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Scale-Space
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Scale-Space

We are looking for a family of image operators Ψs such that given the
‘image at zero scale’ f0 we can construct the family of images Ψs f0 such
that:

Ψs is a linear operator,

the operator Ψs is translation invariant,

it is rotational invariant,

the operator is separable by dimension, and

Ψs is invariant under changes of scale.
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Scale-Space

Theorem (Gaussian Scale-Space)

The unique scale-space operator is the
Gaussian convolution:

f (x, s) = (f0 ∗ G s)(x)

where:

G s(x) =
1

2πs2
e−
‖x‖2

2s2

We will often write f s to denote the image

f (·, s).
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Jan Koenderink

Prof. Jan Koenderink from Utrecht
University formulated scale-space
theory in the 1980’s.

The structure of images
JJ Koenderink - Biological
cybernetics, 1984 - Springer
Abstract. In practice the relevant

details of images exist only over a

restricted range of scale. Hence it is

important to study the dependence of

image structure on the level of

resolution. It seems clear enough that

visual perception treats images on

several levels of resolution ... Geciteerd

door 1693
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Causality in Scale-Space

Luminance values (or gray values)
should not be created when
increasing the observation scale. I.e.
a value f (x, s) should be traceable to
a point in the infinitesimal
neighborhood of x at an
infinitesimally smaller scale s − ds.
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Diffusion Equation

From the causality principle we can derive
that the scale-space function f (x, s) should
satisfy the partial differential equation:

∂f

∂s
= α2∇2f

with α an arbitrary function in x and s.
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Diffusion Equation

Tt = ∇2T describes the
temperature distribution as a
function of time.

From the causality principle we can derive
that the scale-space function f (x, s) should
satisfy the partial differential equation:
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Scale-Space

Definition:
f (x, s) = (f0 ∗ G s)(x)

Diffusion equation:
fs = s∇2f

Derivatives: All derivatives satisfy the diffusion equation as well:

(∂...f )s = s∇2(∂...f )
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Sampling Scale-Space

Space is sampled equidistantly:

x = i∆x , y = j∆y

for i = 0, . . . , nx − 1 and
j = 0, . . . , ny − 1.

Scale is sampled logaritmically:

s = αi s0,

for i = 0, . . . , ns − 1. (thus log s is
sampled equidistantly).
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Subsampling

512× 512 256× 256 128× 128 64× 64 32× 32

f0 ∗ G s0 f0 ∗ G 2s0 f0 ∗ G 4s0 f0 ∗ G 80 f0 ∗ G 16s0

Smoothing is essential before subsampling.

After smoothing you may subsample !

Top row: subsampling without smoothing

Bottom row: subsampling with Gaussian smoothing
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Burt Image Pyramid

Smoothing an image decreases the resolution (i.e.
we are unable to resolve the small details in the
image anymore).

Effectively we are removing the high frequencies in
the image.

With enough smooting applied we may subsample
the image to obtain an image with less pixels.

If we take a Gaussian pre-smooting with scale s
somewhere in the range from 0.7 to 1.5 we can
reduce the number of pixels with a factor 2 in both
grid directions.

Computationally this is very attractive . . .

but this way a lot of the interesting characteristics in
scale-space are missed due to the large sampling
intervals in scale.
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Burt Image Pyramid

f s0 f 2s0 f 4s0

f 2s02 f 4s02

f 4s04

∗G s0
√

3 ∗G2s0
√

3

∗G s0
√

3

Subsample Subsample

Subsample
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Scale-Space Pyramid

Replace one stage in the Burt pyramid:

f s0 f 2s0

f 2s02

G s0
√
3

Subsample

with one octave in the scale-space pyramid:

f s0 f αs0 f α
2s0 f α

3s0 = f 2s0

f 2s02

∗G s0
√

α2−1 ∗G s0α
√

α2−1 ∗G s0α
2
√

α2−1

Subsample

where α = 2(1/K) and K = 3.
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Scale-Space Pyramids

Consider a scale-space sampled with s = αi s0 where α = 21/K .

At level i = K the smoothing scale is 2s0.

The image at level K may thus be subsampled with a factor 2 in the
spatial domain.

In the second octave we need exactly the same Gaussian filters to

obtain f α
4s0

2 , f α
5s0

2 and f α
6s0

2 = f 4so , i.e.

f α
4s0

2 = f 2s02 ∗ G s0
√
α2−1

etc.
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Derivatives in Scale-Space

Scale-space: f s = f0 ∗ G s .

Scale-space of derivative g0 = ∂f0 (any
spatial derivative): g s = g0 ∗ G s .

Differentiating and smoothing are both
linear operators and so:

g s = ∂f s

for any scale.

i.e. first differentiating and then smoothing
is the same as first smoothing and then
differentiating.
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Derivatives in scale-space
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Response of first order derivative Gaussian
convolution to a step edge. On top f sx and
on the bottom sf sx .

With larger scale the
response of the Gaussian
first order derivative
decreases.

Plotting sf sx shows that a
first order derivative
should be multiplied with
s to be constant over
scale.

When comparing local
structure (expressed in
Gaussian Derivatives)
across scales, it is
important to use scale
normalized derivatives.
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Scale Normalized Derivatives

When comparing local structure (expressed in Gaussian derivatives) across
all scale levels it is important to use scale normalized derivatives.

Theorem (Scale Normalized Derivatives)

Let ∂n denote any n-th order spatial derivative then the scale normalized
derivative is

sn∂n
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Edges in Scale-Space
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On the left the original image.
The center of the circles is at x0.

The middle image is the
Gaussian blur at scale 2.77, the
right image is at scale 21.35.

The bottom line in the graph is
the response f sw (x0) as a
function of the scale s. The top
line is sf sw (x0) plotted as a
function of s.

The two peaks in the top graph
correspond with the circles
drawn in the images.
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Blobs in Scale-Space

Consider a Gaussian shaped blob,
light on dark background:

f0(x) = Gb(x− x0)

The scale normalized Laplacian
operator:

`(x, s) = s2(f0 ∗ ∇2G s)(x)

has an extremum at s = b and
x = x0.
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Blobs in Scale-Space
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Blobs in Scale-Space
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Subpixel Accurate Blob Localization

Blob detection in scale space:

extrema of `(x, s) = s2(∇2f s)(x)

write X =
(
x y s

)
T, then L(X) = `(x, s)

nescessary condition for extremum: ∇L = 0

Taylor series of L:

L(X0 + X) = L(X0) + XT(∇L)(X0) + 1
2X

THL(X0)X

∇L = 0 then gives as subpixel accurate estimate of the extremum:

X0 − H−1L (X0)(∇L)(X0)
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