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1 Introduction



2 Linear Scale-Space Theory

Scale-dependent observations. All physical measurements are done with
a ‘probe’ of finite spatial-temporal size. If no a priori preference for a
specific scale can be made the obvious choice is to look at all scales: a
scale-space. Scale dependent observations are thus turned in an oper-
ational device (both by human vision and computer vision).

The local structure of images. The collection of all spatial image deriva-
tives up to order N (known as the N-jet) provides a local characteriza-
tion of the image ‘landscape’. Differential geometry is the mathemat-
ical tool that leads to invariant descriptors of local image structure.

Causality in scale-space. Causality in scale-space is determined by the
diffusion equation describing in what way a small change of observation
scale may influence the observed value.



2.1 Scale dependent observations

A linear density probe is best modeled with a Gaussian convolution:
L(z,s) = (Lo*xG®)(x)
— [ Lole - )G )y
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The Gaussian probe defines the physical notion of a point.



2.2 The local structure of images

Locally an image is characterized with its Taylor expansion. The second
order Taylor expansion around the point x is:

1
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where VL is the gradient of the image function:
(0xL)(z, s) > ( L,(x,s) )
VL)(z,s) = =
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and H7j, is the Hessian matrix:

(Hp)(z,s) = < (OwyL)(,5) (OyyL)(z,s)



Notation We will often write:
VI - ( La >
Ly

o Lxx ny
H; = I I .
zy  Lyy
This is ‘overloading’ of notational conventions as we construct a ‘vector’

of images and a ‘matrix‘ of images. This notation should be read as the
gradient vector in every location and as the Hessian matrix in every location

and

respectively.
With this short hand notation we can write the 2nd order Taylor expan-
sion of the image L as:

1
L(z+vy,s) =L+ 2 VL + §:CTHLJU

with the convention that on the right hand side the image (and its deriva-
tives) are evaluated at the location y at scale s.



2-Jet The image derivatives up to order 2 are collectively known as the
2-jet:
L
L, L,

The individual components of the 2-Jet have no geometrical meaning, just
like the elements of a vector do not have a meaning. It is the collection that
does have a geometrical meaning.

In sect:gauges we introduce the gauge coordinates that do have a geo-
metrical meaning.



2.3 Gaussian Derivatives

In computational vision we replace the mathematical derivatives by fuzzy
derivatives or Gaussian Derivatives':

0L — O°L = O(L * G®) = L % 0G®

Local image observations are therefore always done at a finite scale to be
selected by the observer (programmer).
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Figure 1: Gaussian Derivative Kernels. From top-to-bottom, left-to-
right: G°, G3, Gy, G5, G3,, and Gy,
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1A notable exception is when we construct numerical schemes to solve partial differ-
ential image equations; like the non-linear diffusion equations that are the subject of this
report



2.4 Gauge coordinates

e The classical Euclidean image coordinate frame is an arbitrary conve-

nient choice without much (local) relevance?.

e Attaching the coordinate frame to the local image structure makes the
coordinate frame independent of arbitrary Euclidean transformations
(rotations, scalings and translations).

e The most important gauge coordinate systems are:
Gradient gauge (v, w). One of the coordinate axes (w) is aligned

with the image gradient vector.

Curvature gauge (p,q). The coordinate axes are aligned are aligned
with the direction of minimal and maximal directional second
order derivative.

20n a global scale the classical choice is important as the notion of up/down,
above/below has a special relevance in the analysis of most of the images made of the
3D world.



2.5 Gradient Gauge

Within the gradient gauge coordinate system (v, w) several important local
geometrical image properties are easily described:

Edge strength L,,. The derivative in the direction of the gradient is al-
ways positive and is an indicator of the edge strength.

Edge location L, ~ 0. Where the gradient strength is maximal (in the
gradient direction) the edge can be localized.

Isophote curvature x o« —L,,. The isophote curvature is high in the vicin-
ity of sharp corners.
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2.6 Edge Detection

The Marr edge detector and the Canny edge detector are perhaps the most
famous examples of edge detectors that nicely fit within the local geometrical
image model (in the gradient gauge description).

Marr edge detector. The zero crossings in the image Laplacian V2L =
Lyy+Lyy = Lyy+ Ly, are taken as edge indicators. This is a straight-
forward generalization of where in the 1D case we have maximal edge
strength.

Canny edge detector. This edge detector differs from the Marr detector
in that it looks for the zero crossings in the second order derivative in
the direction of the gradient L, = 0.

Note that the Canny and Marr detectors are equivalent in cases where the
isophote curvature is low (then Ly, 4+ Lyw = Lyw)-
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2.7 Curvature Gauge

The curvature gauge is important in those cases where the gradient vec-
tor vanishes (and thus where the gradient gauge is ill defined). E.g. the
midpoints of line like structures in images.

The eigenvectors of the Hessian matrix Hy, then provide a powerful way

of defining a gauge system.
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3 Causality in Scale-Space
The solution of the diffusion equation:
oL =V>L
with initial condition L(x,0) = Lg is given by:
Liz,t) = (Lo* G¥¥)(a),

where G* is the Gaussian function® at scale s:

S 1 - 2
G(.’L'):me 284,

This is the classical linear scale-space ‘generated’ by the Gaussian convolu-
tion.

3d is the dimension of the space
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Koenderink’s Causality Criterium. Luminance values should not be
created when increasing the observation scale, i.e. a value Ly = L(z,t)
should be traceable to a location in the infinitesimal neighborhood of x at
infinitesimally smaller scale.
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Figure 2: Causality in scale-space. Three isophotes is scale-space are
drawn. The left isophote corresponds with a non causal trace in scale-space,
whereas the other two isophotes are causal.
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Critical points. In the neighborhood of a critical point (xg,tg) (where
the scale-space isophote is ‘horizontal’ (see Fig. ??)the isophote is a Monge
patch that can be encoded with a function ¢t = T'(x). For the isophote we
thus have:

L(z,T(x)) = constant. (1)

For a critical point we have T"(xo) = 0. For such a point to be causal we
must have that 7" (xo) < 0, i.e. the isophote must lie (partly) below the
tangent plane.
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The diffusion equation. In order to find a relation for 7" we differentiate
both sides of Eq. 1 twice with respect to x. This results in:

Lyg + 2Ly T + Ly (T')? + LT" = 0,

where we have omitted the arguments of the functions. In a critical point
xg we have: T'(zp) = 0. This leads to:

Lyz + LiT" =0

or equivalently:
LQ}I‘
-,

Causality requires that in a critical point 7" < 0, thus

T// —

Ly = a’Ly,.

The simplest choice is the constant function e = 1 leading to the requirement
that Ly = L., in all critical points in scale-space. Evidently in case we
require Ly = L, for all points in scale-space, the causality requirement is
obviously met with. Finally we thus arrive at:

Lt = Lx:):

the classical linear diffusion equation.
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The diffusion equation. The analysis generalized quite easily to higher
dimensional spaces. Then we can show that causality is guaranteed in case:

L, =V2L

where V2 is the Laplacian operator.
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Remarks. The ’proof’ of the Gaussian linear scale-space as the unique
construction of a causal scale-space is misleading. Implicitly we have as-
sumed that the isophotes in scale-space are smooth differentiable surfaces.
Causality does not require them to be differentiable.

It can be shown that even a morphological operator (erosions and dila-
tions using a parabolic kernel) results in a causal scale-space.
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4 Numerical Solutions I
We can smooth (diffuse) an image by solving the PDE:
Ly =V*L
with initial condition L(z,0) = Lg. For infinitesimal dt we can write:
L(z,t 4 dt) = L(z,t) + dt(V2L)(z, t).
For a sampled image Lg,j = L(iAx, jAy,t) we have:
L% = Li 4+ dt(V2L); (2)

where now (VQL)'Z?J- is a discrete approximation of the Laplacian given the
sampled image L} ;.
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Stability and Accuracy. Eq. 2 can be used to generate the scale-space
starting with the initial image Ly and successively adding the discrete Lapla-
cian.

The stepsize dt should be chosen quite small:

Stability. Too large a stepsize results in complete nonsense (even numerical
instability),

Accuracy. Too large a stepsize (but still leading to a stable solution) may
lead to inaccurate solutions. I.e. a poor discrete approximation of the
image L at scale ¢.
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Example. The simplest numerical discretization of the Laplacian operator

1s:
1

1 -4 1
1

(where we give the convolution kernel of a linear translation invariant oper-
ator).
Adding dt times the Laplacian to the image results in the following linear

operator:
dt

dt 1—4dt dt
dt

Note that for dt > 0.25 the central weight in the above kernel becomes
negative. This leads to an unstable solution scheme. It is beyond the scope of
this report to show that indeed dt < 0.25 leads to stable numerical schemes.
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Example (Stability).

Original Image dt=0.23

Figure 3: Numerical stability. On the left the original image, in the
middle the linear diffusion equation numerically solved with dt = 0.23 and
on the right dt = 0.26.

So indeed a ‘stable’ stepsize should be chosen, but what about accu-
racy. . .
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Example (Accuracy).

Figure 4: Numerical accuracy. The (log) mean square error is plotted
as a function of the stepsize. We let the diffusion run until ‘time’ ¢ ~ 5 for
different stepsizes. The correct final image can be calculated using a simple
Gaussian convolution. This allows us to compare the numerical result with
the true result.
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5 The Physics of Diffusion

The notion of diffusion comes from physics. Diffusion is the physical process
where heat (mass) redistributes itself in a medium as a consequence of heat
(mass) concentration differences.

As an example consider a totally isolated thin metal plate with an uneven
temperature distribution at time ¢ = 0. If at time ¢ = 0 no more heat is
added to the plate (and we assume there is no heat loss to the air) then the
heat will redistribute itself until there are no temperature differences.

There are two physical principles involved:

Heat flow. Due to concentration differences heat flows in the opposite di-
rection of the concentration gradient.

Conservation law. If no heat is added from outside the system and no
heat can flow to outside of the system the total amount of heat is
preserved.
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5.1 Heat flow

Heat flows in the direction where the heat is locally minimal, i.e. it flows in
the opposite direction of the temperature gradient:

j=-DVL

(we take L to be the temperature distribution, as a function of position and
time).

In general D is a tensor. The flow need not be parallel to the gradient.
Material properties (in which the heat is flowing) may direct the flow along
preferential directions (think of laminated materials). The tensor D may
also depend on the spatial position.

The diffusion tensor D can orient the flow along such preferential direc-
tions.
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5.2 Conservation law

Consider an infinitesimal small surface element dS in the space where the
heat is flowing. Let dS = dAn where dA is the area of the surface element

and n the surface normal.
The heat flowing through this surface element per unit time interval is:

Jgg =7-dS = (j-n)dA

Now consider a closed surface A around point x (say a sphere), then
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6 Scalar Diffusion
The generic diffusion equation:
oL =V -(DVL)

is simplified by selecting D = ¢l where the conductivity c is a scalar possibly
spatially varying.
The basic idea is:

select a large conductivity in image areas where we want a lot
of smoothing and a small conductivity where we don’t want
smoothing (e.g. near edges).
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7 Numerical Schemes 11
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8 Tensor Diffusion
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8.1 Edge Enhancing Diffusion

30



8.2 Coherence Enhancing Diffusion
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9 Numerical Schemes I11
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10 Generalizations & Improvements
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