Problems 6

1. Consider variation of the inverse metric $\left(g^{\mu \nu}\right), \delta g^{\mu \nu}$.
(a) Show $\delta g_{\mu \nu}=-g_{\mu \rho} g_{\nu \sigma} \delta g^{\rho \sigma}$.
(b) By noting that $\delta g^{\mu \nu}$ is the tensor and also by using $\nabla_{\mu} g^{\alpha \beta}=0$, show that the covariant derivative of the metric variation satisfies

$$
\begin{equation*}
\nabla_{\mu}\left(\delta g^{\alpha \beta}\right)=-\left(\delta \Gamma_{\mu \lambda}^{\alpha}\right) g^{\lambda \beta}-\left(\delta \Gamma_{\mu \lambda}^{\beta}\right) g^{\alpha \lambda} \tag{1}
\end{equation*}
$$

where $\delta \Gamma_{\mu \nu}^{\rho}$ is the variation of the connection associated with $\delta g^{\mu \nu}$.
(c) Using Eq. (1), show

$$
\begin{equation*}
\delta \Gamma_{\mu \nu}^{\sigma}=-\frac{1}{2}\left[g_{\lambda \mu} \nabla_{\nu}\left(\delta g^{\lambda \sigma}\right)+g_{\lambda \nu} \nabla_{\mu}\left(\delta g^{\lambda \sigma}\right)-g_{\mu \alpha} g_{\nu \beta} \nabla^{\sigma}\left(\delta g^{\alpha \beta}\right)\right], \tag{2}
\end{equation*}
$$

which is Eq. (4.54) in the lecture.
2. (a) As Eq. (2) shows, $\delta \Gamma_{\mu \nu}^{\sigma}$ is the tensor. Keeping this in mind, show the variation of the Riemann tensor is given as

$$
\begin{equation*}
\delta R^{\rho}{ }_{\mu \lambda \nu}=\nabla_{\lambda}\left(\delta \Gamma_{\nu \mu}^{\rho}\right)-\nabla_{\nu}\left(\delta \Gamma_{\lambda \mu}^{\rho}\right) \tag{3}
\end{equation*}
$$

(b) Using Eq. (2), show

$$
\begin{equation*}
g^{\mu \nu} \delta \Gamma_{\mu \nu}^{\sigma}-g^{\mu \sigma} \delta \Gamma_{\lambda \mu}^{\lambda}=g_{\mu \nu} \nabla^{\sigma}\left(\delta g^{\mu \nu}\right)-\nabla_{\lambda}\left(\delta g^{\sigma \lambda}\right) \tag{4}
\end{equation*}
$$

These results are used to derive Eq. (4.57) in the lecture.

