.. _sec-ImageStretching: Contrast Stretching =================== Consider a scalar (gray value) image $f$ with values $f(\v x)$ that are only in a subset of the possible scalar values (of course dependent on the range of the image). E.g. consider a gray value image $f$ with possible range $R=[0,1]\subset\setR$ but whose values are in the range from $a$ to $b$. .. exec_python:: cst cst :linenumbers: :code: shutter :code_label: Show code for figure :results: hide import numpy as np import matplotlib.pyplot as plt from ipcv.utils.files import ipcv_image_path a = plt.imread(ipcv_image_path('lowcontrast.png')); N=50; bins = np.linspace(0,1,N+1); ha, ea = np.histogram(a.flatten(), bins=bins); b = (a-a.min())/(a.max()-a.min()); hb, eb = np.histogram(b.flatten(), bins=bins); plt.figure(1, figsize=(10,10)); plt.clf(); plt.subplot(221); plt.imshow(a, vmin=0, vmax=1); plt.axis('off'); plt.title("Low contrast orginal"); plt.subplot(223); plt.imshow(b, vmin=0, vmax=1); plt.axis('off'); plt.title("Contrast Stretched"); plt.subplot(222); plt.bar(ea[:-1], 1.0*ha/np.sum(ha), width=ea[1]-ea[0] ); plt.xlim(0,1); plt.title("Histogram of low contrast image"); plt.subplot(224); plt.bar(eb[:-1], 1.0*hb/np.sum(hb), width=eb[1]-eb[0] ); plt.xlim(0,1); plt.title("Histogram of contrast stretched image"); #suppress plt.savefig('source/images/contraststretch.png'); .. figure:: /images/contraststretch.png :align: center :width: 100% **Contrast Stretching.** The point operator: .. math:: g(\v x) = \phi(f(\v x)) with: .. math:: \phi(v) = \frac{v-a}{b-a} results in an image $g$ that uses the entire range of gray values from 0 to 1. Assuming we have overloaded the arithmetical operators to work on images we may write: .. math:: g = \frac{f-f_\text{min}}{f_\text{max}-f_\text{min}} In Python/Numpy we can write: .. code:: python g = (f-f.min())(f.max()-f.min()) Exercises --------- #. Given an 8-bit gray value image $f$, i.e. $f(\v x)\in[0,255]\subset\setZ$, what is the point operator that stretches the contrast of the image to the entire possible range. #. Explain why contrast stretching of a digital image cannot always lead to satisfactory results when the original image was very very dark (or very very light). #. Contrast stretching of color images is not a trivial generalization of what is discussed for scalar images. a. Explain that scalar constrast stretching of the Red, Green and Blue channels (images) independently is not a good idea. #. Let's first change the color model from RGB to HSV. And then stretch the contrast in the V image and use the new V values together with the original H and S values. Implement this contrast stretching algorithm. Why is this contrast stretching method leading to reasonable results?