Problems 4

1. Show that the requirement that $\nabla_{\mu} V^{\nu}$ is a tensor implies the transformation rule

$$
\begin{equation*}
\Gamma_{\mu^{\prime} \lambda^{\prime}}^{\nu^{\prime}}=\frac{\partial x^{\mu}}{\partial x^{\mu^{\prime}}} \frac{\partial x^{\lambda}}{\partial x^{\lambda^{\prime}}} \frac{\partial x^{\nu^{\prime}}}{\partial x^{\nu}} \Gamma_{\mu \lambda}^{\nu}-\frac{\partial x^{\mu}}{\partial x^{\mu^{\prime}}} \frac{\partial x^{\lambda}}{\partial x^{\lambda^{\prime}}} \frac{\partial^{2} x^{\nu^{\prime}}}{\partial x^{\mu} \partial x^{\lambda}} . \tag{1}
\end{equation*}
$$

2. If the connection is given by the Christoffel symbol, satisfying $\nabla_{\mu} g_{\alpha \beta}=0$, prove

$$
\begin{equation*}
\nabla_{\mu} \epsilon_{\alpha \beta \gamma \delta}=0, \quad \nabla_{\mu} g^{\alpha \beta}=0 \tag{2}
\end{equation*}
$$

where, if necessary, you may use $\Gamma_{\mu \lambda}^{\mu}=\left(\partial_{\lambda}|g|^{1 / 2}\right) /|g|^{1 / 2}$, without proving.
3. Consider the metric of the expanding universe:

$$
\begin{equation*}
d s^{2}=-\mathrm{d} t^{2}+a^{2}(t)\left(\mathrm{d} x^{2}+\mathrm{d} y^{2}+\mathrm{d} z^{2}\right) \tag{3}
\end{equation*}
$$

where $a(t)$ is a scale factor. Show that the Christoffel symbol of this metric is given by

$$
\begin{equation*}
\Gamma_{00}^{0}=\Gamma_{i 0}^{0}=\Gamma_{00}^{i}=\Gamma_{j k}^{i}=0, \quad \Gamma_{i j}^{0}=a \dot{a} \delta_{i j}, \quad \Gamma_{0 j}^{i}=\frac{\dot{a}}{a} \delta_{j}^{i} . \tag{4}
\end{equation*}
$$

4. (a) Compute the Christoffel symbol $\Gamma_{\nu \rho}^{\mu}$ for the two-sphere S^{2} with the unit radius. (b) On this unit sphere, consider the vector A^{μ} which is the unit vector in the θ-direction, at the point $(\theta, \phi)=(\pi / 2,0)$ in polar coordinates. What happens to the vector if we parallel transport it around the equator, i.e., along the path $(\theta(\lambda), \phi(\lambda))=(\pi / 2, \lambda)$ for $0 \leq \lambda \leq 2 \pi$? (c) Next, consider a curve which consists of four segments:

$$
\begin{align*}
\gamma_{1}(\lambda) & =(\pi / 2, \lambda) \text { for } 0 \leq \lambda \leq \lambda_{1}, \\
\gamma_{2}(\lambda) & =\left(\pi / 2-\lambda, \lambda_{1}\right) \text { for } 0 \leq \lambda \leq \lambda_{2}, \\
\gamma_{3}(\lambda) & =\left(\pi / 2-\lambda_{2}, \lambda_{1}-\lambda\right) \text { for } 0 \leq \lambda \leq \lambda_{1}, \\
\gamma_{4}(\lambda) & =\left(\pi / 2-\lambda_{2}+\lambda, 0\right) \text { for } 0 \leq \lambda \leq \lambda_{2}, \tag{5}
\end{align*}
$$

where $0<\lambda_{1}<2 \pi$ and $0<\lambda_{2}<\pi / 2$. What happens to the vector A^{μ} once we parallel transport it around this closed path?

