Exercise 9.10: Let X_1, X_2, \ldots be a sequence of independent random variables with $\sigma^2_n = \mathbb{E}[X^2_n] < \infty$ and $\mathbb{E}[X_n] = 0$ for all n. Let $(F_n)_{n \in \mathbb{N}}$ be the filtration generated by X and define the martingale M by $M_n = \sum_{k=1}^n X_k$. Determine $\langle M \rangle$

Proof: We want to prove that M is square integrable to apply corollary 9.17, then we write

$$M^2_n = \sum_{1 \leq i < j \leq n} 2X_i X_j + \sum_{1 \leq i \leq n} X^2_i$$

and then the same for expectation

$$\mathbb{E}[M^2_n] = \mathbb{E}\left[\sum_{1 \leq i < j \leq n} 2X_i X_j \right] + \mathbb{E}\left[\sum_{1 \leq i \leq n} X^2_i \right]$$

since the $\mathbb{E}[X_n] = 0$ for each n and X_n is an independent sequence the first summand is equal to zero, while the second is equal to $\sum_{k=1}^n \sigma^2_k < \infty$. Then by corollary 9.17 we have that $\Delta \langle M \rangle_0 = 0$ and for $n \geq 1$ we have that $\Delta \langle M \rangle_n = \mathbb{E}[(M_n - M_{n-1})^2 \mid F_{n-1}]$, by definition we can write $\langle M \rangle_n = \sum_{k=0}^n \Delta \langle M \rangle_k$ we obtain

$$\langle M \rangle_n = \sum_{k=1}^n \mathbb{E}[(M_n - M_{n-1})^2 \mid F_{n-1}] = \sum_{k=1}^n \mathbb{E}[X^2_i \mid F_{n-1}],$$

since X_n is independent from F_{n-1} the last term is equal to $\sum_{k=1}^n \sigma^2_k$.

\qed

Exercise 9.14: Let M and N be two square integrable martingales. Show that there exists a unique predictable process $\langle M, N \rangle$ with $\langle M, N \rangle_0 = 0$ such that $MN - \langle M, N \rangle$ is a martingale. Show also that for $n \in \mathbb{N}$

$$\Delta \langle M, N \rangle_n = \mathbb{E}[\Delta M_n \Delta N_n \mid F_{n-1}].$$

Proof: Since both M and N are adapted MN is adapted as well, moreover by Holder inequality, theorem 4.44, we have that $M_n N_n$ is integrable, that is $\mathbb{E}[M_n N_n] < \infty$, hence we can apply proposition 9.16 to MN and we get that there exist a martingale X and a predictable process, we call it $\langle M, N \rangle$, such that $MN - \langle M, N \rangle = X$, since $\langle M, N \rangle$ is predictable $\langle M, N \rangle_0 = 0$. Now we apply corollary write

$$\mathbb{E}[\Delta M_n \Delta N_n \mid F_{n-1}] = \mathbb{E}[(M_n - M_{n-1})(N_n - N_{n-1}) \mid F_{n-1}] =$$

$$= \mathbb{E}[M_n N_n \mid F_{n-1}] - 2M_{n-1} N_{n-1} + M_{n-1} N_{n-1} = \mathbb{E}[M_n N_n \mid F_{n-1}] - M_{n-1} N_{n-1}$$

$$= \mathbb{E}[(M, N)_n + X_n \mid F_{n-1}] - M_{n-1} N_{n-1} = \langle M, N \rangle_n + X_n - M_{n-1} N_{n-1}$$
\[M_n N_n - X_n + X_{n-1} - M_{n-1} N_{n-1} = M_n N_n - M_{n-1} N_{n-1} - (X_n - X_{n-1}) \]

and same holds for \(\Delta \langle M, N \rangle_n \) since

\[\Delta \langle M, N \rangle_n = \Delta (MN - X)_n = \Delta (MN)_n - \Delta X_n = M_n N_n - M_{n-1} N_{n-1} - (X_n - X_{n-1}) \]

where through these equalities we used that \(X \) is a martingale, that \(\langle M, N \rangle \) is predictable and that \(MN = \langle M, N \rangle + X \).

\[\square \]

Exercise 10.5: Let \(Y \in L^1(\Omega, \mathcal{F}, \mathbb{P}) \) and a filtration \((\mathcal{F}_n)_{n \in \mathbb{N}}\) be given. Define for all \(n \in \mathbb{N} \) the random variable \(X_n = E[Y \mid \mathcal{F}_n] \). We know that there is \(X_\infty \) such that \(X_n \to X_\infty \) a.s. Show that for \(Y \in L^2(\Omega, \mathcal{F}, \mathbb{P}) \), we have \(X_n \to X_\infty \). Find a condition such that \(X_\infty = Y \). Give also an example in which \(\mathbb{P}(X_\infty = Y) = 0 \).

Proof: We use Jensen’s inequality \(E[Y \mid \mathcal{F}_n]^2 \leq E[Y^2 \mid \mathcal{F}_n] \) to prove that \(X_n \) is in \(L^2(\Omega, \mathcal{F}, \mathbb{P}) \) and that it is bounded in \(L^2 \),

\[E[X_n^2] = E[E[Y \mid \mathcal{F}_n]^2] \leq E[E[Y^2 \mid \mathcal{F}_n]] = E[Y^2] < \infty. \]

Moreover \(X_n \) is a martingale since \(\mathcal{F}_{n-1} \subset \mathcal{F}_n \) implies

\[E[E[Y \mid \mathcal{F}_n] \mid \mathcal{F}_{n-1}] = E[Y \mid \mathcal{F}_{n-1}], \]

hence we can apply theorem 10.15 which says that \(X_n \overset{\mathcal{L}}{\to} X_\infty \). A condition for \(X_\infty = Y \) to be \(\mathcal{F}_\infty \) measurable, since theorem 10.10 guarantees that under condition \(Y \in L^1 \) it holds \(X_\infty = E[Y \mid \mathcal{F}_\infty] \) one representant of the equivalence class, but since we can replace \(X_\infty \) with \(X'_\infty \) such that \(\mathbb{P}(X_\infty = X'_\infty) = 1 \) without loosing convergence we can assume \(Y = X_\infty \). Let us consider \(Y = 1 \) a constant random variable over \((\Omega, \mathcal{F}, \mathbb{P})\). We take \(B = (1, b_1, b_2, \ldots) \) an orthogonal base for \(L^2(\Omega, \mathcal{F}, \mathbb{P}) \) and we set \(\mathcal{F}_n = \sigma(b_1, \ldots, b_n) \), hence, since \(E[Y \mid \mathcal{F}_n] \) is the projection over \(\langle b_1, \ldots, b_n \rangle \) and this is orthogonal to \(\langle Y \rangle \) for each \(n \) it holds \(E[Y \mid \mathcal{F}_n] = 0 \) and hence \(X_\infty = 0 \) in \(L^2 \), while \(Y = 1 \) hence \(\mathbb{P}(Y = X_\infty) = 0 \).

\[\square \]