============================ $\ZT$-Transform Properties ============================ .. list-table:: :widths: 10 10 :header-rows: 1 :class: tablefullwidth * - Time Domain - Z-domain * - Synthesis (Inverse Z=Transform) .. math:: x[n] = \frac{1}{2\pi j}\oint_C X(z)z^{n-1}dz - Analysis (Z-Transform) .. math:: X(z) = \sum_{n=-\infty}^{\infty} x[n] z^{-n} * - Complex Conjugate .. math:: x[n]^\ast - .. math:: X^\ast(z^\ast) * - Real Signal .. math:: x[n]\in\setR - .. math:: X(z^\star) = X^\star(z) * - Time Shift .. math:: x[n-n_0] - 'Phase' factor .. math:: z^{-n_0} X(z) * - Time difference .. math:: x[n] - x[n-1] - .. math:: (1-z^{-1}) X(z) * - Convolution .. math:: x[n] \ast y[n] - Multiplication .. math:: X(z) Y(z) The properties in the above table are easy to prove. Some proofs are given below. .. rubric:: Complex Conjugate Let calculate the Z-transform of $x[n]^\ast$: .. math:: \sum_{n=-\infty}^{\infty} x[n]^\ast z^{-n} &= \sum_{n=-\infty}^{\infty} \left(x[n] (z^{-n})^\ast \right)^\ast \\ &= \left(\sum_{n=-\infty}^{\infty} x[n] (z^{-n})^\ast \right)^\ast \\ &= \left(\sum_{n=-\infty}^{\infty} x[n] (z^\ast)^{-1} \right)^\ast \\ &= \left( X(z^\ast) \right)^\ast = X^\ast(z^\ast) .. rubric:: Time Shift The Z-transform of $x[n-n_0]$ is given by .. math:: \sum_{m=-\infty}^{\infty} x[n-n_0] z^{-n} &= \sum_{k=-\infty}^{\infty} x[k] z^{-(k+n_0)}\\ &= \sum_{k=-\infty}^{\infty} x[k] z^{-k} z^{-n_0}\\ &= z^{-n_0} \sum_{k=-\infty}^{\infty} x[k] z^{-k}\\ &= z^{-n_0} X(z) .. rubric:: Convolution Property The definition of the convolution is: .. math:: x[n] \ast y[n] = \sum_{m=-\infty}^{\infty} x[n-m] y[m] Its Z-transform is: .. math:: \sum_{n=-\infty}^{\infty} \left(x[n]\ast y[n]\right)z^{-n} &= \sum_{n=-\infty}^{\infty} \left(\sum_{m=-\infty}^{\infty} x[n-m] y[m]\right) z^{-n}\\ &= \sum_{m=-\infty}^{\infty} y[m] \sum_{n=-\infty}^{\infty} x[n-m] z^{-n}\\ In the last summation we recognize the Z-transform of the shifted signal $x$ so: .. math:: \sum_{n=-\infty}^{\infty} \left(x[n]\ast y[n]\right)z^{-n} &= \sum_{m=-\infty}^{\infty} y[m] z^{-m} X(z)\\ &= X(z) Y(z) Summarizing: .. math:: x[n]\ast y[n] \ZTright X(z) Y(z)