

Roberto Valenti, Felix Hageloh

Machine Learning: Pattern Recognition

C5
“Boosting”
Roberto Valenti
0493198
Felix Hageloh
0425257
Abstract

In this assignment we implemented a complex (or strong) classifier based on the weighted combination of very simple (or weak) classifiers, builded on a single feature linear discriminant. This is the basic form of a procedure known as Boosting and is called AdaBoost (adaptive boosting). Afterwards we tested the performance of the strong classifier on two data sets, the banana data and the SPECT data, by averaging the test and train error over 10 different random division of test and training sets.
The results shows that this procedure really boost the performance considerably.

Introduction

To implement the Adaboost on our datasets we first have to write function that calculates the best simple linear discriminant of just one feature of the data.
Then we need to train a weak classifier for each feature of the data and select the one that gives the least error. The best classifier then gets stored and the weights adjusted. All misclassified points get boosted (increased in weight) according to the formula (1 – error)/error, and then all weights need to be renormalized.
Repeating this process over the number of boosts gives us the strong classifier, which is a series of weak classifiers combined by a weighted sum corresponding to each weak classifiers performance.
We then have to implement a loop that creates random divisions for the test and the training set, train a strong classifier using the training set as described above, and then calculate the train and test performance for each iteration. Repeating this over different numbers of boosts, we can calculate the mean performance and standard deviation for all the obtained results as a function of the boosting applied.

Implementation
As stated in the project description, we can implement a single feature weak classifier by introducing a threshold and classify all points depending on whether the point is bigger or smaller than the threshold. We simply need to place a threshold just in front of each data point, so that it lies between two data points or at the beginning of the whole set. Then we need do decide which side of the threshold should be assigned to class 1 and which to class 2. In the case that the threshold lies in the beginning of the data set, all points will be either classified as class 1 or class 2. Decisions are based on the least error and the best threshold gets returned in the end, together with a sign variable that shows on which side of the threshold is class 1.
File: Weak.m

BEGIN

 For all data points

Put thr in front of data point

Classify all data points bigger than thr as class 1;

Sum the weights of misclassified data;
If better to classify those data points as class 2

THEN flip the sign;
 End;

 Return the thr and sign that accomplish the least error;

END

The main program just iterate and update the weights for the weak classifier:
File: C5.m
BEGIN

 “Depending on the chosen DATASET (0=banana;1=SPECT);”
 Load Data (both test and training) and join them together;
 For every Boosting Number (1,10,..,100)

For 10 different divisions of test and data

Split the data in test and training;

Initialize weights;

Loop through all boost required (BOOSTING NUMBER)

Loop through all features of the data

Find the best classifier and sign taking in account the weights(weak.m);

End

Save the best classifier found ;

Update weights;

End

Combine all the weighted weak classifiers and test the strong classifier obtained with the training data and the test data, saving the results;

End

End

Average and plot the results;

END

Experiments

First we tried to visualize how the boosting procedure works, using the banana set by plotting the threshold of the weak classifier obtained for every boosting step. This was not required for the assignment, we use it only to check if the algorithm was performing correct steps, so the code was taken out from the handed in version.

Next we ran the required experiments, plotting the mean performance and standard deviation for both data sets as a function of boost iterations (figure 2, 3).

Since the greatest increase of performance appeared to take place in the first 20 iterations, we also produced a plot that zooms in on those iterations (figure 4,5).
Figure1[image: image1.jpg]1.2

0.8

0.4

0.2

-0.2F

04}

-0.6

03 0.4 0.5 0.6

0.2

0.1

-0.2 -0.1

-03

Figure 2 (Banana Data)

[image: image2.jpg]Correct classification with s.d

Correct classification with s.d

1.1

1.08

095

09

085

08

075
(]

1.1

BOOSTING PERFORMANCE OVER TRAINING DATA

4 3

BOOSTING PERFORMANCE OVER TEST DATA

Boosting Loops [(n-1)710]

]

1.05

09

09

085

08

075
(]

1

[
Boosting Loops [(n-1)710]

]

12

Figure 3 (SPECT Data)

[image: image3.jpg]Correct classification with s.d.

Correct classification with s.d.

BOOSTING PERFORMANCE OVER TRAINING DATA
T

09 =
08 = B —
0.7 N -
0.6 L L i L L

0 2 4 6 8 10 12

Boosting Loops [(n-1)*10]
BOOSTING PERFORMANCE OVER TEST DATA

09 T T T
08 T M = 1
o7 i T s =] 1
0.6 il - - - 4
05 =
0.4 L L i L L

0 2 4 6 8 10 12

Boosting Loops [(n-1)*10]

Figure 4 (Banana Data)

[image: image4.jpg]Correct classification with s.d.

Correct classification with s.d.

BOOSTING PERFORMAN
T

CE OVER TRAINING DATA

1.1 T T
1 oo i T =
T et =
09 1 —
= L
0.8 il 8
0.7 Il I I Il Il
0 2 4 6 8 10 12
Boosting Loops [(n-1)*2]
BOOSTING PERFORMANCE OVER TEST DATA
1.1 T T T
1 s i
0.9 P - E
08 "] =
0.7 Il I I Il Il
0 2 4 6 8 10 12

Boosting Loops [(n-1)*2]

Figure 5 (SPECT Data)

[image: image5.jpg]Correct classification with s.d.

Correct classification with s.d.

BOOSTING PERFORMANCE OVER TRAINING DATA

09 T T — T T —
0.8 T o /% .
07 ™ L B —
06 =
05 L L i L L

0 2 4 6 8 10 12

Boosting Loops [(n-1)*2]
BOOSTING PERFORMANCE OVER TEST DATA
1 T T T

08 - A
06 - ,,/I R iy
04 i 1
0.2 7\7 L i L L

0 2 4 6 8 10 12

Boosting Loops [(n-1)*2]

Conclusions

Figure 1 nicely shows how the boost algorithm works in general. Due to the adjusting of the weights, the algorithm quickly “focuses” on areas where most points are misclassified. Since it exists of combined linear classifiers, the most problematic area for the banana data is where both classes are linearly overlapping (in the center of the set).
The next figures show that the boosting algorithm indeed greatly improves the performance of the weak classifiers. In case of the Banana Data the correct classification rises from 80% to almost 100% for the test data, and for the SPECT data from 55% to about 75%.

The reason that the classifier performs much better on the banana set might be that the banana set only has one problematic area, meaning an area were points are misclassified using a linear classifier. As mentioned above this area is in the center of the set. The SPECT Data probably has more of those areas, so that the algorithm can’t really focus on a single one of those. This could also explain the bigger fluctuations we can observer in the performance of the classifier on the SPECT data. They happen when the algorithm focuses on the “wrong” area too much for a certain number of boost iterations.
In both cases the performance over the training set is better of course, since for a large number of boost iterations the algorithm basically focuses on the exact location of the problematic area(s). These location change slightly when we use a different test set so the performance decreases.
PAGE
4

