + R = (2, 4)
6Q = O,

All points are of the form nQ + mR with n ∈ Z6 and m ∈ Z2. Note that
the coefficients of y2 = x3 + 1 and the coordinates of the points are all
defined modulo 7, whereas the points add up modulo 6. In this case, two
points together generate. You could still use discrete log with G = (1, 3) for
example. It wouldn’t generate all of E(F7) but half of it. If q is small Curves
sometimes have few points y2 = x3 + 4 over F7 has only (0, 2), (0, 5) and O.

In general E(Fq), + is a commutative group. The main theorem of commuta-
tive finite groups is that they can be written as a direct sum of cyclic groups
E(Fq) = Z

p
k1
1
⊕ · · · ⊕ Z

p
kk
k

with pi not necessarily different prime numbers.

How many elements E(Fq), + has, depends highly on the field and on the
equation used however we can determine upper and lower bounds on the
number of elements. As for any x the number x3 + Ax + B has at most 2
squer roots we know that |E(Fq)| ≤ 2q + 1 (the one comes from the point at
infinity). Getting a lower bound for the number of

points is a far more difficult task. Hasse proved that the number of points
in an elliptic curve satisfy

|q + 1− |E(Fq)|| ≤ 2
√

q.

So in the case of q = 7, 3 ≤ E(F7) ≤ 13.

To solve the Elliptic curve discrete logarithm problem one can use similar
techniques as for the ordinary DLP. We can easily generalize Pollard’s algo-
rithm by choosing a subdivision of E(Fq) in 3 parts. However we can not
apply the methods based on factor bases because we don’t have something
similar like small primes in E(Fq). Therefore ECDLP is a more complex
problem than ordinary DLP.

9.3. APPLICATIONS IN CRYPTOGRAPHY 111

9.3 Applications in Cryptography

9.3.1 Diffie Helman Key Exchange

Many cryptosystems depend on a secret key shared by the transmitter (A)
and the receiver (B) of the message. This key must be exchanged and during
this exchange a third party (E) might intercept this key and will then be
enabled to decode the secret messages that will be sent later on. To overcome
this problem one has to design a method for two people to agree on a common
key such that a third party cannot retrieve this key. The Diffie-Hellman secret
key exchange protocol enables us to do just this.

We fix a prime p and a generator g ∈ F∗
p . These are public, and known not

only to all parties but also to the adversary. Then

• A picks x ∈ N at random and lets X = gx mod p. She sends X to B,

• B picks y ∈ N at random and lets Y = gy mod p. He sends Y to A.

Now notice that
Xy = (gx)y = gxy = (gy)x = Y x

the operations being in the field Fp. Let’s call this common quantity K. The
crucial fact is that both parties can compute it! Namely A computes Y x ,
which is K, and B computes Xy , which is also K, and now they have a
shared key.

Is this secure? Consider an adversary that is sitting on the wire and sees the
flows that go by. She wants to compute K. What she sees is X and Y . But
she knows neither x nor y. How could she get K? The natural attack is to
find either x or y (one of them will do!) from which she can easily compute
K. However, notice that computing x given X is just the discrete logarithm
problem in Fp which is widely believed to be intractable (for suitable choices
of the prime p). Similarly for computing y from Y . Accordingly, we would
be justified in having some confidence that this attack would fail.

A number of issues now arise. The first is that computing discrete logarithms
is not the only possible attack to try to recover K from X, Y . Perhaps there

112 CHAPTER 9. THE DISCRETE LOG PROBLEM

are others. To examine this issue, let us formulate the computational problem
the adversary is trying to solve. It is the following:

The DH Problem: Given gx and gy for x, y chosen at random from F∗
p,

compute gxy.

Thus the question is how hard is this problem? We saw that if the discrete
logarithm problem in F∗

p is easy then so is the DH problem, ie. if we can
compute discrete logs we can solve the DH problem. Is the converse true?
That is, if we can solve the DH problem, can we compute discrete logarithms?
This remains an open question. To date it seems possible that there is
some clever approach to solve the DH problem without computing discrete
logarithms. However, no such approach has been found. The best known
algorithm for the DH problem is to compute the discrete logarithm of either
X or Y . This has lead cryptographers to believe that the DH problem,
although not known to be equivalent to the discrete logarithm one, is still
a computationally hard problem, and that as a result the DH secret key
exchange is secure in the sense that a computationally bounded adversary
can’t compute the key K shared by the parties.

These days the size of the prime p is recommended to be at least 512 bits and
preferably 1024. As we have already seen, in order to make sure the discrete
logarithm problem modulo p is intractable, p − 1 should have at least one
large factor. In practice we often take p = 2q+1 for some large prime q. The
relationship between the DH problem and the discrete logarithm problem is
the subject of much investigation.

Miniature 6: Diffie, Hellman, Merckle

The first researchers to discover and publish the con-
cepts of PKC were Whitfield Diffie and Martin Hell-
man from Stanford University, and Ralph Merkle from
the University of California at Berkeley. As so often
happens in the scientific world, the two groups were
working independently on the same problem – Diffie
and Hellman on public-key cryptography and Merkle
on public key distribution – when they became aware
of each other’s work and realized there was synergy in
their approaches.

9.3. APPLICATIONS IN CRYPTOGRAPHY 113

9.3.2 El Gamal and Digital Signature Algorithm

Digital signatures are a method of authenticating digital information analo-
gous to ordinary physical signatures on paper, but implemented using tech-
niques from the field of cryptography.

Digital signature schemes rely on two keys for each user: one public and one
private. The public key is distributed freely, but the private key is kept secret
and confidential; another requirement is that it should be infeasible to derive
the private key from the public key.

Consider the situation in which Bob sends a message to Alice and wants to be
able to prove it came from him. In this case, Bob sends a message to Alice,
with a digital signature attached. The digital signature is generated using
Bob’s private key, and takes the form of a simple numerical value, normally
represented as a string of bits. On receipt, Alice can then check whether
the message really came from Bob by running a verification algorithm on the
message together with the signature and Bob’s public key. If they match, the
message was really from Bob, because the private key was needed to create
the signature and no one but Bob has it.

More usually, for efficiency reasons, Bob first applies a cryptographic hash
function to the message before signing. This makes the signature much
shorter and thus saves time since hashing is generally much faster than sign-
ing in implementations. However, if the message digest algorithm is insecure
(for example, if it is possible to generate collisions), then it might be feasible
to forge digital signatures.

A general digital signature scheme was devised in 1984 by T. El Gamal based
on discrete logarithms. The scheme is closely related to the Diffie-Hellman
technique. Below we outline the protocol:

1. Global Public Elements. As with Diffie-Hellman, to generate a key pair,
first choose a prime number q and g, a generator of F∗

q.

2. Key Generation. Alice selects a private key xa < q and calculate a
public key ya as in the Diffie Hellman protocol: ya = gxa .

Independently, Bob also generates his public key and private key, xb, yb.

114 CHAPTER 9. THE DISCRETE LOG PROBLEM

3. User A Signs a Message. Alice encrypts a plaintext M < q intended
for Bob as follows:

(a) Choose a random integer k, 1 < k < q,

(b) Compute: K = (yb)
k mod q and (C1, C2) where:

C1 = gk mod q, C2 = KM mod q

These two numbers together make up the signature.

4. User B Verifies the Signature Bob verifies the signature by recovering
the plaintext M as follows:

(a) Compute K = Cxb
1 mod q. Which is (gk)

xb mod q = yk
b mod q.

(b) Compute M = (C2K
−1) mod q, where K−1 is the multiplicative

inverse of K. Therefore: (C2K
−1) mod q = (KMK−1) mod q =

M mod q.

This scheme is sometimes referred to as DSA stands for Digital Signature
Algorithm.

The plaintext M is usually a digest of a message. It is seen that DSS does
not encrypt the digest. The input to the algorithm is the digest of the data
to sign, M , the key, yb and a random number, k. The output is a pair of
numbers C1, and C2. There will be many ciphertexts that are encryptions of
the same digest, since the output depends on both the digest M and on the
random value k chosen by Alice.

Miniature 7: Taher El-Gamal

Taher El-Gamal developed the above algorithm in
the early 1980’s while at Stanford. El-Gamal algo-
rithms use similar principles to those used in the Diffie-
Hellman protocols. El-Gamal schemes are simple, ef-
ficient, and not patented. This is why theDSS - the
US government standard for signatures - is based on
El-Gamal.

Chapter 10

Braid group Cryptography

Braids arose as a combinatorial tool in the study of knots and since then
have been applied in many branches of mathematics. In this chapter we
will give an introduction to this subject together with its applications to
cryptography.

10.1 knots

A knot is in fact a smooth embedding of the circle into the three dimensional
real space, where both are considered as manifolds. The set of knots is
denoted by K := {K : S1 → R3|K is a knot}.

Two knots K1, K2 ∈ K are equivalent if they can be deformed into each other

K1
∼= K2 ⇔ ∃φ : S1×[0, 1] → R3 such that φ|0 = K1, φ|1 = K2,∀i ∈ [0, 1]φ|i ∈ K.

Using the equivalence relation allows us to look at the image of the map
instead of the map itself: if K1 and K2 have the same image K1

∼= K2 or
K1

∼= −K2 where −K2 is the map K2 composed with S1 → S1 : θ 7→ −θ.
Therefore to define a knot one simply needs its image and its orientation (i.e.
the direction in which θ increases).

The main question in knot theory is then: given two knots how can one find
out wether they are equivalent or not. In general this question is to general

115

116 CHAPTER 10. BRAID GROUP CRYPTOGRAPHY

to solve easily, so one can also ask first whether a knot is really a knot or
not. A knot is called trivial if it is equivalent to the standard embedding of
the unit circle C : θ 7→ (cos θ, sin θ, 0).

The tactic to solve this question is to find a knot invariant. This is a map
I : K → A where A is an algebra, or a group or something like that. I must
be easy to compute from the knot and K1

∼= K2 ⇒ I(K1) = I(K2). So a
knot K is definitely not trivial if I(K) 6= K(C). The reverse implication that
K is trivial if I(K) = K(C) is however not always true.

The construction of knot invariants can be seen as a purely algebraic problem
using the theory of braids.

10.2 Braids

An n-braid is a set of n continuous maps si : [0, 1] → R2 such that si(0) =
(i, 0), si(1) = (π(i), 0) (where π is a random permutation) and ∀i, j : ∀t ∈
[0, 1] : si(t) 6= sj(t). A braid can be represented in three dimensions by taking
the interval [0, 1] as third coordinate.

Two braids (si) and (ti) are called equivalent if their exist n continuous maps
$i : [0, 1] × [0, 1] → R2 such that $i|0 = si, $i|1 = ti and ($i|µ) is a braid
for every µ ∈ [0, 1].

One can also compose two braids (si) and (ti) to obtain a third braid

(s · t)i : [0, 1] → R2 : λ 7→

{
si(2λ) λ ≤ 1

2

ti(2λ− 1) λ > 1
2

Let Bn be the set of n-braids up to equivalence. Because the composition of
braids will be compatible with the equivalence relation, · can be considered
as an operation on Bn. We have even that:

Theorem 10.1. Bn, · is a non-commutative group.

10.2. BRAIDS 117

Proof. The group is associative because if (s), (t), (u) are braids then

$i : [0, 1]×[0, 1] → R2 : (λ, µ)

si(

4
1+µ

λ) λ ≤ 1
4
(1 + µ)

ti(4(λ− 1
4
(1 + µ))) 1

4
(1 + µ) < λ ≤ 1

4
(2 + µ)

ui(
4

2−µ
(λ− 1

4
(2 + µ))) λ > 1

4
(2 + µ)

defines an equivalence between (s · t) · u and s · (t · u).

The identity element are the constant maps ei(λ) = (i, 0) and the inverse of
(s) is the braid s−1

i (λ) = si(1− λ). (try these as an exercise)

The group Bn is finitely generated by n− 1 standard braids:

(σk)i(λ) =

(i + λ, sin(πλ)) i = k

(i− λ,− sin(πλ)) i = k

i i 6= k, k + 1

For all 1 ≤ k ≤ n− 1

Two braids σk and σl commute as soon as |k − l| > 1. For σk and σk + 1 we
have the relation σkσk+1σk = σk+1σkσk+1.

A lenghty computation shows that every other relation can be derived from
the relations above:

Theorem 10.2. Bn, · = 〈σk, 1 ≤ k ≤ n − 1|σkσl = σlσk, σkσk+1σk =
σk+1σkσk+1, |k − l| > 1〉

As every braid s defines a permutiation on {1, . . . , n} simply by mapping i to
the first coordinate of si(1). Therefore we have a canonical group morphism
from Bn → Sn.

How can we use the theory of braids to construct knot invariants? The trick
to do this is the concept of the closure of a braid.

If s is a braid we define its closure the following subset of R3

s̄ = ∪i{(ey cos θ, ey sin θ, x)|si(θ) = (x, y)}

118 CHAPTER 10. BRAID GROUP CRYPTOGRAPHY

In general this is not the image of a knot because it can have different con-
nected components (which is called a link, equivalence of links if defined
analoguously). If the permutation of s is cyclic (i.e. ∀j : ∃m : πm(1) = j) s̄
has only one component can indeed be considered as a knot by giving it the
orientation anti-clockwise around the z-axis.

Different braids can have equivalent closures and there are two possibilities
to construct braids with equivalent closures.

1. As the closure connects the end points of the braids ¯s · t will be equiv-
alent to ¯t · s and similarly ¯t−1 · s · t ∼= ¯s · t · t−1 ∼= s̄. The closure is thus
invariant under conjugation.

2. The braid group Bn is canonically included in Bn+1 by identifying the
first n − 1 σi. Bn+1 has then one extra generator σn. If s ∈ Bn then
¯sσn
∼= σ̄.

These two operations are called markov moves.

Theorem 10.3. If s ∈ Bn and t ∈ Bm and s̄ ∼= t̄ then s can be transformed
to t using the two markov moves and their inverses.

In this way the knot invariants problem can be transformed to the question.
Find maps φn : Bn → A such that the φn are invariant under the two markov
moves.

A usefull tool to do this are group representations:

A group representation of G is a group morphism

φ : G → GLn(R)

Where R is a commutative ring and GLn(R) is the group of invertible n× n-
matrices.

If φ is a representation then we can take the trace of the representation
which is the sum of the diagonal elements of the matrix. As the trace is
invariant under conjugation, the map Trφ : Bn → R will be invariant under

10.2. BRAIDS 119

the first markov move. So we only need to find a sequence of representations
φn : Bn → R such that

Trφn+1(sσn) = Trφn(s).

Instead of using the trace one can also use other conjugation invariant func-
tion like determinants and traces of powers. However the map Detφn will
not be interesting because invariance under the second markov move implies
that Detφ = 1. Det(f(φ)) where f(X) is a polynomial will be more usefull.

Here are two interesting constructions.

• Let Λ denote the ring Z[t, t−1]. The Burau representation Bn →
GLn(Λ) sends the i-th generator σi ∈ Bn into the matrix

Ii−1 ⊕
(

1− t t
1 0

)
⊕ In−i−1

where Ik denotes the identity (k×k)-matrix and the non-trivial (2×2)-
block appears in the i-th and (i + 1)-th rows and columns. Substi-
tuting t = 1, we obtain the standard representation of the symmet-
ric group Sn by permutation matrices. The Burau representation is
reducible: it splits as a direct sum of an (n − 1)-dimensional rep-
resentation (the reduced burau representation) and the trivial one-
dimensional representation Bn 7→ 1. the trivial 1 dimensional sub-
representation corresponds to the invariant subspace C(1, . . . , 1) and
the reduced representation Ψn acts on the n− 1-dimensional subspace
V = {(a1, . . . , an)|a1 + ta2 + · · ·+ tn−1an = 0}.
This reduced representation can be used to construct a knot invariant
called the alexander polynomial

∆ := Det(1−Ψn)/(1 + t + t2 + · · ·+ tn−1)

• We denote by Ref = Refn the set of pairs of integers (i, j) such that
1 ≤ i < j ≤ n. Clearly, #(Ref) = n(n− 1)/2.

Let R be a commutative ring with unit and q, t ∈ R be two invertible
elements. Let V = ⊕s∈Ref Rxs be the free R-module of rank n(n−1)/2

120 CHAPTER 10. BRAID GROUP CRYPTOGRAPHY

with basis {xs}s∈Ref. Krammer [Kr2] defines an R-linear action of Bn

on V by

σk(xi,j) =

xi,j k < i− 1 or j < k,

xi−1,j + (1− q)xi,j k = i− 1,

tq(q − 1)xi,i+1 + qxi+1,j k = i < j − 1,

tq2xi,j k = i = j − 1

xi,j + tqk−i(q − 1)2xk,k+1 i < k < j − 1,

xi,j−1 + tqj−i(q − 1)xj−1,j k = j − 1,

(1− q)xi,j + qxi,j+1 k = j.

where 1 ≤ i < j ≤ n and k = 1, ..., n − 1. That the action of σk is
invertible and that the braid relations are satisfied should be verified
by a direct computation.

This representation is interesting because it is faithfull for every n.
This means that if two braids s, t ∈ Bn are different the corresponding
Ref(s) and Ref(t) will also be different. In the next sections we will see
how one can use this to analyse cryptosystems based on braid groups.

10.3 Cryptosystems based on braid groups

To work with braids on a computer one first has to establish a method to
write down the elements of the braid group in a unique normal form. It
should also be easy to multiply two braids in normal form and then calculate
the normal form of the product.

The solution to the word problem in braid groups arises from the existence
of a unique normal form for each word in B n and this in turn

makes the representation of braids by computers easy. In each Bn we can
define a fundamental braid to be Wn = Wn−1σn−1σn−2 . . . σ1 with W0 = 1

For example, the fundamental braid W4 = σ1σ2σ1σ3σ2σ1. With Wn (or just
when no confusion arises), we can express any word w in Bn as a product of
Wn to some integer exponent and braids F1, F2, . . . , Fp , each of which is a
subword of Wn. It should be noted that the positive integer p generally differs

10.3. CRYPTOSYSTEMS BASED ON BRAID GROUPS 121

from word to word in Bn . We can then represent w on a computer by the
tuple [u, f1, f2, . . . , fp] where u is the integer exponent of Wn and each fi is the
permutation that results from mapping F1 via the group homomorphism from
Bn onto the group of permutations on the set {1, 2, , n} given by σi 7→ (i, i+1).

Note this homomorphism is equivalent to adding the relations σ2
i = 1 for each

generator σi in Bn . Thus if n = 4 and w has normal form W 3
4 σ1σ3σ1 then

u = 3, σ1σ3σ1 is not a subword of W4 but σ1σ3 and σ1 are so F1 = σ1σ3 and
F2 = σ1 (so p = 2.) Thus f1 is the permutation (12)(34), i.e. the permutation
that interchanges 1 with 2 and 3 with 4, and f2 is the permutation (12). The
braid w can then be represented on computer as [3, (12)(34), (12)] and for
any word, v say, in Bn , v = w if and only if v has the same representation.

The ease of representation of braids on computers also allows for fast algo-
rithms to perform group operations in Bn. The product of words w and v in
Bn is just the concatenation wv. Furthermore, by reducing wv to its normal
form the factors w and v are then hard to recover; much the same way the
prime factors of large integers are hard to find. This further implies that
functions on Bn such as f: B2

n → B2
n defined by f(a, x) = (x, axa−1) are

one-way functions because when axa−1 is reduced to its normal form it is
hard to recover the group element a even when we know x.

As n grows in the braid group Bn , the computation of group operations
becomes hard in O(n ln n). On the other hand, a naive computation of one-
way function seems to be at least O(n!). Consequently, n plays a reliable
role of a security parameter.

One final property of Bn that makes the cryptosystem possible are the rela-
tions σiσj = σjσi, if |i− j| > 1. This means for any positive integers l >= 2
and r >= 2, such that l + r = n, the generators σ1, σ2, . . . , σl−1 will com-
mute with generators σl+1, σi+2, . . . , σi+r−1. Thus for Bn , we can define the
subgroups LBl , and RBr of words in {σ1, σ2, . . . , σl−1} and σl+1, . . . , σl+r−1}
respectively and so every word in LBl commutes with every word in RBr .
This property allows for the following protocol for key exchange as described
in chapter three.

Let Alice choose words x from Bn and a from LBl, compute axa−1 , and
transmit (x, axa−1) to Bob. Next let Bob choose b from RBr , compute
bxb−1 and transmit bxb−1 to Alice. Alice can then compute the key K =

122 CHAPTER 10. BRAID GROUP CRYPTOGRAPHY

a(bxb−1)a−1 and Bob can compute b(axa−1)b−1 = baxa−1b−1 = abxb−1a−1 =
K. Thus both have the common key K but each retains their private keys a
and b, respectively.

10.4 Attacks on the Braid Cryptosystem

Since the braid cryptosystem is relatively new, only a few attacks on the
cryptosystem have been conceived. The most obvious negative property, for
cryptographic purposes, of braid groups which could possibly be exploited in
an attempt to crack the cryptosystem is the fact proven in that braid groups
are linear. This means that braids can also be represented by matrices over
some number field so that the considerable research into properties of matrix
groups could be used break the code.

