Pulse and Shift =============== $\newcommand{\op}[1]{\mathsf #1}$ $\newcommand{\ztarrow}{\stackrel{\op Z}{\longrightarrow}}$ Let's start with a simple signal $x[n]=\delta[n]$. Then we have: .. math:: X(z) &= \sum_{n=-\infty}^{\infty} x[n] z^{-n} \\ &= \sum_{n=-\infty}^{\infty} \delta[n] z^{-n} \\ &= z^0 = 1 The last step uses the sifting property of the delta pulse. A pulse in the time domain corresponds with a constant value 1 in the Z-domain: .. math:: \delta[n]\ztarrow 1 In case we take a shifted pulse $\delta[n-n_0]$ we get: .. math:: X(z) = \sum_{n=\infty}^{\infty} x[n] z^{-n} = \sum_{n=\infty}^{\infty} \delta[n-n_0] z^{-n} = z^{-n_0} i.e.: .. math:: \delta[n-n_o]\ztarrow z^{-n_0} Shifting over $n_0$ in the time domain thus corresponds with multiplication with $z^{-n_0}$ in the Z-domain. We have seen that in the above equation for the pulse but we can prove it for any signal $x[n]$. Consider the shifted signal $x[n-n_0]$, then by definition the Z-transform of the shifted signal is: .. math:: \sum_{n=\infty}^{\infty} x[n-n_0] z^{-n} changing from variable $m=n-n_0$ we get .. math:: \sum_{m=\infty}^{\infty} x[m] z^{-(m+n_0)} = z^{-n_0} \sum_{m=\infty}^{\infty} x[m] z^{-m)} = z^{-n_0} X(z) where $X(z)$ is the Z-transform of the original signal $x[n]$. Summarizing, given the \Zt{} pair: .. math:: x[n]\stackrel{\op Z}{\longrightarrow}X(z) we have that: .. math:: x[n-n_0]\stackrel{\op Z}{\longrightarrow}z^{-n_0}X(z)