Outline

1 Historical Background
2 Theoretical Background
 - Neutrino mixing
 - Massive neutrinos
 - Why neutrinos are always said to be left handed
3 Discussion: theory
4 Experiments
 - Solar and atmospheric neutrinos
 - Reactor experiments
 - Accelerator experiments
5 Outlook
6 References
1 Historical Background

2 Theoretical Background
 ● Neutrino mixing
 ● Massive neutrinos
 ● Why neutrinos are always said to be left handed

3 Discussion: theory

4 Experiments
 ● Solar and atmospheric neutrinos
 ● Reactor experiments
 ● Accelerator experiments

5 Outlook

6 References
1930 Wolfgang Pauli postulates ν_e

1[Davis et al., 1968]

2[Gribov and Pontecorvo, 1969]
1930 Wolfgang Pauli postulates ν_e

1934 Enrico Fermi develops β-decay theory: $n \rightarrow p + e^- + \bar{\nu}_e$.

\[1\text{[Davis et al., 1968]}
\[2\text{[Gribov and Pontecorvo, 1969]}\]
1930 Wolfgang Pauli postulates ν_e

1934 Enrico Fermi develops β-decay theory: $n \rightarrow p + e^- + \bar{\nu}_e$.

1956 Frederick Reines detects ν_e (Nobel prize in 1995)

\[1\text{[Davis et al., 1968]}\]
\[2\text{[Gribov and Pontecorvo, 1969]}\]
1930 Wolfgang Pauli postulates ν_e
1934 Enrico Fermi develops β-decay theory: $n \rightarrow p + e^- + \bar{\nu}_e$.
1956 Frederick Reines detects ν_e (Nobel prize in 1995)
1962 Detection ν_μ (Nobel prize in 1988)

1[Davis et al., 1968]
2[Gribov and Pontecorvo, 1969]
1930 Wolfgang Pauli postulates ν_e
1934 Enrico Fermi develops β-decay theory: $n \rightarrow p + e^- + \bar{\nu}_e$.
1956 Frederick Reines detects ν_e (Nobel prize in 1995)
1962 Detection ν_μ (Nobel prize in 1988)
1968 Ray Davis: solar neutrino problem\(^1\) (Nobel prize 2002)

\(^1\)[Davis et al., 1968]
\(^2\)[Gribov and Pontecorvo, 1969]
1930 Wolfgang Pauli postulates ν_e

1934 Enrico Fermi develops β-decay theory: $n \rightarrow p + e^- + \bar{\nu}_e$.

1956 Frederick Reines detects ν_e (Nobel prize in 1995)

1962 Detection ν_μ (Nobel prize in 1988)

1968 Ray Davis: solar neutrino problem\[1\] (Nobel prize 2002)

1968 Bruno Pontecorvo suggests neutrino oscillations\[2\]

\[1\]Davis et al., 1968
\[2\]Gribov and Pontecorvo, 1969
History

1930 Wolfgang Pauli postulates ν_e

1934 Enrico Fermi develops β-decay theory: $n \to p + e^- + \bar{\nu}_e$.

1956 Frederick Reines detects ν_e (Nobel prize in 1995)

1962 Detection ν_μ (Nobel prize in 1988)

1968 Bruno Pontecorvo suggests neutrino oscillations2

1978 Wolfenstein and Mikheyev & Smirnov describe oscillations in matter (MSW matrix)

1[Davis et al., 1968]

2[Gribov and Pontecorvo, 1969]
1930 Wolfgang Pauli postulates ν_e
1934 Enrico Fermi develops β-decay theory: $n \rightarrow p + e^- + \bar{\nu}_e$.
1956 Frederick Reines detects ν_e (Nobel prize in 1995)
1962 Detection ν_μ (Nobel prize in 1988)
1968 Ray Davis: solar neutrino problem\(^1\) (Nobel prize 2002)
1968 Bruno Pontecorvo suggests neutrino oscillations\(^2\)
1978 Wolfenstein and Mikheyev & Smirnov describe oscillations in matter (MSW matrix)

Past decades Experimental verification of neutrino oscillations

\(^1\)[Davis et al., 1968]
\(^2\)[Gribov and Pontecorvo, 1969]
1930 Wolfgang Pauli postulates ν_e
1934 Enrico Fermi develops β-decay theory: $n \rightarrow p + e^- + \bar{\nu}_e$.
1956 Frederick Reines detects ν_e (Nobel prize in 1995)
1962 Detection ν_μ (Nobel prize in 1988)
1968 Ray Davis: solar neutrino problem\(^1\) (Nobel prize 2002)
1968 Bruno Pontecorvo suggests neutrino oscillations\(^2\)
1978 Wolfenstein and Mikheyev & Smirnov describe oscillations in matter (MSW matrix)

Past decades Experimental verification of neutrino oscillations

Ongoing Open questions about: Sterile neutrinos, Majorana or Dirac, mass hierarchy, CP(T) violation

\(^1\) [Davis et al., 1968]
\(^2\) [Gribov and Pontecorvo, 1969]
1 Historical Background

2 Theoretical Background
 - Neutrino mixing
 - Massive neutrinos
 - Why neutrinos are always said to be left handed

3 Discussion: theory

4 Experiments
 - Solar and atmospheric neutrinos
 - Reactor experiments
 - Accelerator experiments

5 Outlook

6 References
Neutrino oscillations

- In the SM neutrinos are massless and leptons do not mix.
- Pontecorvo proposed that $\nu \leftrightarrow \bar{\nu}$ transition may occur in analogy with $K^0 \leftrightarrow \bar{K}^0$ (1957). A quantitative theory of neutrino oscillations was first developed by Maki, Nakagawa and Sakata (1962).
- Predictions of the Standard Solar Model for the amount of ν_e were tested, of the expected flux of ν_e only $1/3$ found by the Homestake experiment in 1970s (SNP).
- Neutrino oscillations ($\nu_\alpha \rightarrow \nu_\beta$) were first measured by Super-Kamiokande in 1998 and later by SNO in 2001.
3 neutrino flavors, ν_e, ν_μ, and ν_τ are known, mixing of the 3 generations have been seen in many experiments.

Definition of flavor: ν_α is the particle which couples to ℓ_α through weak interaction.

flavor eigenstates, but mixed states of mass eigenstates (In SM flavor eigenstate = mass eigenstate).
Massive neutrinos imply the existence of right-handed neutrino components (minimally extended SM):

- Yukawa couplings are not diagonal anymore, mixing occurs.
- Introduce a unitary leptonic mixing matrix U like the CKM matrix for the quarks.

This matrix relates the flavor eigenstates to the mass eigenstates:

$$|\nu_\alpha\rangle = \sum_i U_{\alpha i}^* |\nu_i\rangle \quad (\alpha = e, \mu, \tau)$$
In general, a $N \times N$ unitary matrix has N^2 real parameters:

- $\frac{N(N+1)}{2}$ phases
- $\frac{N(N-1)}{2}$ angles

for 2N neutrino fields we can also eliminate $2N - 1$ unphysical phases by redefining the fields (leaving the Lagrangian invariant).

For a 3×3 matrix this leads to 3 angles and 1 phase.
A 2 × 2 unitary matrix can be written as matrix which depends on 3 phases ω_1, ω_2 and η and 1 angle θ

$$U = \begin{pmatrix}
\cos \theta e^{i\omega_1} & \sin \theta e^{i(\omega_2 + \eta)} \\
-\sin \theta e^{-i(\omega_1 - \eta)} & \cos \theta e^{i\omega_2}
\end{pmatrix}$$

$$\sim \begin{pmatrix}
\omega_1 & 0 \\
0 & \omega_2
\end{pmatrix} \begin{pmatrix}
e^{i\eta} & 0 \\
0 & 1
\end{pmatrix} \begin{pmatrix}
\cos \theta & \sin \theta \\
-\sin \theta & \cos \theta
\end{pmatrix} \begin{pmatrix}
e^{-i\eta} & 0 \\
0 & 1
\end{pmatrix}$$

Four fields are present, flavor eigenstates ν_e, ν_μ and mass eigenstates ν_1, ν_2, so the 3 phases are not physical can be eliminated.
2-generation mixing

We are left with a rotation matrix to relate the flavor and mass eigenstates:

\[
\begin{pmatrix}
\nu_e \\
\nu_\mu
\end{pmatrix} =
\begin{pmatrix}
\cos \theta & \sin \theta \\
- \sin \theta & \cos \theta
\end{pmatrix}
\begin{pmatrix}
\nu_1 \\
\nu_2
\end{pmatrix}
\]
For 3 generations of leptons we have the Pontecorvo-Maki-Nakagawa-Sakata matrix\(^3\)

\[
U = \begin{pmatrix}
c_{12}c_{13} & s_{12}c_{13} & s_{13}e^{-i\delta} \\
-s_{12}c_{23} - c_{12}s_{23}s_{13}e^{i\delta} & c_{12}c_{23} - s_{12}s_{23}s_{13}e^{i\delta} & s_{23}c_{13} \\
s_{12}s_{23} - c_{12}c_{23}s_{13}e^{i\delta} & c_{12}s_{23} - c_{12}c_{23}s_{13}e^{i\delta} & c_{23}c_{13}
\end{pmatrix}
\]

with \(c_{ab} \equiv \cos \theta_{ab}\) and \(s_{ab} \equiv \sin \theta_{ab}\)

\(\theta_{ab}\) are mixing angles

\(\delta\) is called CP-violating phase or Dirac phase.

\(^3\)A derivation can be found in [Giunti and Kim, 2007a].
If neutrinos are Majorana particles:

$$U = U^D \text{diag}(1, e^{i\alpha_1}, e^{i\alpha_2})$$

There are two extra phases, called Majorana phases, because Majorana mass terms ($\frac{1}{2} \mathbf{n}_L^T C^\dagger M \mathbf{n}_L$) are not invariant under global U(1) gauge transformations.
Oscillation probability

Standard derivation of $P_{\nu_\alpha \rightarrow \nu_\beta}(t)$

- The mass eigenstates $|\nu_k\rangle$ are eigenstates of H, with energy $E_k = \sqrt{p^2 + m^2}$
- Schrödinger equation implies $|\nu_k(t)\rangle = e^{-iE_k t}|\nu_k\rangle$
- $|\nu_\alpha\rangle = \sum_i U_{\alpha i}^* |\nu_i\rangle$ and $|\nu_i\rangle = \sum_\alpha U_{\alpha i} |\nu_\alpha\rangle$

So the amplitude $A_{\nu_\alpha \rightarrow \nu_\beta}(t)$ is:

$$A_{\nu_\alpha \rightarrow \nu_\beta}(t) = \langle \nu_\beta | \nu_\alpha(t) \rangle = \sum_\beta \left(\sum_k U_{\alpha k}^* e^{-iE_k t} U_{\beta k} \right) \langle \nu_\beta | \nu_\alpha \rangle = \sum_k U_{\alpha k}^* U_{\beta k} e^{-iE_k t}$$
Oscillation probability

Probability of a transition $\nu_\alpha \to \nu_\beta$

$$P_{\nu_\alpha \to \nu_\beta} (t) = |A_{\nu_\alpha \to \nu_\beta} (t)|^2 = \sum_{k,j} U_{\alpha k}^* U_{\beta k} U_{\alpha j} U_{\beta j}^* e^{-i(E_k - E_j)t}$$

For ultrarelativistic neutrinos we have that $E_k \simeq E + \frac{m_k^2}{2E}$ and that $t \sim L$:

$$P_{\nu_\alpha \to \nu_\beta} (t) = |A_{\nu_\alpha \to \nu_\beta} (t)|^2 = \sum_{k,j} U_{\alpha k}^* U_{\beta k} U_{\alpha j} U_{\beta j}^* \exp \left(-i \frac{\Delta m^2_{kj} L}{2E} \right)$$

where $\Delta m^2_{kj} \equiv \Delta m^2_k - \Delta m^2_j$
We can write the oscillation probability also in the form

\[P_{\nu_\alpha \rightarrow \nu_\beta}(t) = \delta_{\alpha\beta} - 4 \sum_{k>j} \text{Re} \left[U_{\alpha k}^* U_{\beta k} U_{\alpha j} U_{\beta j}^* \right] \sin^2 \left(\frac{\Delta m_{kj}^2 L}{4E} \right) \]

\[+ 2 \sum_{k>j} \text{Im} \left[U_{\alpha k}^* U_{\beta k} U_{\alpha j} U_{\beta j}^* \right] \sin \left(\frac{\Delta m_{kj}^2 L}{2E} \right) \]

Assuming CPT invariance:
For antineutrinos we have that \(P_{\bar{\nu}_\alpha \rightarrow \bar{\nu}_\beta}(t) \) is the same up to a minus sign in third term.
A CP transformation interchanges neutrinos with negative helicity and antineutrinos with positive helicity, so $\nu_\alpha \rightarrow \nu_\beta$ becomes $\bar{\nu}_\alpha \rightarrow \bar{\nu}_\beta$.

This CP transformation changes $U \leftrightarrow U^*$.

We saw that this leads to a difference in sign of the terms depending on the imaginary parts of $U_{\alpha k}^* U_{\beta k} U_{\alpha j} U_{\beta j}^*$, leading to an asymmetry $A_{\alpha\beta}^{CP}(L, E)$:
Oscillations and CP-violation

\[A_{\alpha\beta}^{CP}(L, E) = 4 \sum_{k>j} \text{Im} \left[U_{\alpha k}^{*} U_{\beta k} U_{\alpha j} U_{\beta j}^{*} \right] \sin \left(\frac{\Delta m_{kj}^2 L}{2E} \right) \]

- \(U_{\alpha k}^{*} U_{\beta k} U_{\alpha j} U_{\beta j}^{*} \) does not depend on the Majorana phases, so they do not influence the oscillations;
- it does only depend on \(\delta \), which is therefore also called the CP-violating phase.
- If \(U \) is real neutrino oscillations do not violate CP symmetry.
Oscillation probability

- If neutrinos are massless, $\Delta m^2_{kj} = 0$, hence there will be no oscillation.

- The phase $\Phi_{kj} = -\frac{\Delta m^2_{kj} L}{2E}$ of the oscillation depends on experimental variables L and E and constants Δm^2_{kj}.

- The amplitude $U^*_{\alpha k} U_{\beta k} U_{\alpha j} U^*_{\beta j}$ depends on the elements of U.

- Absolute values of the masses cannot be determined measuring oscillations, but the mass difference can be determined.

$$P_{\nu_{\alpha} \rightarrow \nu_{\beta}}(t) = \sum_{k,j} U^*_{\alpha k} U_{\beta k} U_{\alpha j} U^*_{\beta j} \exp\left(-i \frac{\Delta m^2_{kj} L}{2E}\right)$$
Mass Hierarchy

- We can measure Δm^2_{kj}, however not the absolute values of the masses.
- The mass hierarchy of neutrinos is unknown.
- Depends on the sign of Δm^2_{13} which has not yet been measured.

Three possible hierarchies: normal, inverted and degenerate:

- $m_1^2 \simeq m_2^2 < m_3^2$
- $m_1^2 \simeq m_2^2 > m_3^2$
- $m_1^2 \simeq m_2^2 \simeq m_3^2$ (excluded)

Degenerate hierarchy is excluded, since $\Delta m^2_{12} < \Delta m^2_{23}$.
Neutrino squared-mass spectrum

\[\Delta m_{12}^2 \equiv \Delta m_{\odot}^2 \simeq 8.0 \times 10^{-5} \text{eV}^2, \quad \Delta m_{23}^2 \equiv \Delta m_{\text{atm}}^2 \simeq 2.4 \times 10^{-3} \text{eV}^2 \]

\(\sin^2 \theta_{13} \quad \text{Bounded by reactor exps. with } L \sim 1 \text{ km} \)

From max. atm. mixing, \(\nu_3 = \frac{\nu_\mu + \nu_\tau}{\sqrt{2}} \)

\(\Delta m_{\text{atm}}^2 \left\{ \begin{array}{l} \text{From } \nu_\mu \text{ (Up) oscillate but } \nu_\mu \text{ (Down) don't} \\ \text{In LMA–MSW, } P_{\text{sol}}(\nu_e \rightarrow \nu_e) = \nu_e \text{ fraction of } \nu_2 \end{array} \right\} \)

\(\Delta m_{\text{sol}}^2 \rightarrow \text{From distortion of } \nu_e \text{ (solar) and } \nu_e \text{ (reactor) spectra} \)

\(\left\{ \begin{array}{l} \text{From max. atm. mixing, } \nu_1 + \nu_2 \\ \text{includes } (\nu_\mu - \nu_\tau) / \sqrt{2} \end{array} \right\} \)

\[|U_{ei}|^2 \quad |U_{\mu i}|^2 \quad |U_{\tau i}|^2 \]

Figure: [Kayser, 2005]
Normal and inverted hierarchy

Figure: citeGouvea2005
Experiments have shown that neutrinos oscillate and have mass. Some theoretical motivations for neutrino mass are:

- No fundamental theoretical reason to not introduce a right-handed neutrino field. This can give a mass term through the Higgs-mechanism. This is called the minimally extended SM.

- Unification of forces: a supersymmetrized version of the SM naturally predicts massive neutrinos (unless lepton number symmetry is imposed).
1. Historical Background

2. Theoretical Background
 - Neutrino mixing
 - Massive neutrinos
 - Why neutrinos are always said to be left handed

3. Discussion: theory

4. Experiments
 - Solar and atmospheric neutrinos
 - Reactor experiments
 - Accelerator experiments

5. Outlook

6. References
Higgs-lepton Lagrangian

Representation of Leptons in the SM [Giunti and Kim, 2007a]:

\[
L_{L,\alpha} = \begin{pmatrix} \nu_{\alpha,L} \\ \alpha_L \end{pmatrix} \quad \text{where } \alpha = e, \mu, \tau
\]

\[
\ell_{R,\alpha} = \alpha_R
\]

\[
\mathcal{L}_{H,L} = -\sum_\alpha Y_\alpha^\ell \left(\overline{L_{L,\alpha}} \phi \ell_{R,\alpha} + \overline{\ell_{R,\alpha}} \phi^\dagger L_{L,\alpha} \right) \quad \text{where } \phi = \frac{1}{\sqrt{2}} \begin{pmatrix} 0 \\ v + H(x) \end{pmatrix}
\]

So no neutrino mass:

\[
\mathcal{L}_{H,L} = -\sum_\alpha \frac{y_\alpha^\ell v}{\sqrt{2}} \ell_{L,\alpha} \ell_{R,\alpha} - \sum_\alpha \frac{y_\alpha^\ell}{\sqrt{2}} \ell_{L,\alpha} \ell_{R,\alpha} H + \text{h.c.}
\]
Introduce $\nu_{\alpha, R}$ with $\alpha = e, \mu, \tau$ (minimally extended Standard Model) \(^4\)

- Singlet under $SU(3)_c \times SU(2)_L$ and $Y=0$
- Only interacts through gravity \Rightarrow sterile

This leads to an additional term in the Lagrangian:

$$\mathcal{L}_{H, L} = - \left(\frac{\nu + H}{\sqrt{2}} \right) \left(\sum_{\alpha=e,\mu,\tau} y_{\alpha L, \alpha L, \alpha L} + \sum_{k=1,2,3} y_{k L, k L, k L} + h.c \right)$$

$$\Rightarrow m_k = \frac{y_{k L} v}{\sqrt{2}}$$

\(^4\)In principle, there is no objection to only having 1 right-handed neutrino.
Neutrino flavor mixing

The above scenario allows for neutrino flavor mixing:

\[\nu_L = U n_L \text{ where } \nu_L = \begin{pmatrix} \nu_{eL} \\ \nu_{\mu L} \\ \nu_{\tau L} \end{pmatrix} \text{ and } n_L = \begin{pmatrix} \nu_{1L} \\ \nu_{2L} \\ \nu_{3L} \end{pmatrix} \]

However, it does not:

- allow for mixing between neutrinos and sterile neutrinos \((\nu_R) \rightarrow \) necessary?
- explain the small mass of neutrinos (i.e. the small value of \(y_n^k \))

Possible solution: See-saw mechanism
Majorana Neutrinos

Majorana condition for a fermion field $\psi = \psi_L + \psi_R$:

- $\psi = C\psi^T$ or $\psi = \psi^C$

This is satisfied if one replaces $\psi_{R/L}$ by $\psi_{L/R}^C$ (or $C\psi_{L/R}^T$)5

The Majorana Lagrangian mass terms then becomes:

$$\mathcal{L}_L^{mass} = -\frac{1}{2} m_L \bar{\nu}_L \nu_L + h.c$$

$$\mathcal{L}_R^{mass} = -\frac{1}{2} m_R \bar{\nu}_R \nu_R + h.c$$

and the Dirac Lagrangian as defined above:

$$\mathcal{L}_D^{mass} = -m_D \bar{\nu}_R \nu_L + h.c$$

5Require the field equations to be identical.
The most general Dirac-Majorana Lagrangian for one generation:

\[
\mathcal{L}^{D+M}_{\text{mass}} = \mathcal{L}^{D}_{\text{mass}} + \mathcal{L}^{L}_{\text{mass}} + \mathcal{L}^{R}_{\text{mass}} \\
= -\frac{1}{2} m_D \overline{\nu}_R \nu_L - \frac{1}{2} m_L \overline{\nu}_L \nu_L - \frac{1}{2} m_R \overline{\nu}_R \nu_R + \text{h.c.} \\
= -\frac{1}{2} \begin{pmatrix} \overline{\nu}_L & \overline{\nu}_R \end{pmatrix} \begin{pmatrix} m_L & m_D \\ m_D & m_R \end{pmatrix} \begin{pmatrix} \nu_L \\ \nu_R \end{pmatrix} + \text{h.c.}
\]

In the SM:
- \(m_L \neq 0 \) not allowed, but can be generated by physics Beyond the Standard Model (BSM)
- \(m_R \neq 0 \) OK
We want to find the field of massive neutrinos, introduce unitary matrix U

- $U^T M^\dagger M U = \begin{pmatrix} m_1 & 0 \\ 0 & m_2 \end{pmatrix}^2$

- $N_L = U n_L$ where $n_L = \begin{pmatrix} \nu_{1L} \\ \nu_{2L} \end{pmatrix}$

Moreover, this unitary matrix is given by,

$$U = \begin{pmatrix} \cos \theta e^{i\lambda} & \sin \theta \\ -\sin \theta e^{i\lambda} & \cos \theta \end{pmatrix}$$

where θ is the mixing angle and λ a CP-violating phase.

In general:

$$\tan 2\theta = \frac{2m_D}{m_R - \Re[m_L]}$$
Introducing this unitary matrix:

\[
\mathcal{L}_{\text{mass}}^{D+M} = -\frac{1}{2} \begin{pmatrix} \bar{\nu}_L & \bar{\nu}_R \end{pmatrix} \begin{pmatrix} m_L & m_D \\ m_D & m_R \end{pmatrix} \begin{pmatrix} \nu_L \\ \nu_R \end{pmatrix} + \text{h.c.}
\]

\[
= -\frac{1}{2} \bar{N}_L^c MN_L + \text{h.c}
\]

\[
= -\frac{1}{2} \bar{N}_L^c UU^\dagger MUU^\dagger N_L + \text{h.c}
\]

\[
= -\frac{1}{2} \sum_{k=1,2} m_k \bar{\nu}_k^c \nu_k L + \text{h.c.}
\]

With \(\nu_k = \nu_{kL} + \nu_{kL}^C \)
See-Saw mechanism

\[m_D \ll m_R \text{ and } m_L = 0 \implies M = \begin{pmatrix} 0 & m_D \\ m_D & m_R \end{pmatrix} \]

Eigenvalues are:
\[m_1 \approx \frac{m_D^2}{m_R} ; \]
\[m_2 \approx m_R \]

\[\Rightarrow \] a very light neutrino and a massive sterile neutrino are created

Moreover, small mixing:

\[\tan^2 \theta = \frac{2m_D}{m_R - \Re[m_L]} \implies \theta \ll 1 \]

\[^{[\text{Mulders, 2012, Giunti and Kim, 2007a}]} \]
2 Theoretical Background
 • Neutrino mixing
 • Massive neutrinos
 • Why neutrinos are always said to be left handed

3 Discussion: theory

4 Experiments
 • Solar and atmospheric neutrinos
 • Reactor experiments
 • Accelerator experiments

5 Outlook

6 References
The handedness of neutrinos: helicity

Helicity is defined as:

\[\hat{h} = \frac{\vec{S} \cdot \vec{p}}{s|\vec{p}|} = \begin{cases} +1, & \text{right-handed } \bar{\nu} \\ -1, & \text{left-handed } \nu \end{cases} \]

Not Lorentz invariant!

Figure: Pion back to back scattering: π^- has spin zero, μ^- experimentally turns out to always be right-handed ($h = +1$) [Griffiths, 2008].
Chirality: a different definition of handedness

Definition: eigenvalue of γ^5

For Weyl spinors (eigenfunctions of γ^5):

\[
\begin{align*}
\gamma^5 \psi_R &= +\psi_R \\
\gamma^5 \psi_L &= -\psi_L
\end{align*}
\]

\Rightarrow neutrinos: again called right- and left-handed

\[
\begin{align*}
\gamma^5 \overline{\psi}_R &= -\overline{\psi}_R \\
\gamma^5 \overline{\psi}_L &= +\overline{\psi}_L
\end{align*}
\]

\Rightarrow anti neutrinos: left- and right-handed respectively

Chirality is Lorentz invariant!
Relation between chirality and helicity for $m = 0$

Field equations:

$$i\hat{\partial}\psi_{R/L} = m\psi_{L/R}$$

For massless fields one can show that:

$$\hat{h}\psi_R = +\psi_R$$
$$\hat{h}\psi_L = -\psi_L$$

$$\Rightarrow$$ for $m = 0$ chirality \leftrightarrow helicity

As you would expect, for $m = 0$ helicity is also Lorentz invariant!
Only left-chiral neutrinos

Let us only consider the μ neutrinos, we have in the simplest picture:

$$\nu_{mL} = \cos \theta \nu_L + \sin \theta \nu_R^c$$

Recall that $N_L = U n_L$!!

From this it is clear that in neutrino interaction we will only see left chiral massive neutrinos (vice versa for anti-neutrinos).
π⁻ decay

\[d \quad Z \quad \bar{u} \]

\[\bar{\nu}_{mL} \quad \mu^- \]

Since we have \(\nu_L = U_{11}\nu_{1L} + U_{12}\nu_{2L} \)
1 Historical Background

2 Theoretical Background
 • Neutrino mixing
 • Massive neutrinos
 • Why neutrinos are always said to be left handed

3 Discussion: theory

4 Experiments
 • Solar and atmospheric neutrinos
 • Reactor experiments
 • Accelerator experiments

5 Outlook

6 References
1 Historical Background

2 Theoretical Background
 - Neutrino mixing
 - Massive neutrinos
 - Why neutrinos are always said to be left handed

3 Discussion: theory

4 Experiments
 - Solar and atmospheric neutrinos
 - Reactor experiments
 - Accelerator experiments

5 Outlook

6 References
Essentially two kinds of oscillations experiments

- Appearance measurements \rightarrow measure transition probability
- Disappearance measurements \rightarrow measure survival probability

\[P \sim \sin^2 \left(1.27\Delta m^2 [\text{eV}]^2 \frac{L[\text{km}]}{E[\text{GeV}]} \right). \]

- Not possible to measure flavor transitions if $\frac{\Delta m^2 L}{E} \ll 1$
- An average of $P_{\nu_\alpha \rightarrow \nu_\beta}$ can be measured when $\frac{\Delta m^2 L}{E} \gg 1$
- The sensitivity to Δm^2 is the value Δm^2 for which $\frac{\Delta m^2 L}{E} \sim 1$.
Introduction to experiments

Types of experiments are

- Solar and atmospheric neutrino experiments
- Reactor experiments
- Accelerator experiments

These last two can be divided into groups based on source-detector distance L.

- short baseline
- long baseline
- very long baseline
Introduction to experiments

<table>
<thead>
<tr>
<th>Type of experiment</th>
<th>L</th>
<th>E</th>
<th>Δm^2 sensitivity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reactor SBL</td>
<td>$\sim 10,\text{m}$</td>
<td>$\sim 1,\text{MeV}$</td>
<td>$\sim 0.1,\text{eV}^2$</td>
</tr>
<tr>
<td>Accelerator SBL (Pion DIF)</td>
<td>$\sim 1,\text{km}$</td>
<td>$\gtrsim 1,\text{GeV}$</td>
<td>$\gtrsim 1,\text{eV}^2$</td>
</tr>
<tr>
<td>Accelerator SBL (Muon DAR)</td>
<td>$\sim 10,\text{m}$</td>
<td>$\sim 10,\text{MeV}$</td>
<td>$\sim 1,\text{eV}^2$</td>
</tr>
<tr>
<td>Accelerator SBL (Beam Dump)</td>
<td>$\sim 1,\text{km}$</td>
<td>$\sim 10^2,\text{GeV}$</td>
<td>$\sim 10^2,\text{eV}^2$</td>
</tr>
<tr>
<td>Reactor LBL</td>
<td>$\sim 1,\text{km}$</td>
<td>$\sim 1,\text{MeV}$</td>
<td>$\sim 10^{-3},\text{eV}^2$</td>
</tr>
<tr>
<td>Accelerator LBL</td>
<td>$\sim 10^3,\text{km}$</td>
<td>$\gtrsim 1,\text{GeV}$</td>
<td>$\gtrsim 10^{-3},\text{eV}^2$</td>
</tr>
<tr>
<td>ATM</td>
<td>$20–10^4,\text{km}$</td>
<td>$0.5–10^2,\text{GeV}$</td>
<td>$\sim 10^{-4},\text{eV}^2$</td>
</tr>
<tr>
<td>Reactor VLB</td>
<td>$\sim 10^2,\text{km}$</td>
<td>$\sim 1,\text{MeV}$</td>
<td>$\sim 10^{-5},\text{eV}^2$</td>
</tr>
<tr>
<td>Accelerator VLB</td>
<td>$\sim 10^4,\text{km}$</td>
<td>$\gtrsim 1,\text{GeV}$</td>
<td>$\gtrsim 10^{-4},\text{eV}^2$</td>
</tr>
<tr>
<td>SOL</td>
<td>$\sim 10^{11},\text{km}$</td>
<td>$0.2–15,\text{MeV}$</td>
<td>$\sim 10^{-12},\text{eV}^2$</td>
</tr>
</tbody>
</table>

Figure: [Giunti and Kim, 2007a]
1. Historical Background

2. Theoretical Background
 - Neutrino mixing
 - Massive neutrinos
 - Why neutrinos are always said to be left handed

3. Discussion: theory

4. Experiments
 - Solar and atmospheric neutrinos
 - Reactor experiments
 - Accelerator experiments

5. Outlook

6. References
Solar Neutrinos

Both from [Giunti and Kim, 2007b]

\[
\begin{align*}
(p) & \quad p + p \rightarrow ^2 \text{H} + e^+ + \nu_e \\
(pei) & \quad p + e^- + p \rightarrow ^2 \text{H} + \nu_e \\
(p) & \quad ^3 \text{H} + p \rightarrow ^3 \text{He} + \gamma \\
(hep) & \quad ^3 \text{He} + p \rightarrow ^4 \text{He} + e^+ + \nu_e \\
(7\text{Be}) & \quad ^7 \text{Be} + e^- \rightarrow ^7 \text{Li} + \nu_e \\
(ppI) & \quad ^7 \text{Li} + p \rightarrow 2^4 \text{He} \\
(ppII) & \quad ^7 \text{Be} + p \rightarrow ^8 \text{B} + \gamma \\
(hep) & \quad ^8 \text{B} \rightarrow ^8 \text{Be}^* + e^+ + \nu_e \\
(ppIII) & \quad ^8 \text{Be}^* \rightarrow 2^4 \text{He} \\
(15\text{O}) & \quad ^{15} \text{O} + ^{12} \text{C} \rightarrow ^{13} \text{N} + e^+ + \nu_e \\
(13\text{N}) & \quad ^{13} \text{N} \rightarrow ^{13} \text{C} + e^+ + \nu_e \\
(13\text{C}) & \quad ^{13} \text{C} + p \rightarrow ^{14} \text{N} + \gamma \\
(14\text{N}) & \quad ^{14} \text{N} + p \rightarrow ^{15} \text{O} + \gamma \\
(17\text{O}) & \quad ^{17} \text{O} + ^{16} \text{O} \rightarrow ^{15} \text{N} + e^+ + \nu_e \\
(15\text{N}) & \quad ^{15} \text{N} + p \rightarrow ^{16} \text{O} + \gamma \\
(16\text{O}) & \quad ^{16} \text{O} + p \rightarrow ^{17} \text{F} + \gamma \\
(17\text{F}) & \quad ^{17} \text{F} \rightarrow ^{17} \text{O} + e^+ + \nu_e
\end{align*}
\]
Solar neutrino spectrum

Figure: [Bahcall and Pinsonneault, 2004]
Solar Neutrino reactions

Solar neutrinos are captured via the following reactions:

- **CC**: $\nu_e + d \rightarrow p + p + e^-$
- **NC**: $\nu_\alpha + d \rightarrow p + n + \nu_\alpha$
- **ES**: $\nu_\alpha + e^- \rightarrow \nu_\alpha + e^- \left(\sigma_{\nu_e} \approx 6\sigma_{\nu_{\mu,\tau}} \right)$
Homestake experiment used ^{37}Cl solved in water for CC-reaction:

$$\nu_e + ^{37}\text{Cl} \rightarrow ^{37}\text{Ar} + e^-$$

- ^{37}Ar-decay is measured.
- Threshold energy $\leq 0.814\text{MeV}$, thus ^8B neutrinos are observed.
- Background: μ-decay from cosmic rays (0.08 ± 0.03 atoms/day)
Results

Figure: [Davis, 1994]

$1 \text{SNU} = 10^{-36} \nu$ captures per target atom per second
Neutral current, Charged current and electron-scattering are measured.

Isotropic γ’s from NC neutron reactions are detected.

E_γ well above background.
SNO-results

Figure: From [Giunti and Kim, 2007b]

- $\Phi_{CC} = 1.86 \pm 0.06 \cdot 10^6 \text{cm}^{-2} \text{s}^{-1}$
- $\Phi_{NC} = 4.94 \pm 0.21 \cdot 10^6 \text{cm}^{-2} \text{s}^{-1}$
- $\Phi_{ES} = 2.35 \pm 0.22 \cdot 10^6 \text{cm}^{-2} \text{s}^{-1}$
Implications

The solar mixing parameters are (best fit):

- $\Delta m^2_{\text{sol}} = 7.1^{+1.0}_{-0.3} \cdot 10^{-5} \text{eV}^2$
- $\theta_{\text{sol}} = 32.5^{+2.4}_{-2.3}^\circ$

Figure: From [Ahmed et al., 2004]
Matter oscillations

Our distance to the sun (L) varies:

- No seasonal effects to neutrino oscillations.
- Flavor oscillations in vacuum no solution.
- Neutrino oscillations in matter.

Oscillations in Matter

- In matter, ν_e can interact with e^- via CC.
- All ν can interact via NC.
- Extra potential energy terms in Hamiltonian:

$$H_M = H_{\text{vac}} + V_W \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} + V_Z \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$

Where $V_W = \sqrt{2} G_F n_e$ due to CC and $V_Z = -\frac{\sqrt{2}}{2} G_F n_n$ due to NC.

\Rightarrow Different mixing probabilities and time effects
Δm^2 and θ replaced by effective Δm_m^2 and θ_m^7:

\[
\Delta m_m^2 \equiv \Delta m^2 \sqrt{\sin^2 2\theta + (\cos 2\theta - x)^2}
\]

\[
\sin^2 2\theta_m \equiv \frac{\sin^2 2\theta}{\sin^2 2\theta + (\cos 2\theta - x)^2}
\]

\[
x \equiv \frac{2\sqrt{2} G_F n_e E}{\Delta m^2}
\]

\Rightarrow Matter factor proportional to E and n_e.

7For a detailed derivation, see [Giunti and Kim, 2007b] or [Kayser, 2005]
For $^8B\nu_e$ in the centre of the sun, the V_C term in the Hamiltonian dominates.

$\Rightarrow \nu_e$ are born as eigenstates of this matrix with eigenvalue $\sqrt{2}G_F n_e$:

$$|\nu_e\rangle = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

Propagating to the edge of the sun, the neutrino remains eigenstate of total H_M, and thus emerges as upper eigenstate $|\nu_2\rangle$ of H_{vac} from the sun.

From there, it propagates as a normal $|\nu_2\rangle$ from the sun without oscillating.

The probability that it interacts as ν_e on earth is thus proportional to $|U_{e2}|^2 = \theta_{sol} \approx \frac{1}{3}$, and does not oscillate with L.
Cosmic rays react in the atmosphere

Figure: [Giunti and Kim, 2007b]
Main decays responsible for neutrinos:

- $\pi^+ \rightarrow \mu^+ + \nu_\mu$ or $\pi^- \rightarrow \mu^- + \bar{\nu}_\mu$
- $\mu^+ \rightarrow e^+ + \nu_e + \bar{\nu}_\mu$ or $\mu^- \rightarrow e^- + \nu_e + \bar{\nu}_\mu$

Expected flux ratio:

$$\frac{\Phi_{\nu_\mu} + \Phi_{\bar{\nu}_\mu}}{\Phi_{\nu_e} + \Phi_{\bar{\nu}_e}} \approx 2$$

However, for $E_\mu \geq 1\text{GeV}$, a portion of μ^\pm reaches the surface of the earth before escaping, thus:

$$\frac{\Phi_{\nu_\mu} + \Phi_{\bar{\nu}_\mu}}{\Phi_{\nu_e} + \Phi_{\bar{\nu}_e}} \geq 2$$
Main reactions:

\[\nu_l + N \rightarrow l^- + X \]
\[\bar{\nu}_l + N \rightarrow l^+ + X \]

Measuring the charge of the leptons is not yet possible. However, the trajectories can be determined by Cherenkov-detectors.
Super-Kamiokande

![Diagram of Super-Kamiokande](image)

Figure: [Fukuda et al., 2003]
Zenith-Angle

Figure: [Giunti and Kim, 2007b]
Different zenith angle means different L traveled through atmosphere and earth.

Figure: Zenith angle-dependent flux distribution. Top: sub-GeV, bottom: multi-GeV, left: e-like, right: μ-like. From [Kiełczewska, 2000].
Best fit for θ_{atm}:
\[\theta_{\text{atm}} = 0.820 \pm 0.048 \]

Best fit for Δm_{atm}^2:
\[\Delta m_{\text{atm}}^2 = 2.1 \cdot 10^{-3} \text{eV}^2 \]

Figure: [Wendell et al., 2010].
Historical Background

Theoretical Background
- Neutrino mixing
- Massive neutrinos
- Why neutrinos are always said to be left handed

Discussion: theory

Experiments
- Solar and atmospheric neutrinos
- Reactor experiments
- Accelerator experiments

Outlook

References
The reactor experiment

- $\overline{\nu_e}$ disappearance experiment
- Detection via inverse neutron-decay: $\overline{\nu_e} + p \rightarrow n + e^+$
- θ_{13} determined from observed-to-predicted ratio of events

Setup of the experiment:

Figure: The nearby detectors measure the total flux, whereas the far away detectors measure a different relative flux due to oscillations [Mezzetto and Schwetz, 2010].
$P_{\nu_e \rightarrow \nu_e} = 1 - c_{13}^4 \sin^2 2\theta_{\text{sol}} \sin^2 \left(1.27 \frac{\Delta m^2_{\text{sol}} L}{E} \right)$

$- c_{12}^2 \sin^2 2\theta_{13} \sin^2 \left(1.27 \frac{\Delta m^2_{13} L}{E} \right)$

$- s_{12}^2 \sin^2 2\theta_{13} \sin^2 \left(1.27 \frac{\Delta m^2_{\text{atm}} L}{E} \right)$

$\approx 1 - \sin^2 2\theta_{13} \sin^2 \left(1.27 \frac{\Delta m^2_{\text{atm}} L}{E} \right)$

Here $\Delta m^2_{13} \approx \Delta m^2_{\text{atm}} \equiv \Delta m^2_{23} = 2.4 \times 10^{-3} \text{eV}^2$. Since also $c_{12}^2 + s_{12}^2 = 1$ the second and last line combine. Moreover, the first term can be dropped for small distances ($L < 5 \text{km}$) [Beringer et al., 2012].

[Guo et al., 2007, Abe et al., 2012b]
Figure: Disappearance of $\bar{\nu}_e$ at Daya Bay [Dwyer, 2013]
A simple calculation9 to determine θ_{13}

Daya bay measured an anti-neutrino rate of:

$$\frac{\text{obs}}{\text{exp}} \approx 0.944$$

We have $L = 1.648 \text{ km}$; $E_{\nu_{\text{reactor}}} \sim 10^{-3} \text{ GeV}$; $\Delta m_{\text{atm}}^{2} \approx 2.4 \times 10^{-3} \text{ eV}^{2}$

$$P_{\bar{\nu}_{e} \rightarrow \nu_{e}} \approx 1 - \sin^2 2\theta_{13} \sin^2 \left(1.27 \frac{\Delta m_{\text{atm}}^{2}L}{E}\right)$$

$$0.944 \approx 1 - \sin^2 2\theta_{13}$$

$$\Rightarrow \sin^2 2\theta_{13} \sim 0.1$$

9After conducting a difficult experiment and doing statistical analysis.
Comparison of θ_{13} measurements

Figure: The dark region are reactor experiments, the light region accelerator experiments [Abe et al., 2012c]
The relevance of θ_{13}

The non-zero value of θ_{13} has some important consequences:

- There is a small part of ν_e in ν_3
- It allows for the possibility of CP violation in the lepton sector! (However, difficult to detect for smaller θ_{13})
1 Historical Background

2 Theoretical Background
 • Neutrino mixing
 • Massive neutrinos
 • Why neutrinos are always said to be left handed

3 Discussion: theory

4 Experiments
 • Solar and atmospheric neutrinos
 • Reactor experiments
 • Accelerator experiments

5 Outlook

6 References
Accelerator experiments create a beam of μ neutrinos. Advantages:

- Accurate determination of neutrino flux
- The parameters L and E can be set
 \rightarrow Higher oscillation probability

Detectors measure the oscillation $P(\nu_\mu \rightarrow \nu_{e,\tau})$

Accelerator experiments:
- CNGS (2008-present)
- MINOS (2005-2013)
- T2K (2010-present)
Accelerator experiments can set the value of L/E;

→ L/E approximation of the transition probability for small L/E:

- $P(\nu_\mu \rightarrow \nu_\tau) = \cos^2(\theta_{13}) \sin^2(2\theta_{23}) \sin^2(1.27\Delta m^{2}_{23} \frac{L}{E})$
- $P(\nu_\mu \rightarrow \nu_e) = \sin^2(2\theta_{13}) \sin^2(\theta_{23}) \sin^2(1.27\Delta m^{2}_{23} \frac{L}{E})$

→ L/E approximation of the transition probability for large L/E:

- $P(\nu_\mu \rightarrow \nu_e) = \cos^2(\theta_{13}) \sin^2(2\theta_{12}) \sin^2(1.27\Delta m^{2}_{12} \frac{L}{E}) + \sin^2(2\theta_{13})$

$P(\nu_\mu \rightarrow \nu_{e,\tau})$ is measured and the oscillation parameters are fitted onto the results.
Accelerator beam at CERN

- SPS proton accelerator is used to collide protons
- Collision products (kaons and pions) are directed with magnetic lensing
- Collision products decay into e.g. muon neutrinos
During the propagation the ν_μ neutrinos oscillate and the appearance of ν_e and ν_τ are measured.

CNGS uses 2 main detectors:

- **OPERA** for the detection of ν_τ
 - $\nu_\tau + N \rightarrow \tau^- + X$
 - τ^- decay processes are detected
 - $P(\nu_\mu \rightarrow \nu_\tau) = \cos^2(\theta_{13})\sin^2(2\theta_{23})\sin^2(1.27\Delta m_{23}^2 L)$

- **ICARUS** for the detection of ν_e
 - $^{40}Ar + \nu_e \rightarrow ^{40}K + e^-$
 - $P(\nu_\mu \rightarrow \nu_e) = \sin^2(2\theta_{13})\sin^2(\theta_{23})\sin^2(1.27\Delta m_{23}^2 L)$

[Kose, 2013]
Since the conventional model of neutrino oscillations require neutrinos to have mass, the mass of a neutrino will be determined with special relativity.

CNGS experiments measure the time difference between a photon and a neutrino.
\[\delta t = \gamma t \]
will be measured with OPERA and ICARUS

From gamma follows effective mass of the neutrino. [Adam et al., 2012]

\[m_{\text{eff},\alpha} = \sum_i |U_{\alpha i}|^2 m_i \]
Time dilation

Figure: OPERA: $\delta t = -1.1^{+7.2}_{-4.8} \text{ ns}$

Figure: ICARUS $\delta t = 0.1 \pm 3.4 \text{ ns}$
MINOS

Detector of the NuMI accelerator of Fermi lab
Special features:

- Can compare long base line with short base line → disappearance experiment for small L/E
 \[P(\nu_\mu \rightarrow \nu_\mu) = 1 - \sin^2(2\theta_{23})\sin^2(1.27\Delta m_{23}^2 \frac{L}{E}) \]

- Detectors are magnetized so that \(\nu_\mu \) and \(\bar{\nu}_\mu \) can be separated
 \[\nu_\mu(\bar{\nu}_\mu) + X \rightarrow \mu^- (\mu^+) + X' \]

[Adamson et al., 2011b, Adamson et al., 2013]
Detector of the NuMI accelerator of Fermi lab

Special features:

- Can compare long base line with short base line
 → disappearance experiment for small L/E
 \[P(\nu_\mu \rightarrow \nu_\mu) = 1 - \sin^2(2\theta_{23}) \sin^2(1.27 \Delta m_{23}^2 \frac{L}{E}) \]

- Detectors are magnetized so that \(\nu_\mu \) and \(\overline{\nu}_\mu \) can be separated
 \[\nu_\mu (\overline{\nu}_\mu) + X \rightarrow \mu^- (\mu^+) + X' \]

[Adamson et al., 2011b, Adamson et al., 2013]

If neutrinos and antineutrinos have different parameters, then this indicates that
\[P(\nu_\mu \rightarrow \nu_\mu) \neq P(\overline{\nu}_\mu \rightarrow \overline{\nu}_\mu). \]
This implies that CP is violated. → \(\delta_{CP} \neq 0 \) [Abe et al., 2011]
Detector of the NuMI accelerator of Fermi lab

Special features:

- Can compare long base line with short base line → disappearance experiment for small L/E
 \[P(\nu_\mu \rightarrow \nu_\mu) = 1 - \sin^2(2\theta_{23})\sin^2(1.27\Delta m_{23}^2 \frac{L}{E}) \]

- Detectors are magnetized so that ν_μ and $\bar{\nu}_\mu$ can be separated
 \[\nu_\mu(\bar{\nu}_\mu) + X \rightarrow \mu^-(\mu^+) + X' \]

[Adamson et al., 2011b, Adamson et al., 2013]

If neutrinos and antineutrinos have different parameters, then this indicates that $P(\nu_\mu \rightarrow \nu_\mu) \neq P(\bar{\nu}_\mu \rightarrow \bar{\nu}_\mu)$. This implies that CP is violated. → $\delta_{CP} \neq 0$ [Abe et al., 2011]

Other possibility: CPT violation.
→ Lorentz-violating neutrino oscillations [Greenberg, 2002]
→ The conventional neutrino oscillation model is wrong
MINOS neutrino vs anti-neutrino

\[|\Delta m^2_{23}| = 2.39^{+0.09}_{-0.10} \times 10^{-3} \text{ eV}^2; \]
\[\sin^2(2\theta_{23}) = 0.96^{+0.04}_{-0.04} \]

\[|\Delta \bar{m}^2_{23}| = 2.48^{+0.22}_{-0.27} \times 10^{-3} \text{ eV}^2; \]
\[\sin^2(2\bar{\theta}_{23}) > 0.83 \]
MINOS: measuring θ_{13}

MINOS measures θ_{13} by performing an appearance experiment for $\nu_\mu \rightarrow \nu_e$

$$P(\nu_\mu \rightarrow \nu_e) = \sin^2(2\theta_{13})\sin^2(\theta_{23})\sin^2(1.27\Delta m^2_{23} \frac{L}{E})$$

- $\theta_{23} = \frac{\pi}{4} \rightarrow \sin^2(\theta_{23} = 0.5)$
- $|\Delta m^2_{32}|^2 = 2.32 \cdot 10^{-3} \text{eV}^2$

Figure: Best fit for the MINOS data: $\sin^2(2\theta_{13}) = 0.041^{+0.047}_{-0.031}$ [Adamson et al., 2011a].
The mixing parameters change when CP-violation is added.

\[
P(\nu_\alpha \rightarrow \nu_\beta) = \delta_{\alpha\beta} \]

\[
-4 \sum_{k>j} \Re \left[U_{\alpha k}^* U_{\beta k} U_{\alpha j} U_{\beta j}^* \right] \sin^2 \left(\frac{\Delta m_{kj}^2 L}{4E} \right)
\]

\[
+2 \sum_{k>j} \Im \left[U_{\alpha k}^* U_{\beta k} U_{\alpha j} U_{\beta j}^* \right] \sin \left(\frac{\Delta m_{kj}^2 L}{2E} \right)
\]

Figure: Allowed ranges for \(2\sin^2(2\theta_{13})\sin^2(\theta_{23})\)

[Adamson et al., 2011a]
T2K: Tokai to Kamioka

Appearance experiment $\nu_\mu \rightarrow \nu_e$

- $P(\nu_\mu \rightarrow \nu_e) = \sin^2(2\theta_{13})\sin^2(\theta_{23})\sin^2(1.27\Delta m_{23}^2 \frac{L}{E})$
- $\sin^2(2\theta_{13}) = 0.104^{+0.060}_{-0.045}$ [Nakaya, 2013]

Disappearance experiments $\nu_\mu \rightarrow \nu_\mu$

- $P(\nu_\mu \rightarrow \nu_\mu) = 1 - \sin^2(2\theta_{23})\sin^2(1.27\Delta m_{23}^2 \frac{L}{E})$
- $\Delta m_{32}^2 = 2.65 \pm 0.12 \cdot 10^{-3}\text{eV}^2$
- $\sin^2(2\theta_{23}) = 0.98 \pm 0.05$

Figure: Parameter plot of T2K. [Abe et al., 2012a]
Overview of results: Mixing angles

<table>
<thead>
<tr>
<th>Experiment</th>
<th>$\sin^2(\theta_{12})$</th>
<th>$\sin^2(2\theta_{13})$</th>
<th>$\sin^2(2\theta_{23})$</th>
</tr>
</thead>
<tbody>
<tr>
<td>IceCube</td>
<td></td>
<td></td>
<td>>0.93</td>
</tr>
<tr>
<td>Super-Kamiokande</td>
<td>0.31 ± 0.01</td>
<td>0.104$^{+0.060}_{-0.045}$</td>
<td>0.98 ± 0.05</td>
</tr>
<tr>
<td>MINOS</td>
<td></td>
<td>0.041$^{+0.047}_{-0.031}$</td>
<td>>0.83</td>
</tr>
<tr>
<td>Daya Bay</td>
<td></td>
<td>0.089 ± 0.015</td>
<td></td>
</tr>
<tr>
<td>Double CHOOZE</td>
<td></td>
<td>0.109 ± 0.055</td>
<td></td>
</tr>
<tr>
<td>RENO</td>
<td></td>
<td>0.113 ± 0.042</td>
<td></td>
</tr>
<tr>
<td>Current Value (best fit)</td>
<td>0.32</td>
<td>0.096</td>
<td>0.95</td>
</tr>
<tr>
<td>Current value (3σ)</td>
<td>0.27-0.37</td>
<td>0.066-0.127</td>
<td>0.92-1</td>
</tr>
</tbody>
</table>

[Forero et al., 2012]
Overview of results: Mass

| Experiments | Δm_{21}^2 | $|\Delta m_{32}^2|$ |
|--------------------------|---|---|
| MINOS | $2.41^{+0.09}_{-0.10} \cdot 10^{-3} \text{eV}^2$ | |
| IceCube | $2.3^{+0.6}_{-0.5} \cdot 10^{-3} \text{eV}^2$ | |
| Super-Kamiokande | $7.54 \pm 0.26 \cdot 10^{-5} \text{eV}^2$ | $2.65 \pm 0.12 \cdot 10^{-3} \text{eV}^2$|
| Current value (best fit) | $7.62 \cdot 10^{-5} \text{eV}^2$ | $2.55 \cdot 10^{-3} \text{eV}^2$ |
| Current value (3σ)| $7.12 - 8.20 \cdot 10^{-5} \text{eV}^2$ | $2.31 - 2.64 \cdot 10^{-3} \text{eV}^2$ |

[Forero et al., 2012]
LSND experiment

A SBL accelerator experiment used to measure $\bar{\nu}_\mu \rightarrow \bar{\nu}_e$ appereance events.

Has produced interesting results [Collaboration, 1996]:

- An excess of events in the lower energy spectrum.
- Which corresponds to an allowed region ΔM^2 of 0.2 - 2.0 eV2
- And a possible region around $\Delta M^2 = 7$ eV2.
Figure: [Abazajian et al., 2012]
Implications of the LSND result

- The amount of Δm^2 found in the LSND experiment cannot be explained by the 3 known neutrino masses.
- The Large Electron Positron collider has only found three neutrinos with a mass smaller than one half of the mass of the Z boson.
- So extra neutrinos do not couple to the weak force.
The interesting results of the LSND has led the MiniBooNE collaboration to try to further investigate $\bar{\nu}_\mu \rightarrow \bar{\nu}_e$

- MiniBooNE had an L/E to match LSND.
- However E is an order of magnitude larger and thus the detector is further away as to produce independent results.
- MiniBoone is also devised to investigate $\nu_\mu \rightarrow \nu_e$.
MiniBooNE results

$\bar{\nu}_\mu \rightarrow \bar{\nu}_e$ results [Collaboration, 2010]:

- In the low energy spectrum excesses have been found that could be in accordance with LSND.
- In the higher spectrum no excesses have been detected.

$\nu_\mu \rightarrow \nu_e$ results [Collaboration, 2008]

- In the lower region unexplainable excesses have been found.
- Higher energy again no excesses have been found.

The MiniBooNE results are however not conclusive.
A neutrino that does not couple to known SM forces. How many are there?

Popular scenario:

- $3 + 1$ sterile neutrino
- $3 + 2$ sterile neutrinos

Recent global data analysis [Schwetz, 2013] shows that $3+2$:

- has some favourable qualities concerning to LSND and MiniBooNE results
- (and $3+n$ in general) ultimately shows no major improvements over $3+1$
Adding sterile neutrinos to the framework

New mass eigenstates ν_4, \ldots, ν_n.
The index i runs from 1 to n in the mixing matrix $U_{\alpha i}$ and thus becomes a $3 \times (3 + n)$ matrix

- The amount of sterile neutrinos has an effect on the amount of parameters in $U_{\alpha i}$.
- Mixing angles θ_{kl} for $k, l > 3$ are not considered as they are not observable.
1 Historical Background

2 Theoretical Background
 - Neutrino mixing
 - Massive neutrinos
 - Why neutrinos are always said to be left handed

3 Discussion: theory

4 Experiments
 - Solar and atmospheric neutrinos
 - Reactor experiments
 - Accelerator experiments

5 Outlook

6 References
Future experiments will tell us:

- Mass hierarchy and the absolute mass scale.
- Majorana or Dirac particle?
- CP-violation through neutrino oscillations?
- Are there sterile neutrinos?
KATRIN (Karlsruhe tritium neutrino experiment)
- will determine the absolute mass scale of neutrinos, by measuring the kinetic energy of electrons from tritium beta decay.
- A mass of 0.35 eV can be measured with 5σ significance

NOνA (NuMI off-axis ν_e appearance)
- Neutrinos from NuMI will pass 810 km through the Earth to a laboratory in Ash River, Minnesota
- Measures the oscillations $\nu_\mu \rightarrow \nu_e$ and $\bar{\nu}_\mu \rightarrow \bar{\nu}_e$
- will determine the mass hierarchy and the CP-violating phase δ and measure θ_{13} more accurately (an order of magnitude better).

Both start in 2014.
Future experiments

Searches for neutrinoless double-beta decay, which can only happen if $\nu = \bar{\nu}$, thus showing that the neutrino is a Majorana:

The \textsc{Majorana} project [et al., a]

- Uses germanium crystals enriched in Ge-76, most favourable isotope for $0\nu\beta\beta$, the lifetime of Ge-76 is greater than 2×10^{25} years.

SuperNEMO (Neutrino Ettore Majorana Observatory)

- Uses different isotopes, same technique
Future experiments

MINOS+ [et al., b]
- MINOS upgrade, started \(\sim \) 2 months ago
- Will measure \(\Delta m_{23}^2, \theta_{23}, \Delta \bar{m}_{23}^2 \) and \(\bar{\theta}_{23} \) more accurately
- Will search for sterile neutrinos in the 3 + 1 model

LSND reloaded [Sanjib K. Agarwalla,]
- Repeat LSND with Super-Kamiokande detector
- Will be able to test the LSND and MiniBooNE claims with \(5\sigma \) significance.
- Still a proposal
The future

- There are many more experiments proposed/planned.
- In the next decade the mass hierarchy and absolute mass scale of the neutrinos will be found.
- Moreover, maybe we will discover CP-violation in the lepton sector and the first Majorana particle.
- And more lies ahead in coming decade.
Thank You!
1 Historical Background

2 Theoretical Background
 - Neutrino mixing
 - Massive neutrinos
 - Why neutrinos are always said to be left handed

3 Discussion: theory

4 Experiments
 - Solar and atmospheric neutrinos
 - Reactor experiments
 - Accelerator experiments

5 Outlook

6 References
Light sterile neutrinos: A white paper.

Abe, K. et al. (2011).
Search for Differences in Oscillation Parameters for Atmospheric Neutrinos and Antineutrinos at Super-Kamiokande.

Abe, K. et al. (2012a).
First Muon-Neutrino Disappearance Study with an Off-Axis Beam.

Abe, Y. et al. (2012b).
Indication for the disappearance of reactor electron antineutrinos in the Double Chooz experiment.

Abe, Y. et al. (2012c).
Reactor electron antineutrino disappearance in the Double Chooz experiment.

Adam, T. et al. (2012).
Measurement of the neutrino velocity with the OPERA detector in the CNGS beam.

JHEP, 1210:093.

Adamson, P. et al. (2011a).
Improved search for muon-neutrino to electron-neutrino oscillations in MINOS.

Adamson, P. et al. (2011b).
Measurement of the neutrino mass splitting and flavor mixing by MINOS.

Adamson, P. et al. (2013).
Measurement of Neutrino and Antineutrino Oscillations Using Beam and Atmospheric Data in MINOS.

Ahmed et al. (2004).
Measurement of the total active 8B solar neutrino flux at the sudbury neutrino observatory with enhanced neutral current sensitivity.

What do we (not) know theoretically about solar neutrino fluxes?

Cyriana, Milad, Onno, Richard, Robert-Jan

Neutrino Physics

June 28, 2013 99 / 101
Review of particle physics.

Boger, J. et al. (2000).
The Sudbury neutrino observatory.

The liquid scintillator neutrino detector and lampf neutrino source.

Collaboration, M. (2010). Event excess in the miniboone search for $\nu^- \rightarrow \bar{\nu}_e$ oscillations.

et al., D. G. P. I.

et al., G. T.

Guo, X. et al. (2007). A Precision measurement of the neutrino mixing angle θ_{13} using reactor antineutrinos at Daya-Bay.

Sanjib K. Agarwalla, P. H.
Status of sterile neutrino oscillations.

Wendell, R. et al. (2010).
Atmospheric neutrino oscillation analysis with sub-leading effects in Super-Kamiokande I, II, and III.
Neutrinoless $2\beta - decay$

If observed:

- Would be a proof that neutrinos are majorana particles
- Lepton number violation

\[n \rightarrow \nu \rightarrow p + e^- + e^- \]

\[n \rightarrow W^- \rightarrow p + e^- + e^- \]
In this case the mixing matrix is real, and as a consequence there is no CP or T violation. It occurs when $\theta_{13} = 0$.

$$U^D = \begin{pmatrix} c_{12} & s_{12} & 0 \\ -s_{12}c_{23} & c_{12}c_{23} & s_{23} \\ s_{12}s_{23} & -c_{12}c_{23} & c_{23} \end{pmatrix}$$