Exercises ========= #. **Continous Time Convolution** On http://pages.jh.edu/~signals/convolve/index.html you can find a Java applet that might help you understand the convolution of continous time signals. #. **Continous Time Convolution** Consider the function: .. math:: p_1(t) = \begin{cases} 1 &:-1 \leq t \leq 1\\ 0 &: \mbox{elsewhere} \end{cases} #. Calculate the convolution $p_1 \ast p_1$. (Hint: this can be done 'graphically'). #. Calculate $p_1 \ast p_1 \ast p_1$. #. Let $x(t)=\sin(t)$. Calculate $x \ast p_1$. #. **Discrete Convolution** Show that any *discrete time* linear time invariant system is completely characterized by its impulse response $h[n]$ and that the system response $y[n]$ on input $x[n]$ is given by: .. math:: y[n] &= x[n] \ast h[n] \\ &= \sum_{k=-\infty}^{\infty} x[k]\, h[n - k] #. **Discrete Convolution** Consider a part from a discrete signal $x[n]$: .. math:: \matrix{\cdots& 0& 0& 0& 1& 2& 1& 3& 2& 3& 1& 2& \underline{3}& 8& 7& 8& 9& 9& 7& 8& 8& 8& \cdots} The underlined value indicates the origin (i.e. $x[0]$). Calculate the convolution $x[n]\ast h[n]$ with: #. $h[n] = \matrix{1& \underline{1}& 1}$ #. $h[n] = \matrix{\underline{1}& 1& 1}$ #. $h[n] = \matrix{\underline{0}& 0& 1}$ #. $h[n] = \matrix{1& \underline{0}& -1}$ In all above functions $h$ the origin is indicated with the underlining and we have used the convention that all values in the (in principle) infinite function (from $-\infty$ to $+\infty$) that are not given are equal to zero. #. **Eulers Formula** #. Prove that: .. math:: \sin(\phi) = \frac{e^{j\phi}-e^{-j\phi}}{2j} #. Prove that: .. math:: \cos(\phi) = \frac{e^{j\phi}+e^{-j\phi}}{2} #. **Eigenfunctions** #. What is the response of an LTI system given an input $x(t)=\sin(\omega t)$? #. What is the response of an LTI system given an input $x(t)=\cos(\omega t)$?