Problems 4

1. Show that the requirement that $\nabla_{\mu}V^{\nu}$ is a tensor implies the transformation rule

$$\Gamma^{\nu'}_{\mu'\lambda'} = \frac{\partial x^{\mu}}{\partial x^{\mu'}} \frac{\partial x^{\lambda}}{\partial x^{\lambda'}} \frac{\partial x^{\nu'}}{\partial x^{\nu}} \Gamma^{\nu}_{\mu\lambda} - \frac{\partial x^{\mu}}{\partial x^{\mu'}} \frac{\partial x^{\lambda}}{\partial x^{\lambda'}} \frac{\partial^2 x^{\nu'}}{\partial x^{\mu} \partial x^{\lambda}}.$$
 (1)

2. Consider a coordinate transformation that locally is written near the origin $x^i = 0$ as a Taylor expansion,

$$x^{i'} = a^{i'} + b_j x^j + \frac{1}{2} c_{mn}^{i'} x^m x^n + \mathcal{O}(x^3)$$

where the a, b, c are constant (in the unprimed x coordinates). We take $b^{i'}{}_i$ to be invertible with inverse $b^i{}_{i'}$ so that $b^{i'}{}_j b^j{}_{k'} = \delta^{i'}_{k'}$.

- (a) Show that only the symmetric part $c^i_{(jk)}$ contributes to the transformation above.
- (b) Find the Jacobian $\frac{\partial x^{i'}}{\partial x^i}$ and its inverse, up to $\mathcal{O}(x^2)$.
- (c) Taylor expand the metric g_{ij} , then express the metric in the new coordinates $g_{i'j'}$ using the tensor transformation law.
- (d) Show that the choice $g_{ij}|_0 b^i{}_{i'} b^j{}_{j'} = \eta_{i'j'}$ gives a metric transformation

$$g_{i'j'} = \eta_{i'j'} + \left(b^{i}_{\ i'} b^{j}_{\ j'} \frac{\partial g_{ij}}{\partial x^{m}} - 2c^{p'}_{(mn)} b^{n}_{(j'} \eta_{i')p'} \right) \Big|_{0} x^{m} + \mathcal{O}(x^{2})$$

and show that this transformed metric is symmetric.

(e) Find the value of $c^i_{(jk)}$ that gives a local inertial frame

$$g_{i'j'} = \eta_{i'j'} + \mathcal{O}(x^2)$$

- (f) Show that $\Gamma^{\mu}_{\rho\sigma} = \mathcal{O}(x)$ in the local inertial frame. Hence show that $\nabla_{\mu}v^{\nu}|_{0} = \partial_{\mu}v^{\nu}|_{0}$ in the local inertial frame.
- 3. If the connection is given by the Christoffel symbol, satisfying $\nabla_{\mu}g_{\alpha\beta} = 0$, prove

$$\nabla_{\mu}\epsilon_{\alpha\beta\gamma\delta} = 0, \quad \nabla_{\mu}g^{\alpha\beta} = 0, \tag{2}$$

where, if necessary, you may use $\Gamma^{\mu}_{\mu\lambda} = (\partial_{\lambda}|g|^{1/2})/|g|^{1/2}$.

4. Consider the metric of the expanding universe:

$$ds^{2} = -dt^{2} + a^{2}(t)(dx^{2} + dy^{2} + dz^{2}),$$
(3)

where a(t) is a scale factor. Show that the Christoffel symbol of this metric is given by

$$\Gamma^{0}_{00} = \Gamma^{0}_{i0} = \Gamma^{i}_{00} = \Gamma^{i}_{jk} = 0, \ \Gamma^{0}_{ij} = a\dot{a}\delta_{ij}, \ \Gamma^{i}_{0j} = \frac{a}{a}\delta^{i}_{j}.$$
 (4)

- 5. (a) Compute the Christoffel symbol $\Gamma^{\mu}_{\nu\rho}$ for the two-sphere S^2 of unit radius.
 - (b) On this unit sphere, consider the vector A^μ which is the unit vector in the θ-direction, at the point (θ, φ) = (π/2, 0) in polar coordinates. What happens to the vector if we parallel transport it around the equator, i.e., along the path (θ(λ), φ(λ)) = (π/2, λ) for 0 ≤ λ ≤ 2π?
 - (c) Next, consider a curve which consists of four segments:

$$\begin{split} \gamma_1(\lambda) &= (\pi/2, \lambda) \text{ for } 0 \leq \lambda \leq \lambda_1, \\ \gamma_2(\lambda) &= (\pi/2 - \lambda, \lambda_1) \text{ for } 0 \leq \lambda \leq \lambda_2, \\ \gamma_3(\lambda) &= (\pi/2 - \lambda_2, \lambda_1 - \lambda) \text{ for } 0 \leq \lambda \leq \lambda_1, \\ \gamma_4(\lambda) &= (\pi/2 - \lambda_2 + \lambda, 0) \text{ for } 0 \leq \lambda \leq \lambda_2, \end{split}$$
(5)

where $0 < \lambda_1 < 2\pi$ and $0 < \lambda_2 < \pi/2$. What happens to the vector A^{μ} once we parallel transport it around this closed path?