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Why supernovae?

Energy scale
A
Supernovae can release 10%3ergs £ 10%0J, one of the most
energetic processes in the known universe

Rate

053

More energetic events (e.g. gamma-ray bursts) are too rare

Proof
Only proven source so far ...
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Types of supernovae

Type |

no hydrogen 5 hydrogen

Thermonuclear
supernovae

Type la
silicon

Type Ic
no Sy? no He

[Vink(2012)]
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Core collapse supernovae

o Final stage of the evolution of massive (M 2 8M,)) stars
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Core collapse supernovae

o Final stage of the evolution of massive (M 2 8M,)) stars

e Through fusion, star builds up onion-like structure of layers of elements
with increasingly greater atomic numbers

Stage Timescale Fuel Product
Hydrogen 11 Myrs H He

Helium 2 Myrs He c,0

Carbon 2000 yrs C Ne,Mg

Neon 2.6 yrs H He

Oxygen 0.7 yrs He c,0

Silicon 18 days Si,S,Ar,Ca  Fe,Ni,Cr,Ti...
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Core collapse supernovae

o Final stage of the evolution of massive (M 2 8M,)) stars

e Through fusion, star builds up onion-like structure of layers of elements
with increasingly greater atomic numbers

Stage Timescale Fuel Product
Hydrogen 11 Myrs H He
Helium 2 Myrs He c,0
Carbon 2000 yrs C Ne,Mg
Neon 2.6 yrs H He
Oxygen 0.7 yrs He c,0

Silicon 18 days Si,S,Ar,Ca  Fe,Ni,Cr,Ti...
e Every next step produces less energy per unit mass of fuel

o %%Fe most stable element, no energy to be gained from fusing it — star
builds up an iron core
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Core collapse

o Core temperatures/densities are now so high, that:
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Core collapse

o Core temperatures/densities are now so high, that:
© Photodisintegration starts destroying nuclei, particularly
Fe 4+~ — 133He + 4n and 3He + v — 2p* 4 2n (1)

Endothermic reactions: take up energy otherwise used to generate the
pressure necessary to support the core
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Core collapse

o Core temperatures/densities are now so high, that:
© Photodisintegration starts destroying nuclei, particularly
Fe 4+~ — 133He + 4n and 3He + v — 2p* 4 2n (1)

Endothermic reactions: take up energy otherwise used to generate the
pressure necessary to support the core

@ Free electrons supporting the core (electron degeneracy) are captured
by heavy nuclei and free protons from photodisintegration, e.g.:

pt+e —n+tvre (2)

Neutrinos escape, carrying away enormous amounts of energy
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Core collapse

o Core temperatures/densities are now so high, that:
© Photodisintegration starts destroying nuclei, particularly
Fe 4+~ — 133He + 4n and 3He + v — 2p* 4 2n (1)

Endothermic reactions: take up energy otherwise used to generate the
pressure necessary to support the core

@ Free electrons supporting the core (electron degeneracy) are captured
by heavy nuclei and free protons from photodisintegration, e.g.:

pt+e —n+tvre (2)

Neutrinos escape, carrying away enormous amounts of energy

@ End result: star loses so much energy, it can no longer support itself
— core collapses under its own gravity
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Core collapse

@ Core collapses until neutron degeneracy pushes back, sending a
shockwave outward into the infalling material
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Core collapse

@ Core collapses until neutron degeneracy pushes back, sending a
shockwave outward into the infalling material

@ Causes even higher temperatures — more photodisintegration —
shockwave loses most of its energy and stalls

@ However, photodisintegration creates expanding neutrinosphere which
impacts the accretion shock, causing it to expand again
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Thermonuclear supernovae

@ Stars with M < 8M, never reach pressures/densities high enough to
burn carbon, instead becoming carbon-oxygen white dwarfs
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Thermonuclear supernovae

@ Stars with M < 8M, never reach pressures/densities high enough to
burn carbon, instead becoming carbon-oxygen white dwarfs

e COWDs in a binary can accrete from their companion (single
degenerate channel) or merge with it once it also becomes a COWD
(double degenerate)
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Thermonuclear supernovae

@ Stars with M < 8M, never reach pressures/densities high enough to
burn carbon, instead becoming carbon-oxygen white dwarfs

e COWDs in a binary can accrete from their companion (single
degenerate channel) or merge with it once it also becomes a COWD
(double degenerate)

SD When Myp > Mchandrasekhar = 1.4Mc,, carbon fusion
ignites in the core
Core is degenerate — doesn’t expand so doesn't cool —
runaway reaction — explosion
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Thermonuclear supernovae

@ Stars with M < 8M, never reach pressures/densities high enough to
burn carbon, instead becoming carbon-oxygen white dwarfs

e COWDs in a binary can accrete from their companion (single
degenerate channel) or merge with it once it also becomes a COWD
(double degenerate)

SD When Myp > Mchandrasekhar = 1.4Mc,, carbon fusion
ignites in the core
Core is degenerate — doesn’t expand so doesn't cool —
runaway reaction — explosion

DD Detonation, deflagration or delayed detonation
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Supernova remnants evolution

Generally divided into four phases:
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Generally divided into four phases:
© Ejecta dominated: total swept up mass less than mass of the ejecta

@ Sedov-Taylor: swept up mass dominates, but negligible radiative
losses

© Pressure driven: radiative losses are significant
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ST TRV
Supernova remnants evolution

Generally divided into four phases:
© Ejecta dominated: total swept up mass less than mass of the ejecta

@ Sedov-Taylor: swept up mass dominates, but negligible radiative
losses

© Pressure driven: radiative losses are significant

© Merging: remnant mixes with the interstellar medium
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Acceleration mechanisms

@ Many different acceleration mechanisms for galactic particles.
@ Acceleration generally assumed in or near the source.

@ We discuss 6 plausible mechanisms.
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1 - Cyclotron

@ Zeeman splitting observed in sunspot. Determine magnetic field
strengths.
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1 - Cyclotron
@ Zeeman splitting observed in sunspot. Determine magnetic field

strengths.
e Caused by moving protons / electrons.

qﬁ:/B-dA:Bsz

particle trajectory I'.
II
|
June 11, 2013 11/ 74
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1 - Cyclotron

q9 _

_90 b E.ds=uU
dt °

o Generation / decay of magnetic fields cause electric fields.
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1 - Cyclotron

q9 _

_90 b E.ds=uU
dt °

o Generation / decay of magnetic fields cause electric fields.

o Electric fields cause accelerations of protons / electrons.

Energy gained after one orbit is equel to eU.

_ 7 dB __
R=10"m % = 0.2 Tesla/day
elU =0.73 GeV
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1 - Cyclotron

The Cyclotron mechanism provides the right energies (particles up to 100

GeV).

But stable circular orbits require additional forces!
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2 - Sunspot Pairs

Sunspots often come in pairs with opposite magnetic polarity. They
approach each other and then merge.
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2 - Sunspot Pairs

Sunspots often come in pairs with opposite magnetic polarity. They
approach each other and then merge.

Electric field E ~ v x B up to 10 V/m.

@ Distance of 10’ m
e B=02T
e v =10" m/day

can give energies in GeV range for protons.
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2 - Sunspot Pairs

Conclusion:

Same energies as Cyclotron, but doesn't require additional forces!
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3 - Shock Acceleration

Shock Wave Acceleration Situation 1: particle collides with shock front
head on.
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3 - Shock Acceleration

Shock Wave Acceleration Situation 1: particle collides with shock front
head on.

@ Particle moves with velocity v
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Shock Wave Acceleration Situation 1: particle collides with shock front
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@ Particle moves with velocity v

@ Shock front moves with velocity u;
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3 - Shock Acceleration

Shock Wave Acceleration Situation 1: particle collides with shock front
head on.

@ Particle moves with velocity v
@ Shock front moves with velocity u;

@ Post shock front moves with velocity up
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3 - Shock Acceleration

Shock Wave Acceleration Situation 1: particle collides with shock front
head on.

Particle moves with velocity v
Shock front moves with velocity u;
Post shock front moves with velocity u;

Gas has relative velocity u; — u»
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3 - Shock Acceleration

Shock Wave Acceleration Situation 1: particle collides with shock front
head on.

@ Particle moves with velocity v
@ Shock front moves with velocity u;
@ Post shock front moves with velocity up

@ Gas has relative velocity u; — u»

AE = Im(v+ (1 — wp)? — mv?

Linearly: % ~ 202

Relativistically: 45 ~ 4=
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3 - Shock Acceleration

Situation 2: particle within the shock front bouncing between inner and
outer front.
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3 - Shock Acceleration

Situation 2: particle within the shock front bouncing between inner and
outer front.

@ Particle moves with velocity v

@ Inner front moves with velocity u; (up to 20 000 km/s)
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3 - Shock Acceleration

Situation 2: particle within the shock front bouncing between inner and
outer front.

@ Particle moves with velocity v
@ Inner front moves with velocity u; (up to 20 000 km/s)
o Outer front moves with velocity up (100 - 1000 km/s)

(In galactic nuclei, up can even go up to 0.9 c)
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3 - Shock Acceleration

Situation 2: particle within the shock front bouncing between inner and
outer front.

@ Particle moves with velocity v
@ Inner front moves with velocity u; (up to 20 000 km/s)
o Outer front moves with velocity up (100 - 1000 km/s)

(In galactic nuclei, up can even go up to 0.9 c)
Colliding with inner front: AE ~ Im(u2 + 2vu)
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3 - Shock Acceleration

Situation 2: particle within the shock front bouncing between inner and
outer front.

@ Particle moves with velocity v
@ Inner front moves with velocity u; (up to 20 000 km/s)
o Outer front moves with velocity up (100 - 1000 km/s)

(In galactic nuclei, up can even go up to 0.9 c)
Colliding with inner front: AE ~ Im(u2 + 2vu)
Colliding with outer front: AE ~ 3m(u? — 2vuy)
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3 - Shock Acceleration

Situation 2: particle within the shock front bouncing between inner and
outer front.

@ Particle moves with velocity v
@ Inner front moves with velocity u; (up to 20 000 km/s)
@ Outer front moves with velocity up (100 - 1000 km/s)
(In galactic nuclei, up can even go up to 0.9 c)
Colliding with inner front: AE ~ Im(u2 + 2vu)
Colliding with outer front: AE ~ 3m(u? — 2vuy)
On average: AE ~ mv(uy — uz)

AE up—u
E ~ 2 v
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3 - Shock Acceleration

Energies up to ~ 100 TeV can be explained!

(Linear shock acceleration mechanisms are also called Fermi mechanism of
first order.)
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4 - Fermi mechanism (of second order)

Cosmic/gamma-ray particles can interact with magnetic clouds.
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@ Particle with velocity v.

@ Gas cloud with velocite u.
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4 - Fermi mechanism (of second order)

Cosmic/gamma-ray particles can interact with magnetic clouds.

@ Particle with velocity v.
@ Gas cloud with velocite u.

Method similar to lineair acceleration mechanisms.
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4 - Fermi mechanism (of second order)

Cosmic/gamma-ray particles can interact with magnetic clouds.

@ Particle with velocity v.
@ Gas cloud with velocite u.

Method similar to lineair acceleration mechanisms.

If v and u parallel: AE ~ Im(2uv + u?)

Andrea, Laura, Mark, Omer, Claudio (UvA) GRAPPA seminar June 11, 2013

19 / 74



4 - Fermi mechanism (of second order)

Cosmic/gamma-ray particles can interact with magnetic clouds.

@ Particle with velocity v.
@ Gas cloud with velocite u.

Method similar to lineair acceleration mechanisms.

If v and u parallel: AE ~ 2m(2uv + u?)
If v and u anti-parallel: AE ~ m(—2uv + u?)
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4 - Fermi mechanism (of second order)

Cosmic/gamma-ray particles can interact with magnetic clouds.

@ Particle with velocity v.

@ Gas cloud with velocite u.
Method similar to lineair acceleration mechanisms.
If v and u parallel: AE ~ 2m(2uv + u?)

If v and u anti-parallel: AE ~ m(—2uv + u?)
On average: AE ~ mu?

2
75,\,2%
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4 - Fermi mechanism (of second order)

AE ~ mu?

Quaderatic in cloud velocity, hence Fermi mechanism " of second order”.
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4 - Fermi mechanism (of second order)

AE ~ mu?
Quaderatic in cloud velocity, hence Fermi mechanism " of second order”.
Remains correct even relativistically.

Since cloud moves slowly, energy gain per collision is small. Acceleration
takes a long time.
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4 - Fermi mechanism (of second order)

AE ~ mu?
Quaderatic in cloud velocity, hence Fermi mechanism " of second order”.

Remains correct even relativistically.

Since cloud moves slowly, energy gain per collision is small. Acceleration
takes a long time.

Magnetic clouds have higher gas density and therefore higher interaction
probability.
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4 - Fermi mechanism (of second order)

AE ~ mu?

Still, particles lose energy between collisions by interacting with
(inter)galactic gas.
Minimum initial energy is needed for particles.
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4 - Fermi mechanism (of second order)

AE ~ mu?

Still, particles lose energy between collisions by interacting with
(inter)galactic gas.
Minimum initial energy is needed for particles.

This minimum energy could be provided by head on collision mechanism
(Fermi mechanism of first order).
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5 - Pulsars

Pulsars: Spinning, magnetized neutron stars ~ 20 km radius.
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5 - Pulsars

Pulsars: Spinning, magnetized neutron stars ~ 20 km radius.
Due to small size, angular velocity is fast:

2
pulsar
star 2
Rstar

~

Tpulsar

If Totar ~ 1 month, and Rszar ~ 100 km, Tpuisar ~ 1 ms.
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5 - Pulsars

Pulsars: Spinning, magnetized neutron stars ~ 20 km radius.
Due to small size, angular velocity is fast:

2
pulsar
star 2
Rstar

~

Tpulsar

If Totar ~ 1 month, and Rszar ~ 100 km, Tpuisar ~ 1 ms.

27R
Vpulsar = 7;' pukar -, 4 10° m/s

pulsar
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5 - Pulsars

Assuming magnetic flux is conserved:

2

B - B Rpu/sar
pulsar — starT

star

if Bstar = 0.1 T, Bpuyisar = 2.5-108 T
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5 - Pulsars

Assuming magnetic flux is conserved:

2

B - B Rpu/sar
pulsar — starT

star

if Bstar = 0.1 T, Bpuyisar = 2.5-108 T

E ~ vB when v and B are perpendicular ~ 101° V/m.
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5 - Pulsars

Assuming magnetic flux is conserved:

2

B - B Rpu/sar
pulsar — Dstar
R2
star

if Bstar = 0.1 T, Bpuyisar = 2.5-108 T

E ~ vB when v and B are perpendicular ~ 101° V/m.

Single charged particles can gain 1000 TeV per meter!!
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5 - Pulsars

Average pulsar accelerates ~ 10° years worth of particles.
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Average pulsar accelerates ~ 10° years worth of particles.

Age of the galaxy is ~ 109 years, 1 supernova per century.

Andrea, Laura, Mark, Omer, Claudio (UvA) GRAPPA seminar June 11, 2013 24 / 74



5 - Pulsars

Average pulsar accelerates ~ 10° years worth of particles.
Age of the galaxy is ~ 109 years, 1 supernova per century.

Total of 108 pulsars have provided energy for accelerations so far.
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5 - Pulsars

Average pulsar accelerates ~ 10° years worth of particles.
Age of the galaxy is ~ 109 years, 1 supernova per century.
Total of 108 pulsars have provided energy for accelerations so far.

Works out to energy density of 1.1 eV /cm® from cosmic/gamma rays.
(~ 1 eV/cm?3 observed)
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6 - Binaries

Binaries consisting of a normal star and a pulsar are an acceleration
candidate as well.

normal star
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6 - Accretion discs

Energy protons gain, falling in from infinity, is E = G% ~ 70 MeV.

pulsar

Andrea, Laura, Mark, Omer, Claudio (UvA) GRAPPA seminar June 11, 2013 26 / 74



6 - Accretion discs

Energy protons gain, falling in from infinity, is E = G TeMeutr 70 MeV.

Rpulsar

2

If this all becomes kinetic energy %mv , we end up with a v ~ 1.2-108

m/s.
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Energy protons gain, falling in from infinity, is E = G TeMeutr 70 MeV.

Rpulsar

2

If this all becomes kinetic energy %mv , we end up with a v ~ 1.2-108

m/s.

The magnetic field of the neturon star produces a Lorentz force
F ~ evB ~ eE.
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6 - Accretion discs

Energy protons gain, falling in from infinity, is E = G% ~ 70 MeV.

pulsar

If this all becomes kinetic energy %mv2, we end up with a v ~ 1.2-108
m/s.

The magnetic field of the neturon star produces a Lorentz force
F ~ evB ~ eE.

The particles obtain an energy from this force E = [ F - ds = evBAs up
to ~ 109 eV.
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6 - Accretion discs

Accretion disks around blackholes / galactic nuclei are even more powerful,
possibly responsible for the highest observed energies in cosmic rays.
Details however not yet fully understood.
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black hole / nucleus of a galaxy and injected into its radiation field.
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6 - Accretion discs

Accretion disks around blackholes / galactic nuclei are even more powerful,
possibly responsible for the highest observed energies in cosmic rays.
Details however not yet fully understood.

Assumed that jets of highly relativistic particles are accelerated near a
black hole / nucleus of a galaxy and injected into its radiation field.

Both protons and electrons can produce high energy ~-rays by inverse
Compton scattering off accelerated electrons.

As a consequence of this, high-energy neutrinos are created in the decays
of charged pions. Detections can presumably be made only if the jets are
directed at us.
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6 - Accretion discs

shock fronts
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black hole o AGN
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synchrotron phatdn

sccretion disk
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Summary

@ Cyclotron mechanism
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Summary

@ Cyclotron mechanism
@ Sunspot Pairs

© Shock accelerations (frontal collision / colliding between inner and
outer fronts)

© Fermi mechanism of second order (colliding with gas clouds)
© Pulsars

@ Accretion disks of binary systems
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Gamma Ray Production (Omer)

~v Ray Production Mechanisms Review J
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http://prezi.com/v57ucscldb7e/present/?auth_key=enlqsg5&follow=vi_mm1ign1jk

~ Rays from Supernova Remnants

@ ~-ray astronomy is important for determining the CR content of
astrophysical sources

@ In 7-rays one can observe photons emitted as a result of hadronic
CRs, which make up 99% of the CRs observed on Earth

@ Three different particle radiation processes are considered most
dominent in the supernova spectrum at ~y-ray energy scales:

e nuclear pion-production interactions
e nonthermal electron bremsstrahlung
o Compton scattering

Andrea, Laura, Mark, Omer, Claudio (UvA) GRAPPA seminar June 11, 2013
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Model of Suprenova Explosion

The supernova explosion is modeled as an expanding spherical shell of
material that sweep up matter from the surrounding interstellar medium

(ISM)

Shocked CSM

1
Eie = - [Mo + My (6]
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Model of Suprenova Explosion

The supernova explosion is modeled as an expanding spherical shell of

material that sweep up matter from the surrounding interstellar medium
(ISM)

Shocked CSM

dESY (t d 1 1.
) _ 9 [—Msuvz] = > Mav? + Myyvi
dt dt L2 2
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Density of the target particles for interactions

There are three targets available for particle-particle interactions
o Explosion mass : nec(t) = Mo/ mp Vsp(t)

@ Swept-up mass : increased by the comprassion ratio, for strong shock
the shell of swept-up mass has density ns, = 4nq

@ ISM gas - ng
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Nuclear pion-production interactions

Rate of change of the Lorentz factor

—Ypp = Kpcoppn(t)p

Energy-loss time scale

top = Yo/ Vool = [Kpcoppn(t)] ™1 2 2.2 x 101 /n(t) s
Expected luminosity

Y ESU t
Lpp(t) = nng(t())
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Nonthermal electron bremsstrahlung

Rate of change of the Lorentz factor
‘ —Agr = kgrapcor[Enz Z(Z + 1)]7e
Energy-loss time scale
ter(t) = [ve/Yr| = 8.0 x 10™/n(t) s
Expected luminosity

Li(t) =
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Compton scattering

Rate of change of the Lorentz factor
—Jc = (4/3)corUy72/mec?
Energy-loss time scale
tc(s)= |ve/cl = 7.7 x 10 /7 s
Expected luminosity

Le(t) = 2e5t)

Andrea, Laura, Mark, Omer, Claudio (UvA) GRAPPA seminar June 11, 2013

37 /74



Energy-loss time scales

rea, Laura, Mark, Ome

Claudio
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SNR seen on Earth in y-Rays

o QF, Q™ and Q° gamma ray emissivities (cm~3 s7! GeV~1)
@ Then the gamma ray flux observed at Earth, a distance d from the
SNR, is given by -

mA VvV

Fy(Ey, ) =
7By, 0) = -3

ﬂ brem Re _1c
Qo (Ey,a) + ReQy" " (Ey, ) + nTQO (Ey, ) (5)
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~ Rays Break

Coffee Break and Discussion
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Propagation Through Space

» Cosmic Rays
» Gamma Rays
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Cosmic rays (CRs)

e standard non-linear diffusive shock acceleration (DSA) gives steepest
spectrum E~2 — observed spectrum E~27
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Cosmic rays (CRs)

e standard non-linear diffusive shock acceleration (DSA) gives steepest
spectrum E~2 — observed spectrum E~27

@ need to account for interaction with galactic magnetic field
turbulence

@ galactic magnetic field amplification — efficient CRs scatter back and
forth the SNR shock

@ self-consistent model:
efficient CRs acceleration — magnetic field amplification
feedback from amplified fields — efficient CR acceleration

Andrea, Laura, Mark, Omer, Claudio (UvA) GRAPPA seminar June 11, 2013 42 / 74



general procedure

@ specify the CRs sources

o define the CRs halo shape and boundary conditions (CRs freely exit
into intergalactic space)

@ account for energy loss or gain processes in interstellar medium (ISM)
@ nuclear fragmentation

@ radioactive decay of unstable nuclei
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Galactic CRs diffusion model

@ steady state transport equation in ISM

— VDVV + V (uV) — Bap [p2K§p(p2\U)]

0 v
- = ——Vv Djoss V - = 6
8p<p3 >+8p(p/ )+ —=q (6)
o diffusion equation

2 a 2
vrgB vrg B

D = = 7
127Tkres W(kres) 3 (1 — a) kz'ia 6BE ( )

@ GALPROP code for numerical simulation: solves (1) for nuclei,
p,e ", e’ ; computes y-rays and synchrotron emission
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Galactic CRs diffusion model

@ D determines the propagation of CRs in galactic magnetic fields
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@ wave-particle interaction is of resonant character

o diffusion of CRs from scattering by discontinuities in
magnetohydrodynamic (MHD) waves - 6B < B
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Galactic CRs diffusion model

D determines the propagation of CRs in galactic magnetic fields
@ wave-particle interaction is of resonant character

o diffusion of CRs from scattering by discontinuities in
magnetohydrodynamic (MHD) waves - 6B < B

@ ry < | — CRs diffusion locally anisotropic

isotropization due to large scale (~ 100pc) galactic magnetic field
fluctuations

@ the spectrum of the MHD turbulence, W (kyes), determines the
diffusion coefficient in (2)
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Galactic CRs diffusion model

D determines the propagation of CRs in galactic magnetic fields
@ wave-particle interaction is of resonant character

o diffusion of CRs from scattering by discontinuities in
magnetohydrodynamic (MHD) waves - 6B < B

@ ry < | — CRs diffusion locally anisotropic
isotropization due to large scale (~ 100pc) galactic magnetic field
fluctuations

@ the spectrum of the MHD turbulence, W (kyes), determines the
diffusion coefficient in (2)

@ two proposed spectra
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MHD turbulence spectrum

e Kolmogorov spectrum W (k) k=3
- accounts for reacceleration of CRs by MHD

- leads to D o v(p/Z)/3

@ Iroshnikov-Kraichnan spectrum W(k) o k
- reacceleration with wave damping

- leads to D o< v(p/Z)/?

3
2
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secondary-to-primary ratio

@ key information on CRs propagation from the abundance of light
elements: 2H, 3H, Li, Be, B

@ produced by spallation of heavier primary with ISM

@ estimate secondary-to-primary ratio —» B/C

@ allows to infer the MHD turbolence spectrum
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B/C ratio
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instabilities and plasma effects

@ PCRs = PMHD
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instabilities and plasma effects

® PCRs = PMHD
@ CRs propagating through ISM lead to plasma effects

@ streaming instability: magnetic field amplification by CRs near the
shock

@ Parker instability: short wavelenght MHD instability

@ both lead to amplification of magnetic fields at the supernova shock
— integral part of CRs acceleration

e Galactic gas halo might not be static (galactic wind) — CRs exiting
the Galaxy increase the MHD turbulance — self-consistently
determines diffusion-convection of CRs
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Photon propagation

@ -rays propagate freely propagate through ISM
@ their path might be deflected by gravitational lensing
@ they "feel” the ISM magnetic field through the Faraday Effect
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Observations

Space-born detectors:
Fermi- Large Area Telescope (LAT)

Astro-rivelatore Gamma a Immagini Leggero (AGILE) AGILE and
Fermi-LAT investigate complementary energy bands
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Tycho SNR
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Tycho SNR

@ among youngest SNR ever observed: remnant of SN la 1572
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Tycho SNR

@ among youngest SNR ever observed: remnant of SN la 1572
@ best place where to study DSA
o Fermi-LAT (7 -rays) observation coincide with SNR (X-rays) position

@ synchrotron flux from X-ray and radio — ne and magnetic field — no
Inverse Compton (IC)

@ ng,s exceeds X-ray observation and imply too energetic Sedov phase
— no Bremsstrahlung

@ no leptonic model — hadronic model (7° decay)
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Tycho SNR
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SNRs and Molecular clouds interaction
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SNRs and Molecular clouds interaction

@ SNRs interacting with nearby Molecular Clouds (MCs) are the most
luminous in y-rays
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SNRs and Molecular clouds interaction

@ SNRs interacting with nearby Molecular Clouds (MCs) are the most
luminous in y-rays

@ interaction evidenced by OH maser emission at 1720 MHz
@ best observed SNRs: W44 and 1C443

@ in both v-ray spectrum peaked at 1Gev
lower energy cut-off below 200 MeV
higher energy cut-off above 200 GeV
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SNRs and Molecular clouds interaction

@ SNRs interacting with nearby Molecular Clouds (MCs) are the most
luminous in y-rays

@ interaction evidenced by OH maser emission at 1720 MHz
@ best observed SNRs: W44 and 1C443

@ in both v-ray spectrum peaked at 1Gev
lower energy cut-off below 200 MeV
higher energy cut-off above 200 GeV

o fit the Fermi-LAT and AGILE data with 70 decay spectrum
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W44 and 1C443
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Ground Based Detection first ground based detections

first detections of SN

length of Historical Records

date visibility remnant Chinese Japanese Korean Arabiof&an
AD1604 12 months G46+6-8 few - many - many
AD1572 18 months G12a+2-1 few - two - many
AD1181 6 months 3C58 few few - - -
AD1054 21 months Crab Nebula many few - one -
AD1006 3years SNR3274614.6 many many - few two
AD393 8 months - one - - - -
AD386? 3 months - one - - - -
AD369? 5 months - one - - - -
AD185 8 or 20 months - one - - - -

We will take another look
at the end of this presentation.
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Ground Based Detection first ground based detections

the electromagnetic spectrum observed so far

INFRARED

Fermi:
~20MeV
to 300GeV
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characterization of airshowers

amount of particles
direction of main axis
spacial structure
spread in time

hadron content

fluctuations in
development

@ muon content

Andrea, Laura, Mark, Omer, Claudio (UvA)

Incident Primary ——,

/
Shower Front
Tangent Plane

Ground Level
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different signatures

@ Cherenkov light
@ particles reaching the ground

e radio emission (as well from
interaction with the
geomagnetic field)

@ air fluoresence

@ acoustic effects
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particle detector arrays

@ sampling on arrival at ground level

@ some information on the state of the shower
from the arrival sequence of the current particle
generation

@ direction information from the charge
separation of the magnetic field and the

geometry / arrival times of the signal
example: Akeno Grand Air Shower

# / Array in Japan
/ @ takeing data since 1991
/ @ 111 detectors
: @ approx 1km spacing
e - E“jr m @ ;%E @ measured gamma rays above the

GZK-cutoff
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sl QTN FEpE
fly's eyes: air fluoresence detectors

shower excites nitrogen in the atmosphere

isotropic emission of fluoresence light (300-400 nm band)

detection by PMTs

advantage: able to monitor large areas and therefore aimed to detect
rare ultra high gamma ray events

HiRes detector in Utah
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sl QTN FEpE
Cherenkov telescopes: review of Cherenkov light
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Cherenkov telescope: H.E.S.S.

goal: restruct energy,
species and direction
of the initial particle
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Cosmic Ray Simulations for Kascade

Top of the atmosgphere

The CORSICA code:

@ interactions and cross-sections

Very High Energy
Gamma-ray

e Interaction @ decay and propagation
(pair produetion) . . .
(ionization of the atmosphere,

energy loss
e Secondary particles gy )

@ (seasonal) composition of
atmoshere, different layers

@ earth magnetic field

B
T

Elevation (km)

A word of caution:

@ knowledge of high energy
interactions incomplete

@ extreme forward direction not
accesible at colliders

Mountain

o
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simulation results - photon, proton and iron at 10%3eV

CORSIKA simulation 100TeV gamma ray

Andrea, Laura, Mark, Omer, Claudio (UvA) GRAPPA seminar June 11, 2013 67 / 74


http://www-ik.fzk.de/~corsika/movies/sanga14xz13.gif

RCW86 possibly the remnant of SN AD185

Declination (J2000)

Declination (J2000)

14"45™ 14"40™ 140 46" 45 44

43 42
Right Ascension (J2000) Right Ascension (J2000)

41 40

excess counts of gamma rays (with gamma ray map (here in white) in
energy above 100GeV) comparison with the background
subtracted X-ray map

Andrea, Laura, Mark, Omer, Claudio (UvA) GRAPPA seminar June 11, 2013 68 / 74



seiie HIESS sl
SN AD1006 remnant morphology

pec (deg)
Dec (deg)

N.E. Region

15h04m 15h02m -42.4

RA (hours) 15h04m 1shozm (hours)
urs,

53}

excess counts of gamma rays (with
energy above 260 GeV)

white region shows the earlier
measured X-ray distribution

significance in standard deviations
white region contains 80% of the
respective X-ray energy

Andrea, Laura, Mark, Omer, Claudio (UvA) GRAPPA seminar June 11, 2013 69 / 74



Ground Based Detection some HESS results

SN AD1006 remnant gamma source
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Ground Based Detection some HESS results

SHALL WE DO ONE SLIDE WITH ALL CONCLUSIONS FROM THE
SECOND PART FOR THE DISCUSSION?
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Ground Based Detection Break

Another Coffee? And Discussion..
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Ground Based Detection Break
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Ground Based Detection Break

The End
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