Chapter 6: Local Structure

Leo Dorst & Rein van den Boomgaard



Convolutional Neural Networks
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(Zeiler & Fergus 2014] use a deconvnet to visualize features by reconstructing the top 9
patterns that cause the highest activations in a given feature map as well as showing the
corresponding image patch.



Correlation

 When doing the facet model of interpolation
we found the need to multiply an image by a
local coefficient schema:
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Correlation

* Such a point-wise multiplication of two
‘images’ is called a correlation.

* Example for an average horizontal derivative,

in the facet model: -1 01
pp==4 —1 0 1
=4 3

* Looks straightforward:
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Correlation and Convolution

 Correlation:
| 1

Gli,j)= Y Y F@+kj+l)W(k,).

k=—11[=-1

 Convolution:
1 1

GG,j)= Y Y F(@-kj-1)W(k,I).

.




Convolution is correlation with
point-mirrored version of coefficients.
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by correlation. by convolution.



Algebraic properties of convolution

. frlag)=a(f*g), a€R
frx(g1+9)=f*g,+f*9,

fr(@*h) =(f*g)xh
frg=9*f

Correlation does not have such nice properties.
That is why everybody prefers the convolution
formulation. Better get used to it.



Convolution (section 6.2)

e All translation-invariant linear operators between
images f and g can be written as a convolution:

(f*xg)(x)=) flx—y)ay)

yvek

« Examples: smoothing, sharpening, translation, n*"
order derivatives, ...

* The basis operation in the very successful CNNs |



Convolution by hand:

* Simple moving average
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* Simple derivative (from facet model)
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Python examples

 https://staff.fnwi.uva.nl/r.vandenboomgaard/
IPCV20162017/LectureNotes/IP/LocalOperato
rs/convolutionExamples.html#convolutionexa
mples
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Derivatives at a spatial scale

e (derivative (blur(f)) = (blurred derivative) f
Dx(Bxf)=(D*B)*f=(B*D)*f



Local Image Structure

Local image structure can be characterized as
e image patches with constant grey value

e image patches showing a straight edge (tran-
sition from dark to bright regions)

e image patches showing corners (strongly
curved edges)
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Learning Local Image Structure

A local image patch (say N pixels) is a
vector in N-dimensional ‘image space’.
A principal component analysis £nds
the basis in image space that best
suits the observed image patches in
the sense that only a few basis vectors
in that new basis for image space are
really important.
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Local Structure Detection in the Brain
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The ‘L’ among all the ‘O’s is
much easier to spot than the
‘D’, but more surprisingly the
time it takes to spot the ‘L’ is
independent of the number of
‘O’s surrounding it.



Measuring Local Structure Detectors in the Brain
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Hubel and Wiesel were the
first to measure the response
of neurons in the visual cortex
to visual input in-vivo [1959].
Their measurements indicate
the human visual system is
‘hard-wired’ to recognize
specific details.

These details show great
resemblance with the local
details as those learned with a
PCA.

The human visual brain thus
has adapted itself to the visual
stimuli that it is likely to see.
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Local Structure Detection from Basic Principles

Prof. J. Koenderink (Utrecht University) showed [1980s] that the local image
details as detected by the human brain also resemble the details that follow
from a mathematical analysis based on basic (symmetry and causality)
principles.

In these lecture series (a simplified version of) the mathematical theory is
bluntly stated without formal derivation from basic principles.



Convolution

All linear translation-invariant operations on
signals/images can be written as a convolution
with a specific kernel:

(f * g)( ZZis—A;—f{;(ﬁ ()

Let us look at that in deta|I (on the board).

Described in section 6.2.2 (and Appendix A).



Local Taylor Series in 1D

fla+z) =~ f(a) + zf'(a) + %.1'2'}””((1)




Gaussian Derivatives at Different Scales and Noise
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Gaussian Derivatives at Different Scales and Noise
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Gaussian Derivatives at Different Scales and Noise

e Scale 5
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Local Taylor Series in 1D

fla+z) =~ f(a) + zf'(a) + %.1'2'}””((1)




Local Taylor Series in 2D
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Figure 6.2: Approximations of an image function through Taylor approximations in local
neighborhoods: zeroth order, first order, second order.
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Figure 6.1: Local Taylor approximations of a neighborhood f: original f, zeroth order

term fp (this has constant gray value), first order term x TV f, second order term x'H £x (those
two are depicted with 0 represented by grey).



Local Taylor Series in 2D

fla+x) =~ f(a) +x"Vf(a) + %XTHf(a)x

where

Is the Hessian matrix.



Gradient

Figure 6.3: Gradient. An image f and its gradient: a vector-valued image of vectors V f (only
a few are indicated). The components of V f on the (z, y)-frame are depicted as the gray-valued
images f. and f,, with gray denoting zero, positive values bright and negative values dark.



Gradient: The Vector of Local Change




Gradient: The Vector of Local Change
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We can/will use
Gaussian
Derivatives to
determine the
required local

. 10" 10 derivatives for

the Taylor series
in a structural
and
computationally
stable manner.




Figure 6.8: Derivatives. The derivatives along the (z, y)-directions, at a scale of 1.



Figure 6.9: Derivatives. The derivatives along the (z, y)-directions, at a scale of 5.
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Figure 6.10: Gradient vector. The gradient vector V f at different resolutions of an image.



Gradient components dependent on coordinate
system; magnitude not!

Scale 1

Scale 5




(Canny) Edge Detection

At the edges, find the
zero crossing of the
second derivative in the
direction of the gradient.
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)
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\ A fw >0 : edge detection

fuww =0 : edge localization




The Gradient Gauge (1): definition

Locally we can write the Taylor expansion as:
fla+v)~ f(a)+v'Vf(a)+ %VTHf(a)v

where



The Gradient Gauge (2): transformation

A vector (. y)T in the ry-coordinate system can
also be expressed in the vw-coordinate system:
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For the gradient vector ( fx fy)T we £nd:

fa 0
() ()
fy (z,y) \/fTQ * jg (v,w)

XTHf}{ = (RTv)THf (R'v) = vTRHfRTV




The Gradient Gauge (3): Hessian re-expressed
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Canny edge detector




Classification of
Local
Neighborhoods

2" order neighborhoods with a gradient
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Figure 6.5: Classification of local neighborhoods.
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Corner detection (1): Isophote Curvature

Image (detail) Isophotes of Image Isophotes in 3D



Corner detection (2): Isophote Curvature

1sophote through a
at a, curvature —f,,/ fu

cut in e,-direction
curvature fu,

Figure 6.4: The local neighborhood and the isophote through its center point.



Corner detection (3): Isophote Curvature
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differentiate to v |
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Corner
Detection

(by isophote
curvature)




The Curvature Gauge (1): motivation

There are interesting points where the gradient vanishes




The Curvature Gauge (2): eigenvectors
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Figure 6.6: The curvature gauge is applied in the ahsence of a gradient.
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Curvature Gauge (3): typical ‘hoods




Curvature Gauge (4): eigenvalues

e The second order derivatives in the pg-coordinate frame can be expressed in
terms of the derivatives in the xy-coordinate frame:

foo = oo+ fuy =1/ (e — Fuu* + 413,
foo = fow+ Foy ) (Fee — Fun)> + 412,

e The values of fp,p and qu determine the type of local image patch (always
assuming that f,, ~ 0).

dark blob: f,, ~ f,q >0

bright blob: f,, ~ f,; <0

dark bar: f,, ~ 0, f,q >0
bright bar: f,, <0, f,,~0
locally constant: f,, ~ f,, =~ 0
saddle point: f,, < 0, f,, >0



Classification of
Local
Neighborhoods

treated by
gradient gauge
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Figure 6.5: Classification of local neighborhoods.




