============================================= Pairs of the (Unilateral) Laplace Transform ============================================= .. list-table:: **Laplace Transform Properties** :header-rows: 1 :class: tablefullwidth * - Function - Time Domain - $s$-Domain - ROC * - Unit pulse - $\delta(t)$ - $1$ - $\mathbb C$ * - Delayed pulse - $\delta(t-\tau)$ - $e^{-\tau s}$ - $Re(s)>0$ * - Unit step - $u(t)$ - $\frac{1}{s}$ - $Re(s)>0$ * - Ramp - $t u(t)$ - $\frac{1}{s^2}$ - $Re(s)>0$ * - Exponential decay - $e^{-\alpha t} u(t)$ - $\frac{1}{s+\alpha}$ - $Re(s)>-\alpha$ * - Sine - $\sin(\omega t) u(t)$ - $\frac{\omega}{s^2+\omega^2}$ - $Re(s)>0$ * - Cosine - $\cos(\omega t) u(t)$ - $\frac{s}{s^2+\omega^2}$ - $Re(s)>0$ * - Exponentially Decaying Sine - $e^{-at}\sin(\omega t) u(t)$ - $\frac{\omega}{(s+a)^2+\omega^2}$ - $Re(s)>0$ * - Exponentially Decaying Cosine - $e^{-at}\cos(\omega t) u(t)$ - $\frac{s+a}{(s+a)^2+\omega^2}$ - $Re(s)>0$ .. rubric:: Unit Pulse The Laplace transform of the pulse function $\delta(t)$ is: .. math:: X(s) = \int_{0}^{\infty} \delta(t) e^{-st} dt = 1 .. rubric:: Unit Step Function The Laplace transform of the step function $u(t)$ is: .. math:: X(s) = \int_{0}^{\infty} u(t) e^{-st} dt = \int_{0}^{\infty} e^{-st}dt = \left[ -\frac{1}{s} e^{-st}\right]_0^{\infty} =-\frac{1}{s} \left(0-1\right) = \frac{1}{s} Note that for the limit for $t\rightarrow\infty$ to exist we must have that $\Re(s)>0$. .. rubric:: Exponential Decay Consider the exponential decay function .. math:: \LT\left\{ e^{-at} u(t) \right\} &= \int_0^\infty e^{-at}e^{-st}dt\\ &= \int_0^\infty e^{-(s+a)t}dt\\ &= \frac{-1}{s+a}\left[ e^{-(s+a)t} \right]_0^\infty\\ &= \frac{-1}{s+a}\left( 0 - 1\right)\\ &= \frac{1}{s+a} The limit of $e^{-(s+a)t}$ for $t\rightarrow\infty$ only converges to zero in case $\Re(s+a)>0$, i.e. $\Re(s)>-\Re(a)$. Note that we have *not* assumed that $a\in\setR$. This allows us to use this result to tackle the sin and cosine functions. .. rubric:: Sine Function .. math:: \LT\left\{ \sin(\w t) u(t) \right\} &= \LT\left\{ \frac{e^{j\w t}-e^{-j\w t}}{2j} \right\}\\ &= \frac{1}{2j}\left( \LT\left\{e^{j\w t}\right\} - \LT\left\{e^{-j\w t}\right\}\right)\\ &= \frac{1}{2j}\left( \frac{1}{s+j\w} - \frac{1}{s-j\w} \right)\\ &= \frac{1}{2j}\left( \frac{2j\w}{s^2+\w^2} \right)\\ &= \frac{\w}{s^2+\w^2} .. rubric:: Exponentially Decaying Cosine