=========== Exercises =========== #. **Sampling.** Consider a *real valued* and *even* function $x(t)$ with a Fourier spectrum $|X(\w)|$ as sketched below. .. exec_python:: harmonics CTP :linenumbers: :code: shutter :Code_label: Show code for figure :results: hide import numpy as np import matplotlib.pyplot as plt plt.clf() w0 = 2 w = np.linspace(0, 6, 100) X = np.maximum(0, 1-w/w0) plt.gcf().set_size_inches(5, 4) plt.plot(w, X) plt.xticks([0, 1, 2, 3, 4], [r'$0$', r'$\omega_0/2$', r'$\omega_0$', r'$3\omega_0/2$', r'$2\omega_0$']) plt.xlabel(r'$\omega$') plt.ylabel(r'$|X(\omega)|$') plt.savefig('source/figures/Xexample_sampling.png') .. figure:: /figures/Xexample_sampling.png :align: center a. Why is it that $X(\w)$ is even and real valued? #. Sketch $X(\w)$ for $-4\w_0\leq\w\leq 4\w_0$. Let $X_s$ be the spectrum of the 'sampled' signal $x_s$: .. math:: x_s(t) = x(t) p_{\Delta t}(t) where $p_{\Delta t}$ is the (infinite length) pulse train with period $\Delta t$ corresponding with the chosen sample frequency. c. Sketch $X_s$ for sampling frequency $\w_s=2\w_0$. #. Sketch $X_s$ for sampling frequency $\w_s=3\w_0/2$.