Problems 4

1. Show that the requirement that $\nabla_{\mu} V^{\nu}$ is a tensor implies the transformation rule

$$
\begin{equation*}
\Gamma_{\mu^{\prime} \lambda^{\prime}}^{\nu^{\prime}}=\frac{\partial x^{\mu}}{\partial x^{\mu^{\prime}}} \frac{\partial x^{\lambda}}{\partial x^{\lambda^{\prime}}} \frac{\partial x^{\nu^{\prime}}}{\partial x^{\nu}} \Gamma_{\mu \lambda}^{\nu}-\frac{\partial x^{\mu}}{\partial x^{\mu^{\prime}}} \frac{\partial x^{\lambda}}{\partial x^{\lambda^{\prime}}} \frac{\partial^{2} x^{\nu^{\prime}}}{\partial x^{\mu} \partial x^{\lambda}} . \tag{1}
\end{equation*}
$$

2. Consider a coordinate transformation that locally is written near the origin $x^{i}=0$ as a Taylor expansion,

$$
x^{i^{\prime}}=a^{i^{\prime}}+b_{j} x^{j}+\frac{1}{2} c_{m n}^{i^{\prime}} x^{m} x^{n}+\mathcal{O}\left(x^{3}\right)
$$

where the a, b, c are constant (in the unprimed x coordinates). We take $b^{i}{ }_{i}$ to be invertible with inverse $b^{i}{ }_{i^{\prime}}$ so that $b^{i^{\prime}}{ }_{j} b^{j}{ }_{k^{\prime}}=\delta_{k^{\prime}}^{i^{\prime}}$.
(a) Show that only the symmetric part $c_{(j k)}^{i}$ contributes to the transformation above.
(b) Find the Jacobian $\frac{\partial x^{i^{1}}}{\partial x^{i}}$ and its inverse, up to $\mathcal{O}\left(x^{2}\right)$.
(c) Taylor expand the metric $g_{i j}$, then express the metric in the new coordinates $g_{i^{\prime} j^{\prime}}$ using the tensor transformation law.
(d) Show that the choice $\left.g_{i j}\right|_{0} b_{i^{\prime}} b^{j}{ }_{j^{\prime}}=\eta_{i^{\prime} j^{\prime}}$ gives a metric transformation

$$
g_{i^{\prime} j^{\prime}}=\eta_{i^{\prime} j^{\prime}}+\left.\left(b_{i^{\prime} b^{j}{ }^{j}{ }_{j^{\prime}}} \frac{\partial g_{i j}}{\partial x^{m}}-2 c_{(m n)}^{p^{\prime}} b_{\left(j^{\prime}\right.}^{n} \eta_{\left.i^{\prime}\right) p^{\prime}}\right)\right|_{0} x^{m}+\mathcal{O}\left(x^{2}\right)
$$

and show that this transformed metric is symmetric.
(e) Find the value of $c_{(j k)}^{i}$ that gives a local inertial frame

$$
g_{i^{\prime} j^{\prime}}=\eta_{i^{\prime} j^{\prime}}+\mathcal{O}\left(x^{2}\right)
$$

(f) Show that $\Gamma_{\rho \sigma}^{\mu}=\mathcal{O}(x)$ in the local inertial frame. Hence show that $\left.\nabla_{\mu} \nu^{\nu}\right|_{0}=$ $\left.\partial_{\mu} v^{\nu}\right|_{0}$ in the local inertial frame.
3. If the connection is given by the Christoffel symbol, satisfying $\nabla_{\mu} g_{\alpha \beta}=0$, prove

$$
\begin{equation*}
\nabla_{\mu} \epsilon_{\alpha \beta \gamma \delta}=0, \quad \nabla_{\mu} g^{\alpha \beta}=0 \tag{2}
\end{equation*}
$$

where, if necessary, you may use $\Gamma_{\mu \lambda}^{\mu}=\left(\partial_{\lambda}|g|^{1 / 2}\right) /|g|^{1 / 2}$.
4. Consider the metric of the expanding universe:

$$
\begin{equation*}
d s^{2}=-\mathrm{d} t^{2}+a^{2}(t)\left(\mathrm{d} x^{2}+\mathrm{d} y^{2}+\mathrm{d} z^{2}\right) \tag{3}
\end{equation*}
$$

where $a(t)$ is a scale factor. Show that the Christoffel symbol of this metric is given by

$$
\begin{equation*}
\Gamma_{00}^{0}=\Gamma_{i 0}^{0}=\Gamma_{00}^{i}=\Gamma_{j k}^{i}=0, \quad \Gamma_{i j}^{0}=a \dot{a} \delta_{i j}, \quad \Gamma_{0 j}^{i}=\frac{\dot{a}}{a} \delta_{j}^{i} . \tag{4}
\end{equation*}
$$

5. (a) Compute the Christoffel symbol $\Gamma_{\nu \rho}^{\mu}$ for the two-sphere S^{2} of unit radius.
(b) On this unit sphere, consider the vector A^{μ} which is the unit vector in the θ direction, at the point $(\theta, \phi)=(\pi / 2,0)$ in polar coordinates. What happens to the vector if we parallel transport it around the equator, i.e., along the path $(\theta(\lambda), \phi(\lambda))=(\pi / 2, \lambda)$ for $0 \leq \lambda \leq 2 \pi$?
(c) Next, consider a curve which consists of four segments:

$$
\begin{align*}
& \gamma_{1}(\lambda)=(\pi / 2, \lambda) \text { for } 0 \leq \lambda \leq \lambda_{1}, \\
& \gamma_{2}(\lambda)=\left(\pi / 2-\lambda, \lambda_{1}\right) \text { for } 0 \leq \lambda \leq \lambda_{2}, \\
& \gamma_{3}(\lambda)=\left(\pi / 2-\lambda_{2}, \lambda_{1}-\lambda\right) \text { for } 0 \leq \lambda \leq \lambda_{1}, \\
& \gamma_{4}(\lambda)=\left(\pi / 2-\lambda_{2}+\lambda, 0\right) \text { for } 0 \leq \lambda \leq \lambda_{2}, \tag{5}
\end{align*}
$$

where $0<\lambda_{1}<2 \pi$ and $0<\lambda_{2}<\pi / 2$. What happens to the vector A^{μ} once we parallel transport it around this closed path?

