Eigenfunctions ============== A remarkable fact of linear systems is that the complex exponentials are *eigenfunctions* of a linear system. I.e. if we take a complex exponential $x(t)=\exp(j\omega t)$ as input, the output is a complex exponential, *with the same frequency* as the input but multiplied with a complex constant (dependent on the frequency). .. tikz:: Complex Exponentials are the Eigenfunctions of a CT LTI Linear System \bXInput{A} \bXBloc[6]{B}{$h(t)$}{A} \bXLink[$e^{j\omega t}$]{A}{B} \bXOutput[12]{C}{B} \bXLink[$y(t)=H(\omega) e^{j\omega t}$]{B}{C} Consider the system with impulse response $h$ then the output is given by: .. math:: y(t) = \int_{-\infty}^{\infty} e^{j\omega(t-u)} h(u) du We can simplify this as .. math:: y(t) = e^{j \omega t} \int_{-\infty}^{\infty} e^{-j\omega u} h(u) du Observe that the integral only depends on $\omega$ and we denote it as $H(\omega)$, then: .. math:: y(t) = e^{j \omega t} H(\omega) i.e. in case the input of a linear system is a sinusoidal signal (complex exponential) the output is the exponential function (sinusoidal function *with the same frequency*) multiplied with a complex factor $H(\omega)$ that is completely characterized by the linear system (its impulse response). The function $H$ .. math:: :label: eq_FT H(\omega) = \int_{-\infty}^{\infty} e^{-j\omega u} h(u) du is called the Fourier transform of $h$. The Fourier transform will play a major role in this lecture series. Let's redo this analysis for a real valued function: $x(t)=\cos(\w t)$. We know that .. math:: x(t) = \cos(\w t) = \half (e^{j\w t} + e^{-j\w t}) Because we are considering a linear system we have: .. math:: y(t) &= (\op Lx)(t) = \half( \op L(e^{j\w t}) + \op L(e^{-j\w t}) )\\ &= \half\left( H(\w)e^{j\w t} + H(-\w) e^{-j\w t} \right) Note that from the definition of the Fourier transform (Eq. :eq:`eq_FT`)we can see that if $h$ is real valued function (which in practice it always is) that $H(-\w) = H^\star(\w)$. Writing $H(\w)$ in polar notation: .. math:: H(\w) &= |H(\w)| e^{j\angle H(\w)}\\ H(-\w) &= H^\star(\w) = |H(\w)| e^{-j\angle H(\w)} So .. math:: y(t) &= \half |H(\w)| \left( e^{j(\w t+\angle H(\w)} + e^{-j(\w t +\angle H(\w)} \right)\\ &= |H(\w)| \cos( \w t + \angle H(\w)) So for a linear system with impulse response $h$ we have .. math:: x(t) = e^{j\w t} \quad\xrightarrow{\quad L\quad}\quad y(t) = H(\w) e^{j\w t} and .. math:: x(t) = \cos(\w t) \quad\xrightarrow{\quad L\quad}\quad y(t) = |H(w)| \cos( \w t + \angle H(\w)) Evidently the use of complex exponential functions allows for a much more convenient (and short) notation. Complex numbers are really indispensible in signal processing theory.