
Problems 5

1. (a) By considering the components of T νµ,µ = 0 for a perfect fluid in the classical
limit, derive the Euler equations

∂ρ

∂t
+ ~∇ · (ρ~v) = 0

∂(ρ~v)

∂t
+ ~∇ · (~v ⊗ (ρ~v)) +∇p = ~0

and argue that particle conservation ∂µN
µ = 0 also results in a continuity

equation.

(b) Show that if particles are not conserved but are generated (locally) at a rate
ε(x) in the fluid rest frame, then the conservation law of particle number be-
comes

∂µN
µ = ε (1)

(c) Generalize the above to show that if the energy and momentum of a body are
not conserved (e.g., because it interacts with other systems), then there is a
nonzero four-vector F µ sourcing the conservation law:

∂νT
µν = F µ (2)

Interpret these components F µ in the fluid rest frame.

2. In an inertial frame O, calculate the components of the energy-momentum tensors
of the following systems:

(a) A group of particles all moving with the same speed v along the x-axis, as
seen in O. Let the rest-mass density of these particles be ρ0, as measured
in their comoving frame. Assume a sufficiently high density of particles to
enable treating them as a continuum.

(b) A ring of N particles of rest mass m are rotating counter-clockwise in the x-y
plane about the origin of O, at a radius a from this point, with an angular ve-
locity ω. The ring is a torus of circular cross section of radius δa� a, within
which the particles are uniformly distributed with a high enough density for
the continuum approximation to apply. Do not include the energy-momentum
of whatever forces keep them in orbit. (Part of the calculation will relate ρ0 of
part (a) to N , a, ω, and δa).
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(c) Two such rings of particles, one rotating clockwise and the other counter-
clockwise, at the same radius a. The particles do not collide or interact in any
way.

3. The conservation law ∇µT
νµ = 0 is local, i.e. valid at any point. However, in

general, there are no conservation laws for T µν between separate points in curved
spacetime (e.g. energy is not conserved along worldlines).

(a) Show that this is the case by considering the parallel-transport equation for
the stress-energy tensor.

(b) Argue that this is the case by considering the symmetries that generate the
classically conserved quantities (Noether’s Theorem).

(c) Show that we recover the classical conservation laws when the metric has
these symmetries.

(d) Show that we recover the classical conservation laws from parallel transport
of T µν , at the origin of a local inertial frame (i.e. locally).

4. In a flat spacetime, the conservation law is ∂νT µν = 0 and T µν is given by

T µν =
δL

δ(∂µΦi)
∂νΦi − ηµνL, (3)

where L is the Lagrangian density and Φi is some field. Now consider the La-
grangian density of electromagnetism (in vacuum):

L = −1

4
FµνF

µν , (4)

where Fµν = ∂µAν − ∂νAµ and Aµ is the vector potential.

(a) Using Eq. (3) but by replacing Φi with Aα, compute T µν for this theory. You
should find

T µν = −F µρ∂νAρ +
1

4
ηµνF ρσFρσ

which is neither symmetric nor gauge invariant.

(b) Show that the partial derivative of ∂λ(F µλAν) vanishes, such that adding this
term to the expression above doesn’t ruin the conservation law.

(c) Show that the stress-energy tensor is then

T µν = F µλF ν
λ −

1

4
ηµνF ρσFρσ
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