Mirror Symmetry
Master Mathematical Physics

Take Home Exam
Date: Somewhere in June
Time: Whenever it suits you

Number of pages: 1
Number of questions:
Maximum number of points to earn: 50
At each question is indicated how many points it is worth.

BEFORE YOU START

- Please wait until you are instructed to open the booklet.
- Check if your version of the exam is complete.
- Write down your name, student ID number, and if applicable the version number on each sheet that you hand in. Also number the pages.
- Your mobile phone has to be switched off and in the coat or bag. Your coat and bag must be under your table.
- Tools allowed: Whatever suits you.

PRACTICAL MATTERS

- The first 30 minutes and the last 15 minutes you are not allowed to leave the room, not even to visit the toilet.
- You are obliged to identify yourself at the request of the examiner (or his representative) with a proof of your enrollment or a valid ID.
- During the examination it is not permitted to visit the toilet, unless the proctor gives permission to do so.
- 15 minutes before the end, you will be warned that the time to hand in is approaching.
- If applicable, please fill out the evaluation form at the end of the exam.

Good luck!
Question 1. The Grassmannian $G(m, n)$ is the set of all m-dimensional subspaces of \mathbb{R}^n. Use Morse theory to determine the homology of $G(m, n)$. Start with $m = 1, n = 2, 3 \ldots$. If that works try $G(2, 4)$ and finally you can have a look at the general case.

Question 2. Let A be an A_∞-algebra. Show that the multiplication for the minimal model $\mu_H(A)$ that uses the sum over all trees, satisfies the A_∞-axioms (use the A_∞-axioms for the original μ). Apply this minimal model construction to determine the A_∞-structure on $\text{Ext}_A^\bullet(M, M)$ where $A = \mathbb{C}[X]/X^4$ and $M = A/(X) \cong \mathbb{C}$.

Question 3. Consider the sphere $S^2 = \{(\cos \theta \cos \phi, \cos \theta \sin \phi, \sin \theta) | \phi, \theta \in \mathbb{R}\}$ with its standard symplectic structure $\cos \theta d\phi \wedge d\theta$ (i.e. the standard volume form).

1. Show that every closed lagrangian submanifold is Hamiltonianly isotopic to a circle.
2. Show that two circles on the sphere are Hamiltonianly isotopic if they are congruent.
3. Show that $HF(C_1, C_2) = 0$ if C_1 and C_2 are circles and the radius of C_1 or C_2 is smaller than 1.
4. Show that $HF(C_1, C_2) = \mathbb{C}^2$ if C_1 and C_2 are both great circles (i.e. the radii are both 1).

Question 4. Consider the graded ring $R = \mathbb{C}[X, Y, Z]/(XY - Z^2)$ where X, Y, Z all have degree 1. Show that $\text{Proj} R$ is equivalent with $\text{Coh} \mathbb{P}^1$. Give for each indecomposable object in $\text{Coh} \mathbb{P}^1$ a graded R-module that represents it.

Now consider the category $\text{MF}(\mathbb{C}[X, Y, Z], XY - Z^2)$. Use the fact that $XY - Z^2$ looks like a determinant to construct a matrix factorization of rank 2 (i.e. the matrices are 2 by 2 matrices). Determine the endomorphism ring of this matrix factorization.

Question 5. Consider the torus T^2 as a symplectic variety and let L_1, L_2 be a lagrangian submanifold with first homology classes (a_1, b_1) and (a_2, b_2) with trivial local systems. Assume that L_1 intersects L_2 normally in precisely one point p.

- Show that $a_1b_2 - b_1a_2 = \pm 1$.
- Consider the twisted complex $(L_1 \oplus L_2, (0 \ p \ 0 \ 0))$. Show that it is isomorphic to a lagrangian with homology class $(a_1 + a_2, b_1 + b_2)$.
- Show that there is a diffeomorphism $\psi : T^2 \to T^2$ that maps L_1 to L_2.

Consider the torus $E : X^3 + Y^3 + Z^3 + 2XYZ = 0 \subset \mathbb{P}^2$ as a complex variety and let S be a skyscraper sheaf and \mathcal{K} be the trivial line bundle.

- Show that $\text{Hom}_{D^b \text{Coh} E}(\mathcal{K}, S) = \mathbb{C}$ and let p be a basis for this space.
- Consider the twisted complex $(\mathcal{K} \oplus S, (0 \ p \ 0 \ 0))$. Show that it is isomorphic to a line bundle.
- Is there an automorphism of E that turns S into \mathcal{K}?