Control Systems =============== Feedback Control System ----------------------- Consider a system where we heat the water in a tank. We set a temperature, say 70 degrees. We compare the set temperature (set value) with the actual temperature (the process value). The error is used to control the heater. In case the set value minus the process value is positive we need to heat the water, in case the difference (error) is negative we should cool the water. In a process diagram this leads to a block diagram like: .. tikz:: A Heated Water Tank \bXInput{A} \bXComp[4]{B}{A} \bXLink[\$q_\text{set}\$]{A}{B} \bXBloc[4]{C}{Controller}{B} \bXLink[\$\Delta q\$]{B}{C} \bXBloc{D}{Tank}{C} \bXLink[]{C}{D} \bXBloc{E}{Temp. Sensor}{D} \bXLink[]{D}{E} \bXOutput[4]{F}{E} \bXLink[\$q\$]{E}{F} \bXReturn{E-F}{B}{} We assume that all blocks in such a scheme represent linear time invariant systems. In that case each system can be represented with its transfer function $H_i(s)$. Representing all blocks in the $s$ domain we get: .. tikz:: A Heated Water Tank (s-domain) \bXInput{A} \bXComp[4]{B}{A} \bXLink[\$Q_\text{set}(s)\$]{A}{B} \bXBloc[4]{C}{\$H_{\text{C}\$}(s)}{B} \bXLink[\$\Delta q\$]{B}{C} \bXBloc{D}{\$H_{\text{T}(s)\$}{C} \bXLink[]{C}{D} \bXBloc{E}{\$H_{\text{S}}(s)\${D} \bXLink[]{D}{E} \bXOutput[4]{F}{E} \bXLink[\$Q\$]{E}{F} \bXReturn{E-F}{B}{} Stability --------- Root Locus Analysis ------------------- PID Controller --------------