
Chapter 1

Covers and Fundamental Groups

In this chapter we suppose that a manifold is always connected.

1.1 The Fundamental Group

Definition 1.1. By a path p in M we mean a continuous map p : [0, 1] →M . A
loop is defined as a path with p(0) = p(1).

Two paths p, q are said to be homotopic (p ≡ q) if they can be deformed into
each other while keeping the end points the same. Mathematically there exists a
continuous map

H : [0, 1]× [0, 1] →M such that ∀t ∈ [0, 1] :

{
p(t) = H(0, t), q(t) = H(1, t)

H(t, 0) = p(0), H(t, 1) = p(1)

The relation being homotopic to each other is an equivalence relation, so we can
talk about the homotopy class of a given path.

Exercise 1.2. Prove that homotopy is indeed an equivalence relation (i.e. re-
flexive, transitive, symmetric).
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CHAPTER 1. COVERS AND FUNDAMENTAL GROUPS

Definition 1.3. If p(1) = q(0) we can concatenate two paths to obtain a new
path:

q ∗ p : [0, 1] →M : t 7→

{
p(2t) t ≤ 1

2

q(2t− 1) q ≥ 1
2

Exercise 1.4. Prove that homotopy compatible with concatenation:

p1 ≡ p2, q1 ≡ q2 ⇒ q1 ∗ p1 ≡ q2 ∗ p2

From now one we will identify a path with its homotopy class.

This multiplication of paths is interesting because it allows us to define a group:

Definition 1.5. if x is a point in M we define the fundamental group π1(M,x)
as all the homotopy classes of loops that start in M . We define the multiplication
in the group to be the concatenation of loops.

Exercise 1.6. Check that π1(M,x) is indeed a group. Its neutral element is the
trivial path ex : t 7→ x. The inverse of a path is p−1 : t 7→ p(1− t).

Although the definition of depends on the point x, fundamental groups coming
from different points in the same manifold are isomorphic. If x, y ∈ M and p is
a path from x to y then

π1(x,M) → π1(y,M) : q 7→ p ∗ q ∗ p−1

is an isomorphism.

Example 1.7. In Rn every loop is trivial. Suppose p(0) = p(1) = 0 then define
the homotopy e0 ≡ p by

H : [0, 1]× [0, 1] : (s, t) 7→ sp(t)

Therefore π1(Rn) = 1.

The same holds for the n-dimensional sphere with n > 1: Sn ⊂ Rn+1 : x2
0 + · · ·+

x2
n = 1. This is proved as follows: take a loop and consider a point m not on the

loop. Now we can do a projection of Sn onto a hyperplane of Rn+1 this gives us a

2



CHAPTER 1. COVERS AND FUNDAMENTAL GROUPS

loop in this hyperplane which is trivial. Project the homotopy of this trivial loop
back to the sphere and this gives us a trivialization of the loop on the sphere.

For n = 1 there do exist nontrivial loops: consider the loop

`k : t 7→ (cos 2πkt, sin 2πkt).

These are all nontrivial if k 6= 0. Also we have that `k ∗ `l ≡ `k+l and therefore
we might guess that π1(S1) = Z. In the next section we will prove this rigorously.

With all this in mind we can now state the Poincaré conjecture:

Conjecture 1.8. A compact n-dimensional (n ≥ 2) manifold has trivial funda-
mental group if and only if it is diffeomorphic to the n-sphere.

A manifold with trivial fundamental group is also called simply connected.

The conjecture was originally formulated by Henri Poincaré in the early 1900’s.
It was know by Poincaré to be true for n = 2. In The 40-60’s it was proved
by Smale, Stallings, Wallace and Zeeman for high dimensions n ≥ 5. Later on
in the 80’s Freedman added the case n = 4 leaving only the three dimensional
case unsolved. Finally in 2002 Grisha Perelmann proved this last part of the
conjecture. In these course notes we are going to have a look at several of the
key ingredients needed in this final part of the proof.

Miniature 1: Henri Poincaré (1854 - 1912)

Jules Henri Poincaré was one of France’s great-
est mathematicians and theoretical physicists, and a
philosopher of science. He is often described as a poly-
math, a person who excels in multiple fields, particu-
larly in both arts and sciences.
As a mathematician and physicist, he made many
original fundamental contributions to pure and ap-
plied mathematics, mathematical physics, and celes-
tial mechanics. He was responsible for formulating the
Poincaré conjecture, one of the most famous problems
in mathematics.

1.2 Covers

Definition 1.9. A map c : M → N is called a cover of N if for every x ∈ M
we can find an open neighborhood Sx such that c|Ux is a diffeomorphism. Such
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CHAPTER 1. COVERS AND FUNDAMENTAL GROUPS

neighborhoods are called small.

Stated in another way, for every y ∈ N we can find a neighborhood U such that
c−1(U) is the disjoint union of (a possibly infinite number of) open sets Si such
that c|Si

: Si → U is a diffeomorphism.

An example of a cover is the map c : R → S1 : t 7→ (cos t, sin t) the open
neighborhoods are f.i. ]x − 1, x + 1[ because every point in such an interval is
mapped to a different point in the circle. The map c : S2 → P2 : (x, y, z) 7→ (x :
y : z) is also a cover, the small neighborhoods can be taken Ux := B(x, 1

2
) ∩ S2.

The connection between paths and covers is captured in the lemma below

Lemma 1.10. If c : M → N is a cover, p : [0, 1] → N a path and x ∈M a point
such that c(x) = p(0) then there is a unique lifted path p̃ : [0, 1] → M such that
cp̃ = p and p̃(0) = x. Moreover if p ≡ q then also p̃ ≡ q̃.

Proof. If the image of p is contained in the image under c of a small neighborhood
of x then this statement is trivial because p̃must then be equal to c|−1

Ux
p. In general

this is not always the case but we can find a t1 > 0 such that p([0, t1]) ⊂ Ux, so
we can lift at least a small bit of p. Now let tm be the supremum of

T = {t|p[0,tm] can be lifted }

We have to show that tm = 1. First note that is T is a closed interval because if
T = [0, tm[ then we can define p̃(tm) := limt→tm p̃m. Now if tm < 1 then we can
find a small neighborhood U of p̃(tm) and a t > tm such that p([tm, t]) ⊂ cU and
we can lift this part of the path as well.

To prove that lifts of homotopic path are again homotopic we have to lift the
homotopy H to M . Because H(s,−−) is a path for every s we can lift it uniquely
to M , the lift of H must hence be the ‘union’ of all these lifts. We only have to
prove that this H̃ is continuous.
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CHAPTER 1. COVERS AND FUNDAMENTAL GROUPS

Although we can lift every path uniquely it is not necessarily true that the lift of
a loop is again a loop: it might be possible that p̃(1) is another point in c−1(p(1)).
This implies that the fundamental group of M can be seen as the subgroup of the
fundamental group of N consisting of the homotopy classes whose lift is again a
loop.

If M is a simply connected manifold then the elements of the fundamental group
are in one to one correspondence to the elements of c−1(x) with x ∈ N . Fix an
m ∈ c−1(x) then for every m′ ∈ c−1(x) there exist a unique homotopy class of
paths from m to m′. This homotopy class projects to a homotopy class of loops
in π1(N). Vice versa every loop in π1(N) lifts to a path from m to some point
in c−1(x) which is uniquely determined by its end point because M is simply
connected.

This observation will enable us to obtain another description of the fundamental
group.

Definition 1.11. Let c : M → N be a cover. A deck transformation is a
diffeomorphism d : M → M such that cd = c. We denote the set of deck
transformations by D(M/N). This set has the structure of a group under the
standard composition of maps.

The main theorem of covers now holds

Theorem 1.12. If c : M → N is a cover and M is simply connected then

π1(N) ∼= D(M/N)

Proof. Fix a point m ∈M . Using this point we will construct maps between the
two groups in both directions and show that these are each other’s inverse.

To go from a deck transformation d to a loop in N we construct a path p from
m to d(m). This path is unique up to homotopy and hence its image under c
determines a unique element `d := cp ∈ π1(N, c(m)).

If we have a loop ` in N starting from c(m) we can lift this loop to a path l̃
starting in m. We define a deck transformation in the following way. If x ∈ M ,
let p be a path from x to m. The path cp−1 runs in N from c(m) to c(x). We can
lift this path uniquely to a path p̃−1 starting in ˜̀(1). The end point of this lift
i.e. x̃ := p̃−1(1) only depends on the homotopy class of ` (and not of p because
M is simply connected). The assignment d` : x → x̃ is a deck transformation
because x̃ sits inside c−1(c(x)).

We now have to prove that `d`
= ` and d`d = d The first one is obvious because

the homotopy class of `d`
is uniquely determined by ˜̀

d`
(1) which is by definition

5



CHAPTER 1. COVERS AND FUNDAMENTAL GROUPS

d`(m) = ˜̀(1). The second one holds because d`d(x) is the endpoint of the lift of
the path cp−1`d such that it starts in m, or the endpoint of the lift of cp−1 such
that it starts in d(m). But this is also true for d(x) because the path from d(m)
to d(x) (which is unique up to homotopy) must be homotopic to the lift of of
cp−1.

The theorem above only works if we have a simply connected cover of N . However
we can also prove that every manifold has such a simply connected cover. Such
a cover is called a universal cover.

Theorem 1.13. every manifold has a universal cover.

Proof. Let N be a manifold and chose a point n ∈ N . We define Ñ as the set of
all homotopy classes of paths in N starting from n. The projection c : Ñ → N
maps every path to its end point. To give Ñ a differential structure we first
cover N wit charts that are simply connected. Given a path p ∈ Ñ and a chart
φ : U → Rn on N that contains p(1) we construct a chart φ̃ the source Ũ is the
set of path qp where q is a path in U and φ̃(qp) : φ(1). This definition is well
defined as q is uniquely defined by its endpoint because U is simply connected.
Note that the Ũ are the small neighborhoods for the cover map Ñ → N .

Now we have to prove that Ñ is simply connected. If this were not the case than
there is a nontrivial loop ˜̀ in Ñ . The image under the cover map gives us a loop
in N . This loop is trivial because otherwise the end point of its lift would not be
˜̀(1). Lifts preserve homotopy so ˜̀ must also be trivial.

Example 1.14. With this knowledge we can easily determine the fundamental
group of the circle and the torus. The universal cover of the circle is the map
R → S1 : (cos t, sin t). The deck transformations are the maps R → R : x 7→
x+ 2kπ so π1(S1) = Z. In a similar way the fundamental group of a torus is Z2.
The universal cover of P2 is S2 → P2 so the fundamental group must be Z2 (the
only nontrivial deck transformation is the inversion ~x→ −~x.
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Chapter 2

Vectors, Tensors and Metrics

2.1 Tensors and Bundles

Definition 2.1. A trivial vector bundle over a base manifold M is a manifold of
the form M × Rk this object has a natural projection map π onto M and every
fiber has the structure of an k-dimensional vector space.

A vector bundle over a manifold M consists of a smooth map π : E → M such
that every fiber π−1(x), x ∈M has the structure of a k-dimensional vector space.
It must also have a cover {Ui ⊂ M} and a set of identifications φi : π−1(Ui) →
U × Rk is called a local trivialisations. The set of local trivializations must also
satisfy a compatibility condition: if x ∈ Ui ∩ Uj then Φ−1

i Φj must be a linear
isomorphism of the vector space π−1(x).

A (global) section of a vector bundle is a smooth map s : M → E such that
∀x ∈ M : πs(x) = x. A section assigns to each point in the base a vector in its
fiber. If s is only defined on an open set U ⊂ M then we call s a local section.
The global sections of E form a module over the ring of smooth functions from
M to R: C∞(M). This module will be denoted by Γ(E).

Instead of giving local trivializations one can also cover M with open parts U
for which there exists k local sections s1, . . . sk such that in every point p ∈
U , s1(p), . . . , sk(p) form a basis for the fiber π−1(p). The corresponding local
trivialization is the expression of every vector v ∈ π−1(p) into its coordinates for
the basis s1(p), . . . , sk(p).

Example 2.2. The first nontrivial example of a vector bundle is the Moebius
strip. Take M to be the circle i.e.P1 and define

V := {((x : y), λx, λy) ∈ P1 × R2}
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CHAPTER 2. VECTORS, TENSORS AND METRICS

For every point in P1 the fiber is isomorphic to the corresponding line in R2 so
each fiber is a one dimensional vector space. Although V 6= P1 × R we find two
open subsets of V that are trivial:

V = Vx ∪ Vy with Vx = {(x : 1), λx, λ)} ∼= {(x, λ)} = R× R

Definition 2.3. Given two smooth curves γ1, γ2 : R → M we say that they are
tangent in 0 if γ1(0) = γ2(0). there is a chart φ : U → Rn such that

dφγ1(t)

dt
|t=0 =

dφγ2(t)

dt
|t=0.

In this way we define the tangent vector vγ as an equivalence class of all curves
that are tangent to γ in zero. Being sloppy we also use the notation γ′(0) or
dγ
dt

(0) instead of vγ.

The set of all tangent vectors is denoted by TM . It has a natural projection map:
π : TM → M : vγ 7→ γ(0). Using a chart φ we can identify each tangent vector
with a unique point couple

(γ(0),
dφγ(t)

dt
|t=0) ∈ U × Rn.

These identifications give us the local trivializations that turn TM into a vector
bundle. The fiber of a point p is denoted by TpM . A section of the tangent
bundle is call a vector field.

Every chart gives us n (local) vector fields with local trivializations

∂i(p) ≡ (p, (0, . . . , 1, . . . , 0))

In every point p ∈ U these n vector fields give a basis TpM .

A vector field V can be applied to a function f : M → R to obtain a new function

V (f) : M → R : p 7→ df(γ(t))

dt
|t=0 if V (p) = vγ

In this way we can see a vector field as a derivation on the ring of smooth functions
C∞(M). Every such derivation X : C∞(M) → C∞(M) can be seen as a vector
field: if φ : U → Rn is a chart then X = X(φi)∂i.

The identification between vector fields and derivations allows us to define an
operation between vector fields: the commutator

[X, Y ] = X ◦ Y − Y ◦X : C∞(M) → C∞(M).
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It is easy to check that this is again a derivation and hence a vector field. Note
that if φ is a chart, the commutators of the local vector fields ∂i is zero.

[∂i, ∂j] = 0

Vector fields also have a nice interpretation in terms of ordinary first order dif-
ferential equations. Given a vector field V , we can try to define curves γ on M
such that for each t in an interval I

γ′(t) = V (γ(t))

As a consequence of the unique existence of solutions for linear differential equa-
tions, we can find for every x a unique curve γx :]− ε,+ε[→M such that

γx(0) = x and γ′x(t) = V (γx(t)) (t ∈]− ε,+ε[)

These curves are called flow curves of the vector field V and partition M into
equivalence classes. It is not always possible to extend the interval ] − ε,+ε[
to the whole of R. If one can do this one obtains a one-parameter family of
automorphisms of M :

exp(tV ) : M →M : x 7→ γx(t).

Vice versa every one parameter family of automorphisms φt : M →M such that
φ0 = 1 gives us a vectorfield

X : M → TM : p→ d

dt
φt(p).

Starting from the tangent bundle we can define new bundles:

1. the cotangent bundle is the union of all dual spaces (TpM)∗. For a given
chart φ and point p, we define dx1(p), . . . , dxn(p) to be the dual basis of
∂1(p), . . . , ∂i(p). Coordinatization in terms of these bases provides us with
a local trivialization. Sections of this bundle are called 1-forms and the
space of 1-forms is denoted by Ω1(M).

Given a 1-form ω and a vector field V we can contract them to get a function
ω(V ) : M → R : p 7→ ω(p)(V (p)). In this way we can see a one-form as
a C∞-linear map from Vect(M) to C∞. Conversely every such C∞-linear
map can be seen as a one-form:

Ω1(M) := HomC∞(M)(Vect(M), C∞(M)).
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2. The (k, l)-tensor bundle has as fibers the vector spaces (TpM)⊗k⊗(TpM)∗⊗l.
For a given chart the we can define local sections ∂i1 ⊗ · · · ⊗ ∂ik ⊗ dXj1 ⊗
· · ·⊗dXjl . The section of this bundle are called tensor field or more sloppy
tensors. The space of tensor fields is denoted by Tenk,l(M) and is a C∞(M)
-module in the standard way. Every tensor can be be expressed in local
coordinates using the index notation

T :=
∑
i1,...,jl

T i1...ikj1...jl
∂i1 ⊗ · · · ⊗ ∂ik ⊗ dXj1 ⊗ · · · ⊗ dXjl

It is costume to write only the indexed coefficients.

The product of a k1, l1-tensor and a k2, l2-tensor can be seen as a k1+k2, l1+
l2 tensor in the natural way

(T ⊗ U)
i1...ik1+k2
j1...jl1+l2

:= T
i1...ik1
j1...jl1

U
ik1+1...ik1+k2
jl1+1...jl1+l2

Note that this product is not commutative. Another operation that one can
do with tensors is contraction. This transforms a k, l-tensor in a k−1, l−1-
tensor. The trick is to define

(CabT )
i1...ik−1

j1...jl−1
:=
∑
µ

T
i1...ia−1µia...ik−1

j1...jb−1µjbjl−1
.

Usually the summation sign is omitted and summation is assumed for every
index that appears twice. This is called the Einstein convention.

Keep in mind that the coefficients depend on the choice of a chart. The
transition between two charts can be nicely expressed using the summation
convention.

T i1...ikj1...jl
= (T ′)µ1...µk

ν1...νl

∂Y i1

∂Xµ1
· · · ∂Y

ik

∂Xµk

∂Xν1

∂Y j1
· · · ∂X

νk

∂Y jk

The Y i and X i are the coordinate functions of the two charts.

As with 1-forms one can see tensors as C∞-linear maps: a (k, l)-tensor T is
a multilinear map

T : Ω1(M)k × Vect(M)l → C∞

: (ω1, . . . , ωk, V1, . . . , Vl) 7→ T i1...ikj1...jl
ω1i1 . . . ωkik , V

j1
1 . . . V jl

l .

3. A k-form ω is a completely antisymmetric (0, k)-tensor i.e.

ωi1···iµ···iν ···ik = −ωi1···iν ···iµ···ik
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Suppose we have a smooth map ψ : M → N we can also define a corresponding
map between the two tangent bundles:

dψ : TM → TN : vγ → vψγ

this map is called the jacobian. In every point p ∈M the jacobian gives a linear
map (dψ)p : TpM → Tψ(p)N . If this map is a an isomorphism one can use the
implicit function theorem to find an open neighborhood U of p such that ψ|U is
a diffeomorphism. We can hence conclude that ψ is a cover map if (dψ)p is an
isomorphism for every p ∈M .

Another construction we can make from a map between manifolds is the pullback.
This is a map in the opposite direction: it maps the one-forms on N to one-forms
on M :

ψ∗ : Ω1(N) → Ω1(M) : ω 7→ ψ∗ω such that (ψ∗ω)p(Vp) = ωψ(p)((dψ)pVp)

This trick does not work for vector fields, however if ψ is a cover map we can
construct a pull back for vector fields.

ψ∗ : Vect(N) → Vect(M) : V 7→ ψ∗V such that (ψ∗V )p = (dψ)−1
p Vψ(p)

Using the tensor product we can extend this product to all possible kinds of
tensor fields: ψ∗ : Tenk,l(N) → Tenk,l(M)

2.2 Metrics and Riemannian Manifolds

A 0, 2-tensor g for which in every point p the map gp : TpM × TpM → R is
nondegenerate, symmetric and positive definite, is called a metric. A manifold
equipped with a metric g is called a Riemannian manifold. It is costume to write
〈X, Y 〉 as a shorthand for g(X,Y ) and ‖X‖ for

√
g(X,X).

Lemma 2.4. Every compact manifold M admits a Riemannian metric.

Proof. We take a finite cover of charts φi : Ui →M on M such that their images
are the unit open ball B(0, 1) ⊂ Rn. Now consider the functions

ρi : M → R : x 7→

{
0 x 6∈ Ui
e
− 1

1−‖φi(x)‖2 x 6∈ Ui

One can easily check that these maps are smooth, strictly positive inside Ui and
zero outside Ui. Now for every Ui we can also construct a metric g(i) using the
standard euclidean metric on B(0, 1). The sum

g = ρig
(i)
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gives a metric on M : it is easy to see that it is positive definite and symmetric,
the tricky part is to show that g is smooth, but this follows from the fact that
the derivatives in all orders of the functions ρi at the boundaries of the Ui are all
zero.

Metrics allow us to define distances of curves: let p be a path. The length of the
path p between p(0) and p(1) can then be calculated as∫ 1

0

‖γ′(t)‖dt.

Metrics also allow us to convert vector fields into one-forms and vice versa. If g
is a metric we denote its coefficients by gµν . The inverse of this coeffient matrix
will be denoted by gµν . These form the coeffients of a (2, 0)-tensor and we have
of course

gµνgνκ = δµκ

where δ is the Kronecker delta. By contracting with gµν we can convert a vector
Xκ into a one-form gµκX

κ and a one-form ωκ into a vector gµκωκ. This process is
called lowering/uppering an index and it can also be used to convert (k, l)-tensors
into (k − 1, l + 1)- or (k + 1, l − 1)-tensors.

The procedure of uppering and lowering together with contractions gives us a
way to define inner products on all tensor fields:

〈, 〉 : T k,l(M)× T k,l(M) → C∞ : (T, U) 7→ T i1...ikj1...jl
U r1...rk
s1...sl

gi1r1 . . . gikrkg
j1s1 . . . gjlsl

These maps are all positive definite and bilinear in every point and give us a way
to determine the size of a tensor or a form.

Miniature 2: Bernhard Riemann (1826 - 1866)

Riemann was arguably the most influential mathe-
matician of the middle of the nineteenth century. His
published works are a small volume only, but opened
up research areas combining analysis with geometry.
In 1853 Gauss asked his student Riemann to prepare
a Habilitationsschrift on the foundations of geometry.
Over many months, Riemann developed his theory of
higher dimensions. When he finally delivered his lec-
ture in 1854, the mathematical public received it with
enthusiasm. The subject founded by this work is Rie-
mannian geometry and the fundamental object is what
is now called the Riemann curvature tensor.
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Chapter 3

Connections and Curvature

3.1 Connections

Although there is a natural way to differentiate a smooth function defined on a
manifold with respect to a tangent vector, there is no natural way to differentiate
vector fields. In fact, there are lot of possible rules for differentiating vector
fields with respect to a tangent vector, and to choose one of them, (the most
appropriate one), the differentiable manifold structure alone is not enough. A
fixed rule for the differentiation of vector fields is itself an additional structure
on the manifold, called an affine connection.

As far as only vector fields on an open domain of Rn are considered, the following
definition seems to be quite natural.

The derivative of a smooth vector field X on an open subset U ⊂ Rn with respect
to a tangent vector Y ∈ TpRn is defined by

∇YX = (X ◦ γ)(0) ∈ TpRn,

where γ : [−ε, ε] → U is any smooth curve such that γ(0) = p and γ(0) = Y . We
see that

∇YX =
n∑
i=1

Y (Xi)∂i(p),

where ∂i denotes the i-th coordinate vector field on Rn , Xi are the components of
the vector field X. In particular, the value of ∇YX does not depend on the choice
of γ. Note that we can also take a vector field for Y so that we can construct a
vector field ∇YX : p 7→ ∇Y (p)X.
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It is easy to check that differentiation of vector fields has the following properties.

(1) ∇Y1+Y2X = ∇Y1X +∇Y2X

(2) ∇fYX = f∇YX

(3) ∇Y (X1 +X2) = ∇YX1 +∇YX2

(4) ∇Y (fX) = Y (f)X + f∇YX

(5) ∇X1X2 −∇X2X1 = [X1, X2]

(6) Y (〈X1, X2〉) = 〈∇YX1, X2〉+ 〈X1,∇YX2〉

where X1, X2 ∈ Vect(Rn), Y ∈ TpRn , f ∈ C∞(Rn) and 〈X, Y 〉 =
∑

iX
iY i is the

standard inner product on Rn.

Now we shall study the general case. Let M be a smooth manifold. As we
mentioned, there is no natural rule for derivation of vector fields on M, so we
introduce such rules axiomatically, as operations satisfying some of the properties
(1-6).

Definition 3.1. An affine connection (or briefly a connection) onM is a mapping
which assigns to two smooth vector fields Y and X a new one ∇YX called the
covariant derivative of the vector fieldX with respect to the vector field Y , having
the first 4 properties above.

The presence of an affine connection on a manifold allows us to differentiate not
only vector fields, but also tensor fields of any type. If ω is a 1-form then we
define

(∇Xω)(Y ) := X(ω(Y ))− ω(∇X(Y )).

This is indeed again a one form because

(∇Xω)(fY ) = f(∇Xω)(Y ).

We can extend this to general forms using the Leibniz rule

∇X(T1 ⊗ T2) = ∇XT1 ⊗ T2 + T1 ⊗∇XT2.

In general if T : Ω1(M)k × Vect(M)l → C∞(M) is a k, l-tensor then

(∇XT )(ω1, . . . , ωk, Y1, . . . , Yl)

= X(T (ω1, . . . , ωk, Y1, . . . , Yl))

− T (∇Xω1, . . . , ωk, Y1, . . . , Yl)− · · · − T (ω1, . . . , ωk, Y1, . . . ,∇XYl).

Let x1, . . . , xn be local coordinates defined from a chart on an open subset U of
M and ∂1, . . . ∂n be the corresponding basis vector fields on U . Given an affine

14



CHAPTER 3. CONNECTIONS AND CURVATURE

connection ∇ on M , we can express the vector field ∇∂i
∂j as a linear combination

of the basis vector fields
∇∂i

∂j =
∑
k

Γkij∂k.

The components Γkij are smooth functions called Christoffel symbols. Beware!
Although one might expect it from the indexed notation the Γkij are not the
coefficients of a (1, 2)-tensor. However if one has two connections ∇ and ∇′ then
the difference of their Christoffel symbols is indeed a tensor.

In the index notation we will also use ∇i as a shorthand for ∇∂i
.

The restriction of an affine connection onto an open coordinate neighborhood U
is uniquely determined by the Christoffel symbols. This is because we can write
out the expression in its coordinates using the Christoffel symbols.

∇YX =
∑
k

(Y (Xk) +
∑
i,j

XiYjΓ
k
ij)∂k.

Observe, that in fact, the tangent vector (∇YX)(p) depends only on the vector
Y (p). Furthermore, we do not need to know the vector field X everywhere on
U to compute (∇YX)(p). It is enough to know X at the points of a curve
γ[−ε, ε] →M such that γ(0) = p, γ(0) = Y (p).

Therefore it makes sense to define

Definition 3.2. Let γ : [a, b] → M be a smooth curve in M and take a vector
field G such that G(γ(t)) = γ′(t).

A vector field X is said to be parallel along γ if

∇γ′(t)X := (∇GX)γ(t) = 0 ∀t ∈ [a, b].

The curve γ is called a geodesic if

∇γ′(t)γ
′(t) := ∇GG = 0 ∀t ∈ [a, b].

Because of the remarks above the definitions do not depend on the choice of G.

Lemma 3.3. Given a curve γ : [0, 1] →M and a tangent vector X0 at the point
γ(0) then for every t ∈ [0, 1] there is a unique vector Xt ∈ Tγ(t)M such that

∀t ∈ [0, 1] : ∇γ′(t)Xt = 0.

Proof. If one writes out the condition ∇γXt = 0 in local coordinates we get a
first order differential equation. Such an equation has a unique solution such that
Xt|t=0 = X0.

15
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The vector Xt is said to be obtained from X0 by parallel transport along γ. In
this way we have an isomorphism between the two tangent spaces:

Π(γ,t) : Tγ(0)M → Tγ(t)M

It is easy to check that

∇γ(0)′X = lim
ε→0

Π(γ,−ε)Xγ(ε) −Xγ(0)

ε

So the covariant derivation is the ordinary derivation where we use parallel trans-
port to identify the different tangent spaces.

Definition 3.4. A connection is called symmetric or torsion free if it satisfies
the identity

∇XY −∇YX = [X, Y ].

Applying this identity to the case X = ∂i, Y = ∂j , since [∂i, ∂j] = 0 one obtains
the relation

Γkij = Γkji

The converse also holds: if Γkij = Γkji then ∇ is torsion-free.

Roughly speaking, the torsion free condition halves the degree of freedom in the
choice of Christoffel symbols, a symmetric connection is uniquely determined by
nn(n+1)

2
functions, nevertheless, the space of symmetric affine connections on a

manifold is still infinite dimensional. To reduce further the degree of freedom
putting condition on the connection. We can have to introduce a metric on the
manifold.

Definition 3.5. A connection ∇ on M is compatible with the Riemannian metric
for any vector fields X, Y, Z

X〈Y, Z〉 = 〈∇XY, Z〉+ 〈X,∇YZ〉.

or if g is (0, 2)-tensor corresponding to the metric then ∇Xg = 0 for every vector
field X.

This implies that parallel translation preserves inner products. In other words,
for any curve γ and any pair X0, Y0 ∈ Tγ(0)M The parallel transported vectors
Xt, Yt have thew same inner product.

〈X0, Y0〉 = 〈Xt, Yt〉

Theorem 3.6 (Fundamental theorem of Riemannian geometry). A Riemannian
manifold possesses a unique torsion-free connection which is compatible with its
metric.

16
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Proof. Applying the compatibility condition to the basis vector fields ∂i corre-
sponding to a fixed chart on the manifold and setting 〈∂i, ∂j >= g one obtains
the identity

∂igjk = 〈∇i∂j, ∂k〉+ 〈∂j,∇i∂k〉

permuting i, j and k this gives three linear equations relating the three quantities

〈∇i∂j, ∂k〉, 〈∇j∂k, ∂i〉, 〈∇k∂i, ∂j〉

(There are only three such quantities since ∇ is torison-free). These equations
can be solved uniquely; yielding the first Christoffel identity

〈∇i∂j, ∂k〉 =
1

2
(∂igjk + ∂jgik − ∂kgij)

The left hand side of this identity is equal to Γlijglk. Multiplying by the inverse
(gkl) of the matrix (glk) this yields the second Christoffel identity

Γlij =
∑
k

1

2
gkl(∂igjk + ∂jgik − ∂kgij)

Thus the connection is uniquely determined by the metric. Conversely, defining
Γlij by this formula, one can verify that the resulting connection is symmetric and
compatible with the metric.

The unique symmetric affine connection which is compatible with the metric on
a Riemannian manifold is called the Levi-Civita connection.

The connection ∇ we introduced on open subsets of R is just the Levi-Civita
connection of Rn.

Miniature 3: Tullio Levi-Civita (1873 - 1941)

Tullio Levi-Civita was an Italian mathematician, most
famous for his work on absolute differential calculus
and its applications to the theory of relativity. He
was a pupil of Gregorio Ricci-Curbastro, the inven-
tor of the tensor calculus who gave his name to the
Ricci tensor. His work included foundational papers
in both pure and applied mathematics, celestial me-
chanics (notably on the three-body problem) and hy-
drodynamics.
Later on, when asked what he liked best about Italy,
Einstein said ”spaghetti and Levi-Civita”

17
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3.2 Curvature

If ∇ is an affine connection on a manifold M , then we may consider the operator

R(X, Y ) = [∇X ,∇Y ]−∇[X,Y ] : Vect(M) → Vect

where [∇X ,∇Y ] is the usual commutator of operators. The mapping that assigns
to the vector fields (X, Y ) the operator R(X, Y ) is called the curvature operator
of the connection. The assignment

Vect(M)3 → Vect(M) : (X, Y, Z) → R(X, Y )(Z)

is called the curvature tensor of the connection. To reduce the number of brackets,
we shall denote R(X, Y )(Z) simply by R(X, Y ;Z). Thus, the letter R is used in
two different meanings, later it will denote also a third mapping, but the number
of arguments of R makes always clear which meaning is considered.

Lemma 3.7. The curvature tensor is linear over the ring of smooth functions in
each of its arguments, and it is skew symmetric in the first two arguments.

Proof. Skew symmetry in the first two arguments is clear, the linearity:

R(X, f1Y1 + f2Y2;Z) = f1R(X, Y1;Z) + f2R(X, Y2;Z)

R(X, Y ; f1Z1 + f2Z2) = f1R(X, Y ;Z1) + f2R(X, Y ;Z2)

can be calculated using the defining properties of a connection.

The lemma is a bit surprising, because the curvature tensor is built up from
covariant derivations, which are not linear operators over the ring of smooth
functions. So in every point of M R gives us a linear map

Rp : TpM
3 → TpM,

so the curvature tensor is in fact a (1, 3)-tensor. Therefore we denote the coeffi-
cients of R by R`

ijk. An easy but tedious calculation gives us the local expression
for these coefficients.

R`
ijk =

∂

∂xj
Γ`ik −

∂

∂xk
Γ`ij + Γ`jsΓ

s
ik − Γ`ksΓ

s
ij

Beside skew-symmetry in the first two arguments, the curvature tensor has many
other symmetry properties.

Theorem 3.8 (First Bianchi Identity). If R is the curvature tensor of a torsion
free connection, then R(X,Y;Z) + R(Y,Z;X) + R(Z,X;Y) = 0 for any three vector
fields X,Y,Z.
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Proof. Let us introduce the following notation. If F (X, Y, Z) is a function of the
vector fields X, Y, Z, then denote by �F (X,Y, Z) the sum of the values of F at
all cyclic permutations of the variables (X, Y, Z):

�F (X, Y, Z) = �F (Y, Z,X) = �F (Z,X, Y ) = F (X, Y, Z)+F (Y, Z,X)+F (Z,X, Y ).

The theorem claims vanishing of

�R(X, Y ;Z) = �(∇X∇YZ −∇Y∇XZ −∇[X,Y ]Z)

= �(∇Z∇XY −∇Z∇YX −∇[X,Y ]Z)

= �(∇Z [X, Y ]−∇[X,Y ]Z)

= �([Z, [X, Y ]]) = 0.

The first equality follows from the cyclic property, the second and the third from
the torsion-freeness of ∇ and the last equality is the Jacobi Identity.

Theorem 3.9 (Second Bianchi Identity). The curvature tensor of a torsion free
connection satisfies the following identity

�
XY Z

(∇XR)(Y, Z;W ) := �
XY Z

(XR(Y, Z;W )−R(∇XY, Z;W )

−R(Y,∇XZ;W )−R(Y, Z;∇XW ))

Proof. After some calculational gymnastics one can rewrite this expression as

�
XY Z

∇[[X,Y ],Z]W

which is zero because of the Jacobi Identity.

The geometric interpretation of R is in terms of parallel transport. If Xp, Yp, Zp
are tangent vectors in p (and Xp is linearly independent of Yp) we can construct
a chart φ such that ∂1(p) = Xp and ∂2(p) = Yp. Now consider a little loop γ in
M that starts in p then goes along the coordinate lines through the points with
coordinates (x1, x2) = (ε, 0), (ε, ε), (0, ε), (0, 0) = p. We can consider the parallel
transport of Zp around this loop. The difference of Zp and its parallel transport
depends on ε2 so we can look at

lim
ε→0

Πγ(Zp)− Zp
ε2

This limit is equal to R(Xp, Yp;Zp), so the curvature measures the infinitesimal
parallel transport around a loop in p.

If (M, 〈, 〉) is a Riemannian manifold with Levi-Civita connection ∇, and R is the
curvature tensor of ∇, then we can introduce a tensor R of valency (0, 4), related
to R by the equation

R(X, Y ;Z,W ) = 〈R(X, Y ;Z),W 〉.
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is the Riemann-Christoffel curvature tensor of the Riemannian manifold.

To simplify notation, we shall denote R also by R. This will not lead to confusion,
since the Riemann-Christoffel tensor and the ordinary curvature tensor have dif-
ferent number of arguments. Levi-Civita connections are connections of special
type, so it is not surprising, that the curvature tensor of a Riemannian manifold
has stronger symmetries than that of an arbitrary connection. Of course, the
general results can be applied to Riemannian manifolds as well, and yield

R(X, Y ;Z,W ) = −R(Y,X;Z,W ), �
XY Z

R(X, Y ;Z,W ) = 0.

In addition to these symmetries, we have the following ones.

Theorem 3.10. The Riemann-Christoffel curvature tensor is skew-symmetric in
the last two arguments end symmetric in swapping the first two with the last two
arguments

R(X, Y ;Z,W ) = −R(X, Y ;W,Z)

= R(Z,W ;X,Y )

Proof. The first one can be established by writing it out and using the compat-
ibility of the connection and the metric. The second involves summing several
different permutations of the second bianchi identity.

Because of these identities we can consider R also as a symmetrics map bilinear

R : Ω2M × Ω2M → C∞(M) : (X ∧ Y, Z ∧W ) 7→ R(X, Y ;W,Z).

As is known from linear algebra a symmetric bilinear map on a vector space is
completely determined by its quadratic form. The metric on M gives us a way
to determine the lenght of forms Ω2(M) using the definition

‖X ∧ Y ‖2 = 〈X,X〉〈Y, Y 〉 − 〈X, Y 〉2

therefore we define

Definition 3.11. The sectional curvature is a map

K := Ω2(M) → C∞ : X ∧ Y → K(X, Y ) =
R(X, Y ;Y,X)

‖X ∧ Y ‖2

This map is invariant under rescaling K(fX ∧Y ) = K(X ∧Y ) and hence nonlin-
ear. Moreover K(X, Y )p only depends on the plane spanned by Xp, Yp. We will
see in chapter 5 that the geometric interpretation of K is that K measures the
rate of change of the sum of the angles of a triangle in terms of its size.
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Definition 3.12. Riemannian manifolds, the sectional curvature function of
which is constant i.e. does not depend on p,Xp, Yp, are called spaces of con-
stant curvature. The space is elliptic or spherical if K > 0, K is parabolic or
Euclidean if K = 0 and is hyperbolic if K < 0.

In the next chapter we shall study these spaces in more detail.

The curvature tensor is a complicated object containing a lot of information about
the geometry of the manifold. There are some useful ways to derive some simpler
tensor fields from the curvature tensor. Of course, the simplification is paid by
losing information.

Definition 3.13. Let (M,∇) be a manifold with an affine connection, R be the
curvature tensor of ∇. The Ricci tensor Ric of the connection is a (0, 2)-tensor
obtained by contraction

Ricµν := Rλ
µλν

From the symmetry properties of R we can easily deduce that Ric is a symmetric
tensor: Ricµν = Ricνµ.

Using the metric we can do one more contraction:

R := gµνRicµν

This gives use a smooth function on M which is called the scalar curvature.

3.3 Geodesics

We have defined the length of a smooth curve γ : [a, b] →M as

‖γ‖ =

∫ b

a

√
〈γ′(t), γ′(t)〉dt.

in this definition γ does not need to be completely smooth, it can also be piecewise
smooth: γ is continuous and smooth in all but a finite number of ti ∈ [a, b].

The metric of manifold now allows us to define a distance function between two
points as the length of the shortest piecewise smooth path from p to q

d(p, q) := inf
γ:p⇀q

‖γ‖

It is easy to show that this is a distance function (symmetric, d(p, q) = 0 ⇔ p = q,
triangle inequality).
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To find the analog of straight lines in the intrinsic geometry of a Riemannian
manifold we have to characterize straight lines in a way that makes sense for
Riemannian manifolds as well. Since the length of curves is one of the most
fundamental concepts of Riemannian geometry, we can take the following char-
acterization: a curve is a straight line if and only if for any two points on the
curve, the segment of the curve bounded by the points is the shortest among
curves joining the two points.

This characterization does not depend on the parametrization of the curve.
Therefore we add an extra condition: uniform parametrization. We say a curve
is uniformly parametrized if ‖γ′(t)‖ is constant. Every curve can be uniformly
parametrized.

Theorem 3.14. If γ is a uniformly parametrized curve of minimal length between
p, q then γ is a geodesic.

Proof. A deformation of a curve γ : [a, b] → M is a smooth map γ̃ : [−δ, δ] ×
[a, b] →M : (s, t) → γ̃s(t) such that γ̃0 = γ and γs is a path from p to q for every
s. This gives us two vector fields on the image of γ̃: d

ds
and d

dt
, moreover one

can see easily that [ d
ds
, d
dt

] = 0 Because γ is uniformly parametrized, ‖ d
dt
‖s=0 is a

constant `.

The curves γs all have length at least ‖γ‖ so

d

ds
‖γs‖s=0 = 0

We can write this out∫ b

a

d

ds

√
〈 d
dt
,
d

dt
〉|s=0dt =

∫ b

a

d
ds
〈 d
dt
, d
dt
〉

2‖ d
dt
‖

|s=0dt

=

∫ b

a

〈∇ d
ds

d
dt
, d
dt
〉+ 〈 d

dt
,∇ d

ds

d
dt
〉

2‖ d
dt
‖

|s=0dt

=
1

`

∫ b

a

〈∇ d
ds

d

dt
,
d

dt
〉|s=0dt

=
1

`

∫ b

a

〈∇ d
dt

d

ds
+

=0︷ ︸︸ ︷
[
d

ds
,
d

dt
],
d

dt
〉|s=0dt

=
1

`

∫ b

a

d

dt
〈 d
ds
,
d

dt
〉 − 〈 d

ds
,∇ d

dt

d

dt
〉|s=0dt

=
1

`
[〈 d
ds
,
d

dt
〉|s=0]

b
a −

1

`

∫ b

a

〈 d
ds
,∇ d

dt

d

dt
〉|s=0dt

= −1

`

∫ b

a

〈 d
ds
,∇ d

dt

d

dt
〉|s=0dt
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As the last formula must be zero for all possible deformations γ̃ it must hold that
∇ d

dt

d
dt
|s=0 = 0. This means that

∇γ′(t)γ
′(t) = 0

or γ is a geodesic.

remark 1. The converse however is not true: there exist geodesic curves that do
not minimize the length, f.i. closed geodesics (γ(a) = γ(b)).

One can prove that any geodesic is locally minimizing its lenght i.e. ∀t ∈ [a, b] :
∃[at, bt] 3 t such that γ[at,bt] is a path of minimal length from γ(at) to γ(bt).

If γ is a curve and γk are the coordinates of of γ in a local chart, then we can
write the geodesic condition as

d2

dt2
γk + Γkij(γ)

dγi

dt

dγj

dt
= 0

This is a second order differential equation. Given initial values γk(0) and γk
′
(0)

there exist a unique solution to this equations. Therefore we can conclude that

Lemma 3.15. Given a point p ∈M and a vector X ∈ TpM there exist a unique
maximal geodesic γ :]a, b[→M such that γ(0) = P and γ′(0) = X. (the maximal-
ity of the geodesic must by understood as the fact that ]a, b[ is the biggest interval
on which γ can be defined.

Definition 3.16. We will call a Riemannian manifold geodesically complete if
all maximal geodesics γp,X are defined on whole R.

If this is the case we define the exponential map as

expp(X) := γp,X(1).

This maps in every point the tangent space TpM to M .

Lemma 3.17. If M is path connected and geodesically complete then expp is a
surjective map.

Proof. Suppose q is a point in M and γ : [0, 1] → M is a path of minimal
length between p and q then γ is a geodesic and γ(t) = expp(tγ

′(0)). so q =
expp(γ

′(0)).

Lemma 3.18. For every point p we can find a neighborhood U of 0 ∈ TpM such
that expp |U is one to one.
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Proof. We can prove this using the implicit function theorem. Therefore we have
to prove that the jacobian of the map expp in 0 is an invertible map. But this

jacobian is the identity map because T0(TpM) ∼= TpM and d
dt

expp(tX)|t=0 =
X.

It is important to note that expp is not always a cover map, one can only find
a neighborhood of the zero point in TpM for which exp is invertible. For other
points in TpM this might not be true.

The metric on M gives us a positive definite symmetric bilinear form on TpM
and we can chose an orthonormal basis for this form. This basis gives us an
identification of ι : TpM → Rn and hence ι ◦ expp |−1

U is a chart on M . A chart of
this form is called a normal chart, the corresponding coordinates are also called
normal.

Lemma 3.19. If x1, . . . , xn are normal coordinates around p then we have the
following equations in p:

• Γkij(p) = 0,

• gij(p) = δij and ∂igjk = 0,

• ∂i∂jgkl(p) = 1
3
Riklj(p)

These equations only hold in the origin of the coordinate system, in other points
they are not valid.

3.4 Isometric maps

Definition 3.20. A locally isometric map φ : M → N is a smooth map such
that for every p the map dφp : TpM → Tφ(p)N is an isomorphism that preserves
the metric.

The definition implies that locally isometric maps are covers. On the other hand
if φ : M → N is a cover and N is a Riemannian manifold than we can define a
unique metric on M such that φ is an isometric map:

gM(Xp, Yp) := gN(dφ(Xp), dφ(Yp)).

this metric is the pullback of the metric on M .
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Theorem 3.21. Two isometric maps φ1, φ2 : M → N such that there exists a
point p with φ1(p) = φ2(p) and (dφ1)p = (dφ2)p are equal.

Proof. Because isometric maps map geodesic to geodesics, they commute with
the exponential maps i.e.

φ1 expp(X) = expφ1(p)(dφ1(X)).

Now let q ∈M and let X ∈ TpM be such that expp(X) = q then

φ2(q) = φ2 expp(X) = expφ2(p)(dφ2(X)) = expφ1(p)(dφ1(X)) = φ1 expp(X) = φ1(q).

Since the uniques of the isometric map is now established, we would also like to
have a criterion for the existence of it.

Definition 3.22. A unwinding on two Riemannian manifolds is a triple (γ∧, γ∨,Φ)
consisting of 2 paths γ∧M : [0, 1] → M , γ∨ : [0, 1] → N and a sequence of or-
thonormal isomorphisms Φ(t) : Tγ∧M → Tγ∨N that commute with the parallel
transport and is compatible with tangent vectors:

∀t ∈ [0, 1] :Φt ◦ Πt,γ∧ = Πt,γ∨ ◦ Φ(0)

Φt(γ
∧′(t)) = γ∨

′
(t)

The curve γ∧ is called the upper curve the curve γ∨ is the lower curve.

From the definition we immediately can deduce that Φ is uniquely determined
by Φ(0). A bit more trickier to see is that the upper (lower) curve and Φ(0)
completely determine the lower (upper) curve: this follows from the fact that the
conditions can be expressed as a system of linear differential equations which has
a unique solution if M and N are complete.

If there exists a locally isometric map φ between M and N we can construct
unwindings in the a more easy way:

(γ, φγ, (dφ)γt).

All these unwindings have the property that the endpoint of φγ is uniquely de-
termined by the endpoint of γ not by the form of γ.

We can ask ourselves whether the converse holds as well. This is indeed true if
M is complete and connected.
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Theorem 3.23. Suppose M is complete and connected. Let p ∈ M and q ∈ N
and let Ψ : TpM → TqN be an orthonormal isomorphism. If for all unwindings
(γ∧i , γ

∨
i ,Φi) with (Φi)(0) = Ψ holds that

γ∧i (1) = γ∧j (1) ⇒ γ∨i (1) = γ∨i (1),

then there exists a unique isometric map φ : M → N with (dφ)p = Ψ.

Proof. We can define the map by the equation

φ(γ∧(1)) = γ∨(1)

for every (γ∧, γ∨,Φ) with Φ(0) = Ψ. This map is surjective because if we choose a
path γ∨ from q to r ∈ N we can always find an unwinding of the form (−, γ∨,−).

It is also a smooth isometric map because we can check that ‖dφ(γ∧′(1))‖ =
‖(φγ∧)′(1)‖ = ‖γ∨(1)‖ 6= 0 if γ∧′(1) 6= 0.

If M is simply connected we can go even further:

Theorem 3.24 (Cartan-Ambrose-Hicks). Suppose M is complete and simply
connected. Let p ∈ M and q ∈ N and let Ψ : TpM → TqN be an orthonormal
isomorphism. If for all unwindings (γ∧, γ∨,Φ)

Φ(t)∗R∨
γ∨(t) = R∧

γ∧(t)

(i.e. the pullback of the curvature on N is the curvature on M) then there exists
a unique isometric map φ : M → N with (dφ)p = Ψ.

Proof. With the previous theorem in mind we just have to prove that the end-
points of the lower curves of two unwindings coincide if the endpoints of the upper
curves coincide.

Let γ∧1 and γ∧2 be two such upper curves then because of the simply connected-
ness of M there exists a homotopy H connecting these curves. We denote the
intermediate curves of this homotopy by γ∧λ for each λ ∈ [0, 1]. Because N is
complete we can find for each γ∧λ an unwinding (γ∧λ , γ

∨
λ ,Φλ).

A homotopy has two parameters the time parameter t and the deformation pa-
rameter λ. Nothing prevents us to interchange these parameters so we get a 2
new sets of curves: γ∧−(t), γ∨−(t) (one for every value of t). The first thing we are
going to prove is that these also form unwindings (γ∧−(t), γ∨−(t),Φ−(t)). To prove
this one has to show that

Φλ(t)∂λγ
∧
λ (t) = ∂λγ

∨
λ (t). [∗]
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This allows us to conclude that

∂λγ
∨(1) = Φλ(t)∂λγ

∧
λ (t) = Φλ(t)0 = 0

so γ∨0 (1) = γ∨1 (1).

We will show equation [∗] this by finding as set of linear differential equations
(and initial conditions) that both sides of the equation above satisfy.

To find these we need first some notation. Choose an orthogonal basisE∧
1p, . . . , E

∧
kp ∈

TpM and define E∧
i (λ, t) ∈ Tγ∧λ (t)M and E∨

i (λ, t) ∈ Tγ∨λ (t)N by

E∨
i (λ, t) := Πγ∧λ (t)E

∧
ip and E∨

i (λ, t) := Φλ(t)E
∧
i (λ, t).

This gives us orthogonal bases for the tangent space in every point of all the
curves. We can express the tangent vectors defined by γλ in terms of these bases:

∂tγ
∧
λ (t) =:

∑
i

ξi(λ, t)E∧
i (λ, t)

Because of the definition of the bases downstairs we also have that

γ∨λ
′
(t) =:

∑
i

ξi(λ, t)E∨
i (λ, t)

Now define X∨(λ, t) := ∂λγ
∨
λ (t) and Y ∨

i (λ, t) := ∇∂λγ∨γ
∨
λ (t). Then we have that

∇∂tγ∨X
∨ = ∇∂tγ∨∂λγ∨

= ∇∂λγ∨∂tγ
∨

= (∂λξ
i)E∨

i + ξi∇∂λγ∨E
∨
i

= (∂λξ
i)E∨

i + ξiY ∨
i

and

∇∂tγ∨Y
∨
i = ∇∂tγ∨∇∂λγ∨E

∨
i

= ∇∂tλγ∨∇∂tγ∨E
∨
i +R∨(∂tγ

∨, ∂λγ
∨)E∨

i

= R∨(∂tγ
∨, ∂λγ

∨, E∨
i )

For the first calculation we used the torsion-freeness of the connection for the sec-
ond we used the formula for the curvature together with the fact that [∂λγ

∨, ∂tγ
∨]

Similarly define X∧(λ, t) := Φλ(t)∂λγ
∧
λ (t) and Y ∧

i (λ, t) := Φλ(t)∇∂λγ
∧
λ (t). Then

we have that

∇∂tγ∨X
∧ = Φλ(t)∇∂tγ∧∂λγ∧

= Φλ(t)(∂λξ
i)E∧

i + ξi∇∂λγ∧E
∧
i )

= (∂λξ
i)E∨

i + ξiY ∧
i
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and

∇∂tγ∨Y
∧
i = Φλ(t)(∇∂tγ∧∇∂λγ∧E

∧
i )

= Φλ(t)(R
∧(∂tγ

∧, ∂λγ
∧, E∧

i )

= R∨(∂tγ
∨, ∂λγ

∨, E∨
i )

As X∧(λ, 0) = Y ∧
i (λ, 0) = X∨(λ, 0) = Y ∨

i (λ, 0) = 0 we can conclude that X∧ =
X∨ and this finishes the proof.

Miniature 4: Élie Cartan (1869 - 1951)

Élie Joseph Cartan was an influential French math-
ematician, who did fundamental work in the theory
of Lie groups and their geometric applications. He
also made significant contributions to mathematical
physics, differential geometry, and group theory.
Cartan was born in Dolomieu in Savoie, and became
a student at the École Normale Superieure in Paris in
1888. After his doctorate in 1894, he took lecturing
positions in Montpellier and Lyon and Nancy. He died
in Paris where he was professor from 1912 and untill
he retired in 1942.
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Chapter 4

Constant Curvature

4.1 Simply connected models

We recall the definition of the previous chapter.

Riemannian manifolds, the sectional curvature function of which is constant i.e.
does not depend on p,Xp, Yp, are called spaces of constant curvature. The space
is elliptic or spherical if K > 0, K is parabolic or Euclidean if K = 0 and is
hyperbolic if K < 0.

In this chapter we will show how one can try to classify these manifolds. First
we will have a look at the simply connected manifolds because every manifold of
constant curvature has a simply connected cover and if we pull back the metric
this cover has also has constant curvature.

Theorem 4.1. Let M and N be two manifolds of the same constant curvature
K and fix two points p ∈ M, q ∈ N and a orthogonal isomorphism f : TpM →
TqN . If M is simply connected then there exists a unique locally isometric map
φ : M → N with dφp = f

Proof. First we will give an explicit expression for the curvature in terms of the
metric:

Rijkl = K(gikgjl − gjkgil).

To prove this we define

Qijkl := Rijkl −K(gikgjl − gjkgil).
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then we have of course that Q has the same symmetries as R:

(1) Qijkl = Qklij

(2) Qijkl = −Qjikl

(3) Qijkl +Qjkil +Qkijl = 0

And by the definition of sectional curvature we have

Qijklv
iwjvkwl = 0

substituting v for u+ v we get that

0 = Qijkl(v + w)iwj(u+ v)kwl = Qijkl(u
ivjvkwl + viwjukwl)

(1)
= 2Qijklu

iwjvkwl.

Now substitute w to w + z:

0 = Qijklu
i(w + z)jvk(w + z)l = Qijklu

iwjvkzl +Qijklu
izjvkwl.

so Qijkl = −Qilkj (4). If we combine this with (3) we get

0 = Qijkl+Qjkil+Qkijl
(2),(4)
= Qijkl−Qkjil−Qjikl

(4)(2)
= Qijkl+Qijkl+Qijkl = 3Qijkl.

This implies that Q is the zero tensor. So we have shown that if M has constant
curvature, the curvature tensor in p does only depend on the value of g in p
and not of the derivatives of g. This means that any orthogonal isomorphism
Φ : TpM → TqN between tangent space of two manifolds with the same constant
curvature also preserves the curvature tensor: Φ∗RN = RM . Therefore all possible
unwindings satisfy the condition for the Cartan-Ambrose-Hicks theorem.

Theorem 4.2. For every n ≥ 2 and every K ∈ R there exists an n-dimensional
simply connected complete manifold with constant curvature K. This Riemannian
manifold is unique up to isometry.

Proof. The uniqueness follows from the previous theorem. We only have to con-
struct models for every K = 0, 1,−1 and n. For the other K we can rescale the
metric: if g̃ij = cgij then R̃ijkl = cRijkl and K̃ = c−1K.

Treat the 3 cases separately.

• K = 0. The model here is euclidean space: M = En = Rn gij = δij.
Because the coefficients of the metric are constant the curvature is zero.

The group of isometries working on the euclidean space is called the Euclid-
ian group En and it consists of all maps of the form

φ : x 7→ Ax+ b

where A is an orthogonal matrix (AAT = 1) and b ∈ Rn. It is easy to see
that all these maps are isometries and these are all possible maps because
φ = b and dφ0 = A uniquely determine the isometry.
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• K = 1. The model is the n-sphere:

M = Sn = {(x0, . . . , xn) ∈ Rn+1|
∑
i

x2
i = 1}

The metric comes from the metric in the euclidean space. We can prove
easily that Sn has constant sectional curvature. First look at the group of
isometries of the euclidean space (En+1) that maps the sphere unto itself.
This group is

On+1 = {φ : x 7→ Ax|AAT = 1}

This group works transitive on the points of the sphere and the stabilizer
of a point

Stabp = On

works transitive on the two-dimensional subspaces of TpSn and hence all
the sectional curvatures must be the same.

If we fix such a plane α ∈ TpSn we can look at the image of α under expp.
It is easy to see that this image will be a 2-sphere with radius K−1. So the
sectional curvature of α will be the same as the sectional curvature of such
a two sphere. Let us calculate this:

We can take spherical coordinates:

x0 = cos θ1,

x1 = sin θ1 cos θ2

x2 = sin θ1 sin θ2

These coordinates have the advantage that 〈∂θ1 , ∂θ2〉 = 0 and

g11 = 1

g22 = sin2 θ1

The Christoffel symbols are also easy to compute:

Γ1
22 = − sin θ1 cos θ1

Γ1
12 = Γ1

21 = cot θ1

All other symbols are zero. Finally we compute the curvature:

R1221 = − sin2 θ1 = (−g22g11)

Because On+1 works transitive on the points and Stabp ∼= On we can con-
clude that the group Sn := On+1 contains all isometries of the n-sphere.
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• K = −1. Take the n + 1-dimensional Minkowski space. This is the vector
space Rn+1 equipped with the bilinear form

µ(~x, ~y) = −x0y0 +
n∑
i=1

xiyi.

The symmetry group of this bilinear form is

O(1, n) = {A ∈ Matn+1|A

( −1
1

...
1

)
AT = 1}

Consider the quadric −x2
0 +x2

1 + · · ·+x2
n = −1. This consists of two disjoint

parts H+ and H− containing the points with x0 ≥ 1 resp. x0 ≤ −1. The
group O(1, n) works transitive on the points of the quadric. We consider
the subgroup O+(1, n) that maps H+ to itself.

O+(1, n) = {A ∈ O(1, n)|A00 > 0}

We claim that H+ equipped with the metric coming from the minkowski
bilinear form is a manifold of constant negative curvature.

First of all we show that the metric on H+ is positive definite. We parame-
trize H+ as follows For every point (x1, . . . , xn) ∈ Dn we define a point on
Hn

(λ, λx1, . . . , λxn) with λ =
1√

1− x2
1 − · · · − x2

n

This gives us a chart with vector fields

∂k =
1√

1−
∑

l x
2
l

2 (−xk,−xkx1+
1

2
δk1(1−

∑
l

x2
l ), . . . ,−xkx1+

1

2
δkn(1−

∑
l

x2
n))

Therefore the coefficients of the metric are

gij = µ(∂i, ∂j) =
δij

4(1−
∑

l x
2
l )

2

To prove that Hn = H+ has constant negative curvature, we proceed as
in the positive case. Again O+(1, n) acts transitively on the 3-dimensional
subspaces of Rn+1 through the origin. Therefore the curvature is constant.
To compute the sectional curvature we introduce coordinates We can take
spherical coordinates:

x0 = cosh θ1,

x1 = sinh θ1 cos θ2

x2 = sinh θ1 sin θ2
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and we compute the curvature:

R1221 = sinh2 θ1 = (g22g11)

The group Hn = O+(1, n) works transitive on the points and the stabilizer
of (1, 0, . . . , 0) is equal to On so we can conclude that this group is the group
of isometries of Hn.

The classification of complete manifolds with constant curvature can now be
stated using the notion of a discrete action

Definition 4.3. If M is a manifold or a topological space then S ⊂ M is a
discrete subset if for every p ∈ M there exists a neighborhood U 3 p such that
S ∩ U is finite. If G is a group with an action on M then we call this action
discrete if all orbits are discrete.

If M → N is a cover then the group of deck transformations has a discrete action
on M . This is because every m ∈M has a small neighborhood.

If M̃ → M is the universal cover of a complete Riemannian manifold M with
constant curvature 0,±1 then we can pull back the curvature on M to M̃ . M̃ is
also complete because the geodesics of M̃ are the pull backs of geodesics of M .

Because M̃ is simply connected we know that M̃ ∼= En,Sn,Hn. Also by con-
struction the deck transformations preserve the metric so they form a subgroup
π1(M) of Iso(M̃) = En, Sn,Hn. This group is a discrete subset of Iso(M̃) because
the unit 1 ∈ π1(M) (and hence every element) has a neighborhood in Iso(M̃) that
intersects 1 ∈ π1(M) in one point: Take a small neighborhood Up of p ∈ M̃ and
look at the isometries that map p in Up. In this open subset there is only one
deck transformation: the one that maps p to itself.

Now let M be a simply connected complete manifold. If G is a discrete subgroup
of IsoM and no element of M is fixed by a g ∈ G \ {1}, we can construct the
quotient manifold

M/G = {Gp|p ∈M}

If we denote by dp the minimum distance between p and one of its images under
G then we can find an open neighborhood Up = {x ∈ M |d(x, p) < dp/2} such
that Up ∩ gUp = ∅ if g ∈ G \ {1}. The projection map M → M/G restricted to
Up is an injection so we can use a chart on Up as a chart on M/G. We use these
charts to define the smooth structure on M/G.
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Now suppose we have two groups G1,G2 ⊂ IsoM such that there quotients are
isomorphic as Riemannian manifolds. If φ : M/G1 →M/G2 is the corresponding
isometry. Choose a couple of point p, qinM such that φ(pG1) = qG2 The map
φ gives us an isometric identification (dφ)p : TpM → TqM . This identification
extends to an isometry Φ : M →M . It is easy to see that

∀x ∈M : Φ(x)G2 = φ(xG1),

so if g ∈ G1 then ΦgΦ−1 ∈ G2. The two subgroups are conjugates in IsoM .

Theorem 4.4. The complete n-dimensional manifolds with constant curvature
0,±1 up to isometry are in one to one correspondence with the conjugacy classes
of discrete subgroups of En, On+1 and grpO1(1, n) that have no elements with fix
points.

4.2 The 2-dimensional case

We will now apply the theory developed above to the most simple situation:
n = 2.

Theorem 4.5. There are two complete manifolds with constant curvature K = 1:
The 2-sphere and the projective plane. Their fundamental groups are the trivial
group and Z2.

Proof. We must find all subgroups of S2 = O3 that act discretely and without
stabilizers on S2. First of all note that such subgroups are finite because S2 is
compact (and an infinite number of points in a compact set is never a discrete
subset). Secondly as every element of O3 can be diagonalized with eigenvalues
1 or −1 we must conclude that if an element does not fix any point of S2 it
must have only eigenvalues −1 and hence it is the reflection around the zero.
This means that we have two possible subgroups: the trivial one and the one
generated by the point-reflection. This last group identifies opposite points of
the sphere so the quotient is the projective plane.

Theorem 4.6. There are 5 types of complete manifolds with constant curvature
K = 0

• the Euclidian plane with trivial fundamental group,

• the cilinder with radius r and fundamental group Z,

• the Moebius strip with radius r and fundamental group Z,
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• the torus with fundamental group Z× Z,

• the Kleinian bottle fundamental group 〈g, t|gtg−1 = t−1〉.

Proof. There are two types of elements in E2 that do not fix any point of the
plane: The unsolvability of Ax + b = x implies that A − I is not invertible and
b is not an eigenvector of (A − 1) with non-zero eigenvalue. So we have the
translations tb : x 7→ x + b and glide reflexions gL,` which are compositions of a
reflection around an axis L and a translation parallel to that axis over a distance
`.

First we classify the groups containing only translations. If the group is generated
by one translation we can up to conjugation choose this translation along the
X-axis. The quotient is then a cylinder with circumference the length of the
translation.

If the group is generated by two translations these two translations cannot be in
the same direction. If this were the case either the ratio of there lengths would
be rational (and then we could construct the greatest common divisor which
generates the two) or irrational (and then we could construct smaller and smaller
translations which contradicts the discreteness).

The group cannot be generated by three or more translations because then we
could express these extra translations in terms of the first two and if their coor-
dinates were all rational we could again find smaller generators and if there were
irrational coordinates we could construct smaller and smaller translations.

The quotient manifold by a group generated by two translations is a torus.

Now consider the general case. If a group contains two glide reflections in differ-
ent directions then it also contains a rotation so there can only be one direction
around which there are glide reflections. The smallest glide reflection must gener-
ate all translations in this direction otherwise we can construct smaller glides by
composing glides and translations to obtain smaller glide reflections. So there are
two extra possibilities for the group: either it is generated by one glide reflection
and then the quotient is a Moebius strip or it is generated by a glide reflection
and a translation in another direction and then the quotient is a Kleinian bottle.
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The hyperbolic case is the most difficult. We will not treat it completely

Lemma 4.7. H2
∼= {A ∈ GL2| detA = ±1}/{1,−1}.

Proof. We consider another model of the hyperbolic plane: the upper half plane

H̃ = {x+ iy ∈ C|y > 0}

with the metric

gij = y−2δij

one can check easily that this also has constant curvature −1. In this model the
geodesics are given by vertical lines and half-circles with center on the real axis.
For every couple of points there is a unique geodesic line that connects them.
Two geodesics intersect in at most one point.

The symmetry group acts of course transitively on the geodesics. We will now
obtain a nice description of this group.

We let A = ( a bc d ) ∈ SL2(R) act on H̃ as follows

z ∈ H̃ 7→ w =
az + b

cz + d
if detA = 1, or w =

az̄ + b

cz̄ + d
if detA = −1

This map is well defined because one can check that =w > 0. It is also not
difficult to compute that these maps are isometries. Note that A = −1 acts as
the identity so we should divide this out.

We can see that this group works transitive on the points because we can map i
to all points of the upper plane. We can also see that the group that stabilizes i
is O(2) so the group above is the group of all transformations.

In this group we must find discrete subgroups with elements that do not fix points
in H̃. We end with an example of such a group.

If we have two geodesic segments [a1b1] and [a2b2] of the same length there is a
unique element in PSL2 that maps a1 to a2 and b1 to b2. Now construct a 4m-gon
in the following way: Take 2 points p, q ∈ H̃ and let ρ be the unique isometry
that fixes p and for which dρp is a rotation around 2π/4n. The images of q under
ρi are denoted by qi.

Now define the isometries:

αi : ai = [q4iq4i+1] → a−1
i = [q4i+3q4i+2]

βi : bi = [q4i+1q4i+2] → b−1
i = [q4i+4q4i+3]
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One can prove that these isometries generate a discrete subgroup of PSL2 of which
the elements do not fix points of H̃:

Γ := 〈α1, β1 . . . , αm, βm|α1β1α
−1
1 β−1

1 · · ·αmβmα−1
m β−1

m = 1〉

The quotient of such a group is a surface with m handles. These are not the
only discrete subgroups of PSL2. Such groups are also called Fuchsian groups;
a complete study of them is very involved and connects many different areas of
mathematics.
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Chapter 5

Integrals and differential
operators

5.1 The external derivative and integrals

As we already saw a k-form is a antisymmetric (0, k)-tensor on M . The space
of k-forms is denoted by Ωk(M). Contrarily to vector fields we have a canonical
notion of deriving a k-form. This derivation is called the external derivative and
it transforms a k-form in a k + 1-form. First we define it on 0-forms which are
in fact smooth functions.

(df)(X) := X(f) = X i∂if or df := ∂ifdx
i

We extend this operation to k-forms

(dω)(X1, . . . , Xk+1) =
∑
i

(−1)i(dω(X1 . . . Xi−1, Xi+1, . . . Xk+1))(Xi)

It can easily be checked that this is indeed an antisymmetric tensor. In terms of
the coefficients we get

(dω)j1...jk+1
=
∑

(−1)i∂jiωj1...ji−1ji+1...jk+1

The main property of this differential operater is that its square is zero:

d2ω = 0.

The differential operator is a generalization of the differential operators in R3. If
we take M = R3 we can identify the 0-forms with functions in three variables, the
1-forms with functions from R3 to R3 (using the basis dx, dy, dz. The 2-forms are
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also functions from R3 to R3 (using the basis dy∧dz, dz∧dx, dx∧dy). Finally the
3-forms can be identified with functions from R3 → R using the basis dx∧dy∧dz.
In this way we get the following diagram

Ω0(M) d //

∼=
��

Ω1(M) d //

∼=
��

Ω2(M) d //

∼=
��

Ω3(M)

∼=
��

C∞(R3)
grad // C∞(R3)3 curl // C∞(R3)3 div // C∞(R3)

The fact that d2 = 0 now translates into the well known identities curlgradf = 0
and divcurl~v = 0.

Another way to see k-forms as a generalization of standard calculus, is in inte-
gration. A k-form can be seen as the thing you put behind the integrand. If ω
is a k-form on M and S is a k-dimensional submanifold of M we can define the
integral ∫

S

ω :=

∫
. . .

∫
U

ω(
∂σ

∂θ1

, . . . ,
∂σ

∂θk
)dθ1 . . . dθk

In this formula σ : U ⊂ Rk → M is a parametrization of the surface. The nice
thing is that this formula does not depend on the parametrization as long as the
parametrization have the same orientation (i.e. the jacobian between them has
positive determinant) so it is intrinsically determined by S, its orientation and
ω.

In standard calculus there are a lot of theorems that connect differential operators
and integrals. These theorems are all special cases of the theorem of Stokes

Theorem 5.1 (Stokes). If S is a k-dimensional manifold in M and ω is a k−1-
form then ∫

S

dω =

∫
∂S

ω.

∂S is the boundary of S inside M . The orientation on ∂S is determined by the
orientation on S: If σ is a parametrization of S such that σ(~θ) ∈ S ⇒ θ1 < 0

and σ(~θ) ∈ ∂S ⇒ θ1 = 0 then σ|θ1=0 gives us the orientation on ∂S.

Finally how do we integrate functions over a manifold? As we have seen above, if
M is a manifold the correct thing to integrate over M is an n-form. So we should
find a way to turn a function in to an n-form. This can be done using the metric.

In the case of n-forms, the space ∧nT ∗pM is one-dimensional (a basis is dx1∧· · ·∧
dxn) so we can find a vector in every ∧nT ∗pM of size 1 according to the metric.
An n-form which in every point has size one is called a volume form.

〈dv, dv〉p = 1.
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If a volume form exists then we call the manifold orientable. If it exists then
there are exactly two possible volume forms

dv = |g|−
1
2dx1 ∧ · · · ∧ dxn and − dv

Not every manifold is orientable (e.g. the moebius strip) but every manifold has
a cover that is orientable.

Now if M has a volume form V we define the integral of the function f over M
to be the integral ∫

M

fdv =

∫
M

f |g|−
1
2dx1 ∧ · · · ∧ dxn

5.2 The Gauss-Bonnet theorem

We end this chapter with a very nice theorem that correlates the curvature of a
two dimensional manifold with the Euler characteristic.

Recall that if M is a 2-manifold then a (geodesic) triangle is a simply connected
closed piece T of M such that the boundary in M consists of 3 geodesic curves
that intersect each other only at their end points. These three points are called
the vertices and the three geodesic are called the edges.

A (geodesic) triangulation consists of a set of triangles such that two triangles
are disjunct or have either one vertex in common or one edge (and two vertices).

The Euler characteristic of a surface M is the number of triangles (F) and the
number of vertices (V) minus the number of edges (E):

χ(M) = F − E + V = V − 3

2
F + F = V − 1

2
F

(E = 3/2F because every triangle has 3 edges and an edge is shared by two trian-
gles). The expression only depends on the manifold and not on the triangulation.
It is therefore a topological invariant. The surprising thing is that one can also
calculate this number by integration the sectional curvature of the surface.

Theorem 5.2 (Gauss-Bonnet). If M is a 2-dimensional Riemannian manifold
and K is its sectional curvature then the integral of the sectional curvature is 2π
times the Euler characteristic.∫

M

Kdv = 2πχ(M).
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Proof. We need to prove that for a geodesic triangle T∫
T

Kddv = α+ β + γ − π

where α, β, γ are the angles of the triangle.

If we then sum over all the triangles of the triangulation we get∫
M

Kddv =
∑
i

∫
Ti

Kddv =
∑
i

αi + βi + γi − Fπ.

In every vertex of the triangulation the angles of all triangles that meet this
vertex sum up to 2π so∫

M

Kddv = 2πV − πF = 2πχ(M).

Chose one of the edges of the triangle and let γ : [0, 1] →M be the corresponding
geodesic. in every point γ(t) we denote by Nt ∈ Tγ(t)M the vector with norm 1
perpendicular to γ′(t) and pointing into the triangle. Note that Nt is the parallel
transport of N0 along γ.

We now define a coordinate system by

(u, v) 7→ expγ(u) vNt

One can check that ‖∂v‖ = 1 in every point and

∂v〈∂u, ∂v〉 = 〈∇∂v∂u, ∂v〉+ 〈∂u,∇∂v∂v〉
= 〈∇∂v∂u, ∂v〉+ 0

= 〈∇∂u∂v, ∂v〉 =
1

2
∂u‖∂v‖ = 0.

However f = ‖∂u‖ is not always equal to 1. In this coordinate system the metric
has a simple form: guu = f 2, guv = 0, gvv = 1. The sectional curvature now
becomes

K = −∂
2
vf

f
.

while the volume form is fdu ∧ dv. The integral can be expressed as

−
∫
T

∂2
vfdu ∧ dv =

∫
T

d(∂vfdu) =

∫
∂T

∂vfdu.

Now if σ : [0, 1] → M is a geodesic and θ(t) denotes the angle between ∂v and
σ′(t):

σ′(t)

‖σ′‖
= cos θ(t)∂v − sin θ(t)

1

f
∂u
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now

θ′(t) =
−1

sin θ
(cos θ)′ =

−1

sin θ

d

dt
〈∂v, σ′(t)〉

=
−1

sin θ
(〈∇σ′(t)∂v, σ

′(t)〉+ 〈∂v,∇σ′(t)σ
′(t)〉

=
−1

sin θ
〈∇cos θ(t)∂v−sin θ(t) 1

f
∂u
∂v, σ

′(t)〉

=
1

f
〈∇∂u∂v, σ

′(t)〉 =
1

f
〈∂vf∂u, σ′(t)〉

= − sin θ(t)∂vf = ∂vfdu(σ
′(t))

This means that the integral can be rewritten as∫
∂T

∂vfdu =

∫
∂T

dθ =

∫
E1

dθ + α+

∫
E2

dθ + β +

∫
E3

dθ + γ

= θ1e − θ1s + θ2e − θ2s + θ3e − θ3s

= α− π + β − π + γ + π = α+ β + γ − π

Where θis and θie denote the angles between ∂v and the ith edge at the starting
and ending position. This means that −θi+1s + θie is the angle at the where Ei
ends.

π + γ
β − π

α− π
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Chapter 6

The Ricci Flow

6.1 The Laplacian and the heat equation

Note that in standard calculus divgradf is called the Laplacian of f but in the
general setting of differential forms this equation does not make sense. What
we can do is to take the covariant derivative of the the one form df to obtain a
(0, 2)-tensor (X, Y ) 7→ ∇Y (df)(X). To turn this into a function we can raise one
of the indices and contract:

∆f := gij(∂i∂j + Γkij∂k)f.

This differential operator is called the Laplacian and it depends crucially on the
metric.

In order to make sense of it we need an identification of the 1-forms and the
2-forms, this can only be done using a metric.

A function or a form that satisfies the equation ∆f = 0 is called a harmonic
function or form. On a compact closed manifold the only harmonic functions are
the constant functions. This can easily be seen because if M is compact and f
non-constant then there is a point p ∈ M for which f is maximal and strictly
maximal in at least on direction. Choose normal coordinates around this point
then we get that ∆f(p) = ∂i∂if . Because f is maximal all second derivatives are
negative and at least in one direction strictly negative so ∆f(p) < 0.
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Note that on a closed manifold the integral∫
M

∆fdv =

∫
M

(gij(∂i∂j + Γkij∂k)f)
1√
|g|
dx1 . . . dxn

=

∫
M

∂i(
√
|g|gij∂jf)dx1 . . . dxn

=

∫
M

d((−1)j−1
√
|g|gij∂jfdx1 . . . dx̂j . . . dxn) = 0

The last equality follows from the theorem of Stokes and the fact that ∂M is
empty.

Vice versa we have the theorem

Theorem 6.1. If
∫
M
hdv = 0 then the differential equation

∆f = h

has a unique solution up to a constant.

Proof. One can show the existence of a function

G : M ×M → R

such that for a smooth h the function

f(y) =

∫
M×{y}

G(x, y)h(x)dv

satisfies

∆f = h−
∫
M
hdv∫

M
dv

.

The function G is called Green’s function and in dimension 2 it has the form

G(x, y) = − 1

2π
ln sin

d(x, y)

2

where d(x, y) is the distance between x and y coming from the metric.

The Laplacian is an operator that is important in many physical problems. One
of them is the heat equation

Miniature 5: The Heat Equation

Consider an iron ring of radius 1. The temperature on the rod can then be represented
by a function u : [0, 2π]× R → R. The first coordinate (θ) represents the place on the
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rod, the second represents the time (t). To calculate the evolution of the temperature
distribution physicist use the heat equation:

∂tu = k∂2
θu = k∆f

where k is a constant. This equation has solutions of the form

ae−b
2kt cos(bθ + c).

So if we know u(θ, 0) = f(θ) we can use the Fourier series of f

a0 + a1 cos(1θ + c1) + a1 cos(2θ + c2) + . . .

to solve the general equation. For all but the constant the amplitudes of the cosine func-
tions decrease exponentially so we have that limt→∞ u(x, t) = a0 = (2π)−1

∫ 2π
0 u(x, 0)dx.

The equation smoothens the function until it becomes constant.

To finish the proof of the Poincaré conjecture in dimension 2 we need to prove that
every compact manifold admits a metric of constant curvature. The technique
to do this could be to find a differential equation for the metric such that the
curvature of the metric satisfies an equation similar to the heat equation. This
will be possible using the Ricci Flow.

6.2 The Ricci Flow

The metric that is constructed this way does not necessarily have constant cur-
vature. The thing we want to do is to adjust this metric by smoothening out the
curvature. This is done using the ricci flow equation which is an adaptation of
the heat equation.

We let g : R → Ten0,2(M) be a smooth family of metrics on M . We say that this
family satisfies the normalized Ricci flow if

∂tgij = −2Ricij +
2

n
Rgij

where

R̄ =

∫
M
Rdv∫

M
dv

is the average (mean) of the scalar curvature and n is the dimension of the
manifold. This normalized equation preserves the volume of the metric

∫
M
dvol.

The factor of −2 is of little significance, since it can be changed to any nonzero
real number by rescaling t. However the minus sign ensures that the Ricci flow
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is well defined for sufficiently small positive times; if the sign is changed then
the Ricci flow would usually only be defined for small negative times. (This is
similar to the way in which the heat equation can be run forwards in time, but
not usually backwards in time.)

Miniature 6: Richard Hamilton (1943 - )

Richard Streit Hamilton is Professor of Mathematics
at Columbia University. He received his Ph.D. in 1966
from Princeton University.
Hamilton is best known for having invented the Ricci
flow, which Grigori Perelman employed in his proof
of the Thurston geometrization conjecture and the
Poincar conjecture.
Hamilton was awarded the Oswald Veblen prize in
1996 and the Clay Research Award in 2003.

What one wants to do now is to find a solution for the Ricci flow starting from
a general metric define on M . The hope is then that this flow will evolve to
a metric of constant curvature. In dimension 2 this hope is indeed justified as
we will prove in this chapter. In dimension 3 however things are more subtle.
Firstly the equation might develop singularities: places where the metric becomes
infinite or degenerate and secondly the result of the flow does not always give
a metric of constant curvature. The second problem comes from the fact that
instead of the 3 model geometries in 2-dimensions (the sphere, the euclidean and
the hyperbolic plane) there are 8 model geometries in 3 dimensions (this is called
Thurston’s geometrization conjecture). The first problem is solved using surgery:
cutting out the singularities.

Let us restrict to the 2-dimensional case

Lemma 6.2. If n = 2 then 2Ric = Rg

Proof. Because of the symmetry the only nonzero components of Rijkl are

R1212 = −R2112 = −R1221 = R2121.

This means that Ricij = gklRkilj = gi
′j′R1212(−1)i+j where i′ = nei and j′ 6= j.

Therefore (−1)i+jgi
′j′ is the i, j-minor of gij and hence

Ricij = |g|−1gijR1212.

and R = gij|g|−1gijR1212 = 2|g|−1R1212 so Rgij = 2Ricij.

Because of this lemma the normalized equation simplifies to

∂gij
∂t

= (R̄−R)gij.
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This shows us that g is a constant solution if and only if its curvature is constant.

Lemma 6.3. The normalized Ricci flow preserves the volume of the metric and
the average curvature.

Proof. We have that vol =
∫
M

√
|g|dxdy so ∂tvol =

∫
M

√
det(R̄−R)gdxdy =

R̄vol−
∫
M
R
√
|g| = R̄vol− R̄vol = 0.

Secondly we know from the theorem of Gauss-Bonnet that
∫
M
R
√

det g does not
depend on the metric on M at all because it is a topological invariant. The
quotient of this integral with the volume is the average curvature and is hence
constant.

Now we want to transform the equation for the metric to an equation for the
curvature. To do this we need some calculations

Lemma 6.4. The expressions for the time derivatives of the curvature and Christof-
fel symbols are

∂tΓ
k
ij =

1

2
(∇i∂tgjk +∇j∂tgik −∇k∂tgij)g

kl

∂tR
i
jkl = ∇j∂tΓ

i
kl −∇k∂tΓ

i
jl

∂tRij = ∇i∂tΓ
k
kj −∇k∂tΓ

k
ij

∂tR = Rij∂tg
ij + gkl∇k∇l(g

ij∂tgij)− gik∇kg
jl∇l∂tgij.

Proof. All the expressions above are tensors so we can check them in any coor-
dinate system we want. For the sake of simplicity we use a normal coordinate
system around p. In this coordinate system we have that in p gij = gij = δij and
∇iTkl = ∂iTkl. Also keep in mind that ∂tg

ij = −gimgjn∂tgmn. So

∂tΓ
k
ij = ∂t

1

2
(∇i∂tgjk +∇j∂tgik −∇k∂tgij)g

kl

=
1

2
(∇i∂tgjk +∇j∂tgik −∇k∂tgij)g

kl + Γmijg
nkgmn

=
1

2
(∇i∂tgjk +∇j∂tgik −∇k∂tgij)g

kl

The rest of the calculations are similar.

We use the last formula to obtain a differential equation for the curvature:

∂tR =
1

2
Rgijg

ikgjl(−R̄ +R)gkl + gkl∇k∇l(g
ij(R̄−R)gij)− gik∇kg

jl∇l(R̄−R)gij

= R(R− R̄) + 2∆(R̄−R)−∆(R̄−R)

= R(R− R̄) + ∆(R̄−R)
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So if we define curvature difference as ρ = R − R̄, it satisfies the following
differential equation

∂

∂t
ρ = ∆ρ+ ρ2 + R̄ρ.

The final technique we need to tackle the problem is the maximum principle.

Lemma 6.5 (The maximum principle). If M is a manifold equipped with a con-
tinuous family of metrics gt and ut : M → R is a family of functions that satisfies
the inequality

∂

∂t
u ≥ ∆gtu+ Cu.

If u0(x) ≥ k for all x ∈M then ut(x) ≥ keCt for all t

Proof. first we substitute u = eCtũ to obtain the inequality

∂

∂t
ũ ≥ ∆C−1gt

ũ.

So we restrict to the case where C = 0. Now define uε = u+ ε(1 + t). If for some
ε > 0 there is a x ∈ M with uεt(x) < c then we can also find a time t1 such that
∃x1 ∈M : uεt1(x1) = c for the first time.

We note that because uε is minimal in t, the partial time derivative is negative
in x1. In space coordinates the point is also minimal so the Laplacian is positive,
but this contradicts the fact that

∂

∂t
uε ≥ ∇gtu

ε + ε > 0.

So uε > c for all ε > 0 and hence u ≥ c.

We are now ready to formulate the main result about the Ricci Flow in two
dimensions.

Theorem 6.6. If (M, g0) is a 2-dimensional Riemannian manifold then there
exist a unique solution gt to the normalized ricci flow such that g∞ := limt→∞ gt
is a metric of constant curvature i.e. ρ∞ = 0.

The proof of this theorem is covered by the appendix.

This concludes the proof of the Poincaré Conjecture in 2 dimensions: We have
proved that every compact 2-dimensional Riemannian manifold admits a metric
of constant curvature. If this manifold is simply connected then we know that it
is S2, E2 or H2. Only the first one of these is compact. The proof in dimension
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2 could be simplified in many ways, but the way it has been described in these
notes illustrates best the philosophy behind the proof in dimension 3 by Grisha
Perelman.

Miniature 7: Grisha Perelman (1966 - )

Grigori Yakovlevich Perelman born 13 June 1966 in
Leningrad, is a Russian mathematician who has made
landmark contributions to Riemannian geometry and
geometric topology. In particular, he has proved
Thurston’s geometrization conjecture. This solves in
the affirmative the famous Poincar conjecture.
In August 2006, Perelman was awarded the Fields
Medal. The Fields Medal is widely considered to be
the top honor a mathematician can receive. How-
ever, he declined to accept the award or appear at
the congress.
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