Eigenfunctions ============== A remarkable fact of linear systems is that the complex exponentials are *eigenfunctions* of a linear system. I.e. if we take a complex exponential $x(t)=\exp(j\omega t)$ as input, the output is a complex exponential, *with the same frequency* as the input but multiplied with a complex constant (dependent on the frequency). .. tikz:: Complex Exponentials are the Eigenfunctions of a CT LTI Linear System \bXInput{A} \bXBloc[6]{B}{$h(t)$}{A} \bXLink[\$e^{-j\omega t}\$]{A}{B} \bXOutput[12]{C}{B} \bXLink[\$y(t)=H(\omega) e^{-j\omega t}\$]{B}{C} Consider the system with impulse response $h$ then the output is given by: .. math:: y(t) = \int_{-\infty}^{\infty} e^{j\omega(t-u)} h(u) du We can simplify this as .. math:: y(t) = e^{j \omega t} \int_{-\infty}^{\infty} e^{-j\omega u} h(u) du Observe that the integral only depends on $\omega$ and we denote it as $H(\omega)$, then: .. math:: y(t) = e^{j \omega t} H(\omega) i.e. in case the input of a linear system is a sinusoidal signal (complex exponential) the output is the exponential function (sinusoidal function *with the same frequency*) multiplied with a complex factor $H(\omega)$ that is completely characterized by the linear system (its impulse response). The function $H$ .. math:: H(\omega) = \int_{-\infty}^{\infty} e^{-j\omega u} h(u) du is called the Fourier transform of $h$. The Fourier transform will play a major role in this lecture series.