Problem Set One - Special Relativity - Tuesday, 27th January 2015

Question 1

1. Consider two events A and B. Explain under which circumstances it is possible that for one observer they occur in the order $A B$, but for some other observer in the order $B A$ or simultaneously. Support your conclusion by drawing a spacetime diagram.
2. Three events A, B, and C are seen by observer \mathcal{O} to occur in the order $A B C$. Another observer, $\overline{\mathcal{O}}$ sees the events to occur in the order $C B A$. Is it possible that a third observer sees the events in the order $A C B$? Support your conclusion by drawing a spacetime diagram.

Question 2

Two people start their journeys from Amsterdam to Tokyo ($\Delta x=9000 \mathrm{~km}$), carrying clocks initially synchronized in Amsterdam. One of them (A) takes an airplane ($v_{A}=1000 \mathrm{~km} \mathrm{~h}^{-1}$) and the other (B) walks ($v_{B}=4 \mathrm{~km} \mathrm{~h}^{-1}$). A waits for B in Tokyo, then they meet and compare their clocks. What's the time difference? Neglect all effects other than special relativity.

Question 3

Particle physicists are so used to setting $c=1$ that they measure mass in units of energy. In particular, they tend to use electron volts $\left(1 \mathrm{eV}=1.6 \times 10^{-12} \mathrm{erg}=1.8 \times 10^{-33} \mathrm{~g}\right)$, or more commonly, $\mathrm{keV}, \mathrm{MeV}$, and $\mathrm{GeV}\left(10^{3} \mathrm{eV}, 10^{6} \mathrm{eV}\right.$, and $10^{9} \mathrm{eV}$, respectively).

The muon has been measured to have a mass of 0.106 GeV and a rest frame lifetime of 2.19×10^{-6} seconds. Imagine that such a muon is moving in the circular storage ring of a particle accelerator, 1 km in diameter, such that the muon's total energy is 1000 GeV . How long would it appear to live from the experimenter's point of view? How many radians would it travel around the ring?

