The pulse, step and exponential function ---------------------------------------- The Laplace transform of the pulse function $\delta(t)$ is: .. math:: X(s) = \int_{0}^{\infty} \delta(t) e^{-st} dt = 1 The Laplace transform of the step function $u(t)$ is: .. math:: X(s) = \int_{0}^{\infty} u(t) e^{-st} dt = \int_{0}^{\infty} e^{-st}dt = \left[ -\frac{1}{s} e^{-st}\right]_0^{\infty} =-\frac{1}{s} \left(0-1\right) = \frac{1}{s} Consider the exponential function .. math:: x(t) = A e^{a t} this function has Laplace transform: .. math:: X(s) = \frac{A}{s+a} Summarizing we have: .. math:: \delta(t) &\ltarrow 1 \\ u(t) &\ltarrow \frac{1}{s} \\ A e^{at} &\ltarrow \frac{A}{s+a} Observe that the pulse is the derivative of the step function and the Laplace transform of the pulse is $s$ times the Laplace transform of the step function. This relation between the \Lt s of a function and its derivative is valid in general.