Signal Transformations ====================== $\newcommand{\setR}{\mathbb R}$ $\newcommand{\setC}{\mathbb C}$ We discuss the basis signal transformations. You have learned these in highschool. We start with CT signals. Vertical Translation Let $x$ be a signal, then translating it upwards over vertical distance $h>0$ gives the signal $y$: .. list-table:: **Vertical Translation** :header-rows: 1 :class: tablefullwidth * - CT - DT * - :math:`y(t)=x(t)+h` - :math:`y[n]=x[n]+h` Vertical Scaling Let $x$ be a signal, then vertical scaling with factor $a$ gives the signal $y$:` .. list-table:: **Vertical Scaling** :header-rows: 1 :class: tablefullwidth * - CT - DT * - :math:`y(t)=a\,x(t)` - :math:`y[n]=a\,x[n]` Horizontal Translation Translating (shifting) signal $x$ to the right gives the signal $y$: .. list-table:: **Horizontal Translation** :header-rows: 1 :class: tablefullwidth * - CT - DT * - :math:`y(t)=x(t-u)` - :math:`y[n]=x[n-m]` In CT the translation is over $u\in\setR$ whereas in DT the translation is over $m\in\setZ$. Horizontal Scaling Horizontal scaling of signal CT signal with factor $b$ is easily defined. For a DT signal a generic definition is not feasible. .. list-table:: **Horizontal Scaling** :header-rows: 1 :class: tablefullwidth * - CT - DT * - :math:`y(t)=x(\frac{t}{b})` - no unique definition