Problems 2

1. Supplementary problem of the class: (a) What's the matrix form of $\Lambda^{\nu}{ }_{\mu^{\prime}}$, if $\Lambda^{\mu^{\prime}}{ }_{\nu}$ is given by Eq. (1.23)

$$
\Lambda_{\nu}^{\mu^{\prime}}=\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & \cos \theta & \sin \theta & 0 \\
0 & -\sin \theta & \cos \theta & 0 \\
0 & 0 & 0 & 1
\end{array}\right)
$$

for rotation, and by Eq. (1.24)

$$
\Lambda_{\nu}^{\mu^{\prime}}=\left(\begin{array}{cccc}
\cosh \phi & -\sinh \phi & 0 & 0 \\
-\sinh \phi & \cosh \phi & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right),
$$

for boost, respectively? (b) Show the right hand sides of Eqs. (1.54):

$$
\begin{aligned}
V_{\mu} & =\eta_{\mu \nu} V^{\nu}, \\
\omega^{\mu} & =\eta^{\mu \nu} \omega_{\mu},
\end{aligned}
$$

and Eqs. (1.55):

$$
\begin{aligned}
T^{\alpha \beta \mu}{ }_{\delta} & =\eta^{\mu \gamma} T^{\alpha \beta}{ }_{\gamma \delta}, \\
T_{\mu}{ }^{\beta}{ }_{\gamma \delta} & =\eta_{\mu \alpha} T^{\alpha \beta}{ }_{\gamma \delta}, \\
T_{\mu \nu}{ }^{\rho \sigma} & =\eta_{\mu \alpha} \eta_{\nu \beta} \eta^{\rho \gamma} \eta^{\sigma \delta} T^{\alpha \beta}{ }_{\gamma \delta},
\end{aligned}
$$

behave as correct tensors as indicated in their left hand sides. (c) Show explicitly $X^{(\mu \nu)} Y_{\mu \nu}=X^{(\mu \nu)} Y_{(\mu \nu)}$, and discuss also a similar expression for antisymmetric tensors.
2. Imagine we have a tensor $X^{\mu \nu}$ and a vector V^{μ}, with components

$$
X^{\mu \nu}=\left(\begin{array}{cccc}
2 & 0 & 1 & -1 \\
-1 & 0 & 3 & 2 \\
-1 & 1 & 0 & 0 \\
-2 & 1 & 1 & -2
\end{array}\right), \quad V^{\mu}=(-1,2,0,-2)
$$

Find the components of: (a) $X^{\mu}{ }_{\nu}$, (b) $X_{\mu}{ }^{\nu}$, (c) $X^{(\mu \nu)}$, (d) $X_{[\mu \nu]}$, (e) $X^{\lambda}{ }_{\lambda}$, (f) $V^{\mu} V_{\mu}$, and (g) $V_{\mu} X^{\mu \nu}$.
3. Using the tensor transformation law applied to $F_{\mu \nu}$, show how the electric and magnetic field 3-vectors \vec{E} and \vec{B} transform under: (a) a rotation about the y-axis, (b) a boost along the z-axis.
4. Verify that Eq. (1.68): $\partial_{[\mu} F_{\nu \lambda]}=0$, is equivalent to (1.68'): $\partial_{\mu} F_{\nu \lambda}+\partial_{\nu} F_{\lambda \mu}+$ $\partial_{\lambda} F_{\mu \nu}=0$, and that they are both equivalent to the last two equations in (1.65):

$$
\begin{aligned}
\tilde{\epsilon}^{i j k} \partial_{j} E_{k}+\partial_{0} B^{i} & =0 \\
\partial_{i} B^{i} & =0
\end{aligned}
$$

