

Roberto Valenti, Felix Hageloh

Machine Learning: Pattern Recognition

Lab 3
“EM for a Mixture of Gaussians”
Roberto Valenti
0493198
Felix Hageloh
0425257
Abstract

The Aim of this lab was to train a classifier based on a mixture of Gaussians by using the EM-algorithm. We first implemented the EM algorithm and then used the trained classifier to measure its performance for a different number of mixture components and different datasets. Also we produced some graphical output to visualize how the EM-algorithm for a mixture of Gaussians works.
Introduction

To tackle this task we must first implement the EM algorithm. The major issues here are to find a sensible way to initialize the parameters and to get an algorithm that works for machine precision, because posterior probabilities tend to get very small. For parameter initialization we will implement a k-means algorithm which should be sufficiently fast. To solve the problem of machine precision we will use the trick presented in lecture, namely to compute the posterior probabilities with exp(Ens – maxs Ens), where Ens = log p(s)p(xn|s).
To visualize this algorithm we will plot the means and covariance matrices (using plot_gauss) after each EM step.
The next step is to classify the banana data and the iris data with different number of mixture components (from 1 to 3) and average the result over 10 samples. Each time we will randomly pick 80% of the data points of each class to be used as a training set and then classify the remaining 20%. We then plot the total number of misclassifications together with the standard deviation using error_bar for each number of mixture components.
Implementation
First we created a function for the kmeans algorithm with following structure:

FUNCTION kmean, arguments:

Input Data A, number of clusters k

returns:

means, covariances, priors for each cluster
BEGIN

Randomly pick k vectors from A as initial means
Make sure they are distinct, otherwise pick again

Get square distances for each data point in A to initial means

FOR each initial mean Mc

Find points with minimal distance to Mc
Form new cluster C out of these points

Calculate new mean and covariance for C

Calculate prior prob. for C

END FOR
END FUNCTION

We then wrote a function for one EM step as follows:
FUNCTION EM-step, arguments:

Input Data A, initial means, covariance matrices and priors

Returns:

Log likelihood before EM-step, new means, covariance matrices and priors

BEGIN

Calculate E matrix with entries: log p(s)p(xn|s)
Calculate W matrix as exp(E – max Es) ./ sum(exp(E – max Es))
FOR each sublclass C

Calculate new mean

Calculate new covariance matrix

IF new cova matrix is close to singular THEN

keep the old one

END IF

Calculate new prior prob.

END FOR
Next we need to repeatedly call the EM-step function to train the classifier. This is done by the function MoG:

FUNCTION MoG, arguments:

Training set Train, number of subclasses k

RETURNS:

Means, covariance matrices, priors for each subclass

Get initial means, covs, priors using kmean(Train, k)

Set initial log-likelihood to zero

WHILE increase of Log-Likelihood > 0.001

Perform EM-step to get new means, covs, priors

Get log-likelihood before EM-step

Calculate diff. in log-likelihood with previous step

END WHILE

END FUNCTION

To visualize this process we created a .m file (MoG_Plot.m)that has some plot_gaussians to the while loop of the MoG function, together with a pause to show the covariance matrices and means for each step. Also in the end we plotted all log-likelihoods to ensure that the log-likelihood is indeed increasing.
We then implemented two more functions to classify data points using the trained mixture of Gaussian classifier. There is one for using two classes (like the banana data) and one for using three classes (like the iris data). They are called MoG_error() and MoG_error3(). The functions loop through different numbers of subclasses (1 to 3 in our case) and for each one repeat the classification ten times, each time choosing a different (random) training set. To classify the data points we compute all probabilities by using the fact that the probability of a data point x belonging to class c is given by the sum over all subclasses of c of the subclass densities times their priors. All probabilities are stores in vectors so we just loop through all probabilities and compare them to get the classification error. From the errors of each run we calculate the mean error and standard deviation and plot them using errorbar().
Experiments

The experiments were run as described in the implementation section and we got following results:
Snapshots of the EM-Algorithm performed on one class of the Banana Data:

[image: image1.jpg]0.8

0.4

0.2

-0.8

0.2

0.7

[image: image2.jpg]0.8

0.4

0.2

0.7

[image: image3.jpg]0.8

0.4

0.2

0.2

03

0.4

0.5

0.6

0.7

[image: image4.jpg]0.7

0.1

-0.1

0.8

06

0.4

0.2

-0.2F

04}

-06F

-0.8
-0.2

[image: image5.jpg]0.7

0.1

-0.1

0.8

06

0.4

0.2

-0.2F

04}

-06F

-0.8
-0.2

[image: image6.jpg]0.8

0.4

0.2

0.7

Change in log-likelihood for Banana Data
[image: image7.jpg]45

9

93+

92

=
pooyiiayiI-6o)

90+

89

88

EM-step

Change in log-likelihood for Iris Data
[image: image8.jpg]30

58 -
56 -

25

I
15
EM-step

54

o
@

pooyia)1I-ol

66
64
62

Classification performance
[image: image9.jpg]10 10
© ©
- —o o e e— —o
fes A0 f 180
o o
<
=
<
s 4o [—— 4o
a
3
e 0 L o
H = S —— 4=
I ! ! I I 0 I I I I 10
w0 < © o~ - (=1 ~© < © o~ oo (=] ~O

UoIJeIASp PJEPUE)S U)IA JOLIS Ueaw

UoIjeIASp PJEpUE)S U)im JOLIS Ueaw

number of gaussians

Conclusions

First of all this lab gives a nice insight on how the EM-algorithm works and how the means and covariance matrices get adjusted for each EM-step. For some runs that gave very poor final results we could see how important the initial choices for the mean vectors are. Poor results occur when the initial means of two subclasses are very close together or if we chose a point that is far out from the rest of the set as an initial mean.
Also we could show that the log-likelihood does indeed increase after each EM-step and converges after a finite number of steps.
The final experiment shows that for the banana data one Gaussian is not suitable to classify the two classes sufficiently. Misclassifications of 20% are not uncommon. However, using several Gaussians the data set gets modeled much better and we can see that using three Gaussians we almost get 100% correct classification.

For the iris data the results in this experiment are not really valid. Even though we used the hints from the lectures and in the lab assignment to avoid going out of machine precision, we get lots of warnings that the covariance matrices are close to singular. Consequently our results vary a lot, going from an increase in misclassification to a decrease in misclassification for more subclasses. However, we know from previous experiments that the Iris data can be modeled fairly well with a single Gaussian, so we shouldn’t expect a big increase in classification accuracy when using more subclasses.

PAGE
1

