Question 1

1. Show that given the transformation laws of ∂_{μ} and V^{ν}, the requirement that $\nabla_{\mu} V^{\nu}$ be a tensor implies the transformation rule

$$
\begin{equation*}
\Gamma_{\mu^{\prime} \lambda^{\prime}}^{\nu^{\prime}}=\frac{\partial x^{\mu}}{\partial x^{\mu^{\prime}}} \frac{\partial x^{\lambda}}{\partial x^{\lambda^{\prime}}} \frac{\partial x^{\nu^{\prime}}}{\partial x^{\nu}} \Gamma_{\mu \lambda}^{\nu}-\frac{\partial x^{\mu}}{\partial x^{\mu^{\prime}}} \frac{\partial x^{\lambda}}{\partial x^{\lambda^{\prime}}} \frac{\partial^{2} x^{\nu^{\prime}}}{\partial x^{\mu} \partial x^{\lambda}} . \tag{1}
\end{equation*}
$$

2. If the connection is given by the Christoffel symbol, satisfying $\nabla_{\mu} g_{\alpha \beta}=0$, prove

$$
\begin{equation*}
\nabla_{\mu} \epsilon_{\alpha \beta \gamma \delta}=0, \quad \nabla_{\mu} g^{\alpha \beta}=0 \tag{2}
\end{equation*}
$$

where, if necessary, you may use $\Gamma_{\mu \lambda}^{\mu}=\left(\partial_{\lambda}|g|^{1 / 2}\right) /|g|^{1 / 2}$.

Question 2

1. Compute the Christoffel symbol $\Gamma_{\nu \rho}^{\mu}$ for the two-sphere S^{2} of unit radius.
2. On this unit sphere, consider the vector A^{μ} which is the unit vector in the θ-direction, at the point $(\theta, \phi)=(\pi / 2,0)$ in polar coordinates. What happens to the vector if we parallel transport it around the equator, i.e., along the path $(\theta(\lambda), \phi(\lambda))=(\pi / 2, \lambda)$ for $0 \leq \lambda \leq 2 \pi$?
3. Next, consider a curve which consists of four segments:

$$
\begin{align*}
& \gamma_{1}(\lambda)=(\pi / 2, \lambda) \text { for } 0 \leq \lambda \leq \lambda_{1}, \\
& \gamma_{2}(\lambda)=\left(\pi / 2-\lambda, \lambda_{1}\right) \text { for } 0 \leq \lambda \leq \lambda_{2}, \\
& \gamma_{3}(\lambda)=\left(\pi / 2-\lambda_{2}, \lambda_{1}-\lambda\right) \text { for } 0 \leq \lambda \leq \lambda_{1}, \\
& \gamma_{4}(\lambda)=\left(\pi / 2-\lambda_{2}+\lambda, 0\right) \text { for } 0 \leq \lambda \leq \lambda_{2}, \tag{3}
\end{align*}
$$

where $0<\lambda_{1}<2 \pi$ and $0<\lambda_{2}<\pi / 2$. What happens to the vector A^{μ} once we parallel transport it around this closed path?

Question 3

1. Recall that the commutator of two vectors is bilinear, to prove that

$$
\nabla_{\mathbf{u}+\mathbf{n}} \mathbf{v}=\nabla_{\mathbf{u}} \mathbf{v}+\nabla_{\mathbf{n}} \mathbf{v}
$$

2. Derive the chain rule

$$
\nabla_{\mathbf{u}}(\mathbf{v} \otimes \mathbf{w})=\left(\nabla_{\mathbf{u}} \mathbf{v}\right) \otimes \mathbf{w}+\mathbf{v} \otimes\left(\nabla_{\mathbf{u}} \mathbf{w}\right)
$$

and write down the component version of this equation. Based on this, extrapolate the chain rule for generic (k, l) tensors.
3. Express $\nabla_{\mathbf{u}} \mathbf{u}$ in component notation. Show that even if the connection had an antisymmetric part $\Gamma_{[\mu \nu]}^{\alpha} \neq 0$, then it would not contribute to this quantity.

