Problems 5

1. (a) By considering the components of $T^{\nu\mu}{}_{,\mu} = 0$ for a perfect fluid in the classical limit, derive the Euler equations

$$\frac{\partial \rho}{\partial t} + \vec{\nabla} \cdot (\rho \vec{v}) = 0$$
$$\frac{\partial (\rho \vec{v})}{\partial t} + \vec{\nabla} \cdot (\vec{v} \otimes (\rho \vec{v})) + \nabla p = \vec{0}$$

and argue that particle conservation $\partial_{\mu}N^{\mu} = 0$ also results in a continuity equation.

(b) Show that if particles are not conserved but are generated (locally) at a rate $\varepsilon(x)$ in the fluid rest frame, then the conservation law of particle number becomes

$$\partial_{\mu}N^{\mu} = \varepsilon \tag{1}$$

(c) Generalize the above to show that if the energy and momentum of a body are not conserved (e.g., because it interacts with other systems), then there is a nonzero four-vector F^{μ} sourcing the conservation law:

$$\partial_{\nu}T^{\mu\nu} = F^{\mu} \tag{2}$$

Interpret these components F^{μ} in the fluid rest frame.

- 2. In an inertial frame O, calculate the components of the energy-momentum tensors of the following systems:
 - (a) A group of particles all moving with the same speed v along the x-axis, as seen in \mathcal{O} . Let the rest-mass density of these particles be ρ_0 , as measured in their comoving frame. Assume a sufficiently high density of particles to enable treating them as a continuum.
 - (b) A ring of N particles of rest mass m are rotating counter-clockwise in the x-y plane about the origin of O, at a radius a from this point, with an angular velocity ω. The ring is a torus of circular cross section of radius δa ≪ a, within which the particles are uniformly distributed with a high enough density for the continuum approximation to apply. Do not include the energy-momentum of whatever forces keep them in orbit. (Part of the calculation will relate ρ₀ of part (a) to N, a, ω, and δa).

- (c) Two such rings of particles, one rotating clockwise and the other counterclockwise, at the same radius *a*. The particles do not collide or interact in any way.
- 3. The conservation law $\nabla_{\mu}T^{\nu\mu} = 0$ is local, i.e. valid at any point. However, in general, there are no conservation laws for $T^{\mu\nu}$ between separate points in curved spacetime (e.g. energy is not conserved along worldlines).
 - (a) Show that this is the case by considering the parallel-transport equation for the stress-energy tensor.
 - (b) Argue that this is the case by considering the symmetries that generate the classically conserved quantities (Noether's Theorem).
 - (c) Show that we recover the classical conservation laws when the metric has these symmetries.
 - (d) Show that we recover the classical conservation laws from parallel transport of $T^{\mu\nu}$, at the origin of a local inertial frame (i.e. locally).
- 4. In a flat spacetime, the conservation law is $\partial_{\nu}T^{\mu\nu} = 0$ and $T^{\mu\nu}$ is given by

$$T^{\mu\nu} = \frac{\delta \mathcal{L}}{\delta(\partial_{\mu}\Phi^{i})} \partial^{\nu}\Phi^{i} - \eta^{\mu\nu}\mathcal{L}, \qquad (3)$$

where \mathcal{L} is the Lagrangian density and Φ^i is some field. Now consider the Lagrangian density of electromagnetism (in vacuum):

$$\mathcal{L} = -\frac{1}{4} F_{\mu\nu} F^{\mu\nu},\tag{4}$$

where $F_{\mu\nu} = \partial_{\mu}A_{\nu} - \partial_{\nu}A_{\mu}$ and A_{μ} is the vector potential.

(a) Using Eq. (3) but by replacing Φ^i with A_{α} , compute $T^{\mu\nu}$ for this theory. You should find

$$T^{\mu\nu} = -F^{\mu\rho}\partial^{\nu}A_{\rho} + \frac{1}{4}\eta^{\mu\nu}F^{\rho\sigma}F_{\rho\sigma}$$

which is neither symmetric nor gauge invariant.

- (b) Show that the partial derivative of $\partial_{\lambda}(F^{\mu\lambda}A^{\nu})$ vanishes, such that adding this term to the expression above doesn't ruin the conservation law.
- (c) Show that the stress-energy tensor is then

$$T^{\mu\nu} = F^{\mu\lambda}F^{\nu}{}_{\lambda} - \frac{1}{4}\eta^{\mu\nu}F^{\rho\sigma}F_{\rho\sigma}$$