Midterm Homework Problems 1

Due: February 27 (2012); Maximum score: 50 points
General rule: Choose 5 problems to solve. You may of course sl 6 problems, but
keep in mind that the problem with the worst score does nattciouyour final score.

1. In the Minkowski spacetime, consider an inertial frafhevith coordinatest* =
(t,x,y,2), and a frames’ with coordinates:*’ related taS by a boost with velocity
parameten along they-axis. Imagine we have a wall at rest$y, lying along the
line ' = —y’. From the point of view of5S, what is the relationship between the
incident angle of a ball hitting the wall (traveling in they plane) and the reflected
angle? What about the velocity before and after? Assumeadtllision between the
ball and the wall happens elastically. [10 points]

2. (a) Study and report the details of both the Michelsoni®joexperiment and the
Eotvos experiment, and discuss how these experimentelated to principles of
special/general relativity. [7 points]

(b) Consider conservation law of particles in special reikgt
du(nU*) =0, 1)

whereU* is the component of the velocity vector of the fluid, ant the number
density of the fluid in its rest frame. In general relativitig generalize this equation
to

V,.(nU") = 0. (2)

Now think about equation like
V,.(nU") = qR?, 3)

whereq is some constant anl the Ricci scalar. This corresponds to the gravita-
tional particle production. One may argue that Eq. (3) indeeluces to Eq. (1) in

a flat spacetime. Is Eq. (3) allowed in general relativity pl&in the reason of your
conclusion, especially in light of the equivalence priteig3 points]

3. Derive the geodesic equation for massive particles byimmaig the proper time,

dzt dxr
m= [ @

i.e., 07 = 0, and using the Christoffel symbol for the connectidfy. [10 points]
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4. Prove that the Christoffel symbol satisfies
1
Ll = —=0a/l9l, (5)
V19l

which is then used to obtain the covariant divergence
1
v,V = \/ﬁﬁu (\/\gﬂ/“) . (6)
g

[10 points]

5. You are familiar with the operations of gradiefi{), divergence Y - V), and
curl (V x V) in ordinary vector analysis in three dimensional Euclidsaace.
Using covariant derivatives, derive formulae for theserapens in spherical polar
coordinateqr, 0, ¢), and compare your results to those in, e.g., Jackson (1999).
(Hint: In GR, the covariant derivativ¥, is defined as a component of one-form.
But in the classical electromagnetisii,is defined as a vector. Also note that the
coordinate basis vectof$), } are not orthonormal in general.) [10 points]

6. A good approximation to the metric outside the surfacéefarth is provided by
ds* = —(1+2®)dt? + (1 — 2®)dr? + r*(d6? + sin® d¢?), (7)

where® = —GM/r may be thought of as the familiar Newtonian gravitational
potential. Herg 7 is Newton’s constant and/ is the mass of the Earth. For this
problem® may be assumed to be small.

(a) Imagine a clock on the surface of the Earth at distaRcdrom the Earth’s
center, and another clock on a tall building at distaRgdrom the Earth’s center.
Calculate the time elapsed on each clock as a function of dbedmate timer.
Which clock moves faster? [3 points]

(b) Solve for a geodesic corresponding to a circular orlmtiad the equator of the
Earth(0 = 7/2). What isd¢/dt? [3 points]

(c) How much proper time elapses while a satellite at radiugskimming along
the surface of the Earth, neglecting air resistance) caeplene orbit? You can
work to first order in® if you like. Plug in the actual numbers for the radius of
the Earth and so on (don’t forget to restore the speed of)lighget an answer in
seconds. How does this number compare to the proper timeezlagn the clock
stationary on the surface? [4 points]



