Derivatives and Integrals ========================= Assume the Laplace transform of $x(t)$ is $X(s)$. Then the Laplace transform of the derivative $x'(t)$ equals: .. math:: \int_{0}^{\infty} x'(t) e^{-st} dt = \left[ x(t)e^{-st} \right]_{0}^{\infty} + s \int_{-\infty}^{\infty} x(t) e^{-st} dt = -x(0) + s X(s) Assuming $x(0)=0$ we get the transform pair: .. math:: x'(t) \ltarrow s X(s) It is easy to prove (see :ref:`easytoprove`) that in general: .. math:: x^{(n)}(t) \ltarrow s^n X(s) where $x^{(n)}(t)$ is the $n$-th order derivative of $x(t)$. In this case it must be true that $x(0)=x'(0)=\cdots=x^{(n-1)}(0)=0$. We define the signal $y(t)$ as: .. math:: y(t) = \int_0^{t} x(u) du then we have: .. math:: Y(s) = \int_0^{\infty} y(t) e^{-st} dt = \int_0^\infty \left(\int_0^t x(u) du \right) e^{-st} dt = \frac{1}{s} X(s) In general we have: .. math:: \int_0^t x(u)du \ltarrow \frac{1}{s} X(s)