
Midterm Homework Problems 1

Due: February 27 (2012); Maximum score: 50 points
General rule: Choose 5 problems to solve. You may of course solve all 6 problems, but
keep in mind that the problem with the worst score does not count in your final score.

1. In the Minkowski spacetime, consider an inertial frameS with coordinatesxµ =
(t, x, y, z), and a frameS ′ with coordinatesxµ′

related toS by a boost with velocity
parameterv along they-axis. Imagine we have a wall at rest inS ′, lying along the
line x′ = −y′. From the point of view ofS, what is the relationship between the
incident angle of a ball hitting the wall (traveling in thex-y plane) and the reflected
angle? What about the velocity before and after? Assume the collision between the
ball and the wall happens elastically. [10 points]

2. (a) Study and report the details of both the Michelson-Morley experiment and the
Eötvös experiment, and discuss how these experiments arerelated to principles of
special/general relativity. [7 points]

(b) Consider conservation law of particles in special relativity,

∂µ(nUµ) = 0, (1)

whereUµ is the component of the velocity vector of the fluid, andn is the number
density of the fluid in its rest frame. In general relativity,we generalize this equation
to

∇µ(nUµ) = 0. (2)

Now think about equation like

∇µ(nUµ) = qR2, (3)

whereq is some constant andR the Ricci scalar. This corresponds to the gravita-
tional particle production. One may argue that Eq. (3) indeed reduces to Eq. (1) in
a flat spacetime. Is Eq. (3) allowed in general relativity? Explain the reason of your
conclusion, especially in light of the equivalence principle. [3 points]

3. Derive the geodesic equation for massive particles by maximizing the proper time,

τ =
∫

dλ

√

−gµν

dxµ

dλ

dxµ

dλ
, (4)

i.e.,δτ = 0, and using the Christoffel symbol for the connectionΓµ
αβ . [10 points]
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4. Prove that the Christoffel symbol satisfies

Γµ
µλ =

1
√

|g|
∂λ

√

|g|, (5)

which is then used to obtain the covariant divergence

∇µV
µ =

1
√

|g|
∂µ

(

√

|g|V µ

)

. (6)

[10 points]

5. You are familiar with the operations of gradient (∇φ), divergence (∇ · V), and
curl (∇ × V) in ordinary vector analysis in three dimensional Euclidean space.
Using covariant derivatives, derive formulae for these operations in spherical polar
coordinates(r, θ, ϕ), and compare your results to those in, e.g., Jackson (1999).
(Hint: In GR, the covariant derivative∇µ is defined as a component of one-form.
But in the classical electromagnetism,∇ is defined as a vector. Also note that the
coordinate basis vectors{∂µ} are not orthonormal in general.) [10 points]

6. A good approximation to the metric outside the surface of the Earth is provided by

ds2 = −(1 + 2Φ)dt2 + (1 − 2Φ)dr2 + r2(dθ2 + sin2 θdφ2), (7)

whereΦ = −GM/r may be thought of as the familiar Newtonian gravitational
potential. HereG is Newton’s constant andM is the mass of the Earth. For this
problemΦ may be assumed to be small.

(a) Imagine a clock on the surface of the Earth at distanceR1 from the Earth’s
center, and another clock on a tall building at distanceR2 from the Earth’s center.
Calculate the time elapsed on each clock as a function of the coordinate timet.
Which clock moves faster? [3 points]

(b) Solve for a geodesic corresponding to a circular orbit around the equator of the
Earth(θ = π/2). What isdφ/dt? [3 points]

(c) How much proper time elapses while a satellite at radiusR1 (skimming along
the surface of the Earth, neglecting air resistance) completes one orbit? You can
work to first order inΦ if you like. Plug in the actual numbers for the radius of
the Earth and so on (don’t forget to restore the speed of light) to get an answer in
seconds. How does this number compare to the proper time elapsed on the clock
stationary on the surface? [4 points]
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