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Chapter 1

Introduction

1.1 Stars

A star is a sphere of gas and plasma that holds its shape through hydrostatic and thermal
equilibrium. Hydrostatic equilibrium in a star is achieved by a balance between the force
of gravity and the pressure gradient force. The force of gravity pushes the stellar material
towards the center of the star, while the gas pressure pushes the material outwards into
space. The combination of the pressure, density, temperature and chemical composition
enforces that stars are gaseous throughout. When a star is in thermal equilibrium, the tem-
perature of the gas is constant over time for a given radius. The temperature is maintained
by energy production inside the star. Many energy sources are available, e.g. gravitational,
chemical and thermonuclear energy, but only thermonuclear energy can account for the
stellar luminosities and lifetimes. In a thermonuclear reaction (‘burning’), energy is pro-
duced by the fusing of two nuclei into a more massive nucleus. Energy losses at the surfaces
of stars is what we as observers on Earth perceive as starlight.

1.2 Stellar evolution of low- and intermediate-mass

stars

The equilibrium structure of a star slowly (and sometimes rapidly) changes in time as the
energy production in the star changes. The long-term evolution of the star is driven by
successive phases of nuclear burning. Initially stars mainly consist of hydrogen, which is
fused into helium in the stellar core. This phase is known as the main-sequence phase. It
lasts for about 90% of the stellar lifetime, which is approximately 1010(M/M⊙)−2.8yr, where
M is the mass of the star and M⊙ the mass of the Sun1. When hydrogen is exhausted
in the core, the star increases in size and becomes a giant. Core burning ceases, however,

1This is called the nuclear evolution timescale.
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Chapter 1 : Introduction

hydrogen burning continues in a shell around the inert core. Since the core is no longer
supported by enough thermal pressure, the core contracts. This in turn leads to a dramatic
expansion of the stellar envelope to giant dimensions. For low- and intermediate-mass stars
(M . 8M⊙) the stellar radius increases by a factor of about 10-100 compared to the main-
sequence radius. When the density and the temperature in the core become sufficiently
high, core helium burning is ignited and carbon and oxygen are formed. For a low mass
star of M . 2M⊙, helium ignition occurs under degenerate conditions, while helium is
ignited non-degenerately for more massive stars. When the core runs out of fuel once
again, fusion continues in a shell around the carbon-oxygen core. At this stage there are
two burning shells embedded in the star, a hydrogen burning shell and a helium burning
shell. The envelope has expanded even more to roughly 100-500 solar radii (R⊙). For
stars of M . 6.5M⊙ this is the end of the line; the density and temperature in the core
will not reach values that are sufficiently high to ignite carbon. In more massive stars of
6.5M⊙. M . 8M⊙, carbon will ignite which leads to an oxygen-neon core. For all low-
and intermediate-mass stars, stellar evolution ends when the envelope is dispersed into the
interstellar medium by stellar winds. The remaining core continues to contract as it cools
down, until it is supported by electron degeneracy pressure; a white dwarf is born.

1.3 Binary evolution

Most stars are not isolated and single stars, like our Sun, but they are members of binary
systems [or even multiple stellar systems, e.g. Duchêne & Kraus, 2013]. If a star is in a
close binary system, its evolution will be modified by binary interactions. For low- and
intermediate-mass stars this occurs if the initial orbital period is less than about 10 years.
Examples of binary interactions are mass transfer, mergers and tidal interaction.

1.3.1 Roche lobe geometry

A useful geometry for isolated, circularized binary systems, is the co-rotating frame of the
binary. The potential in this frame is called the Roche potential (see Fig. 1.1 top panel).
Close to a star the potential field is dominated by the gravitational potential field of that
star. The surfaces of equal potential (see Fig. 1.1 bottom panel) are centred on that star
and approximately circular. At larger distances the surfaces of equal potential are distorted
in tear-drop shapes. The figure of eight that passes through L1 are the Roche lobes of each
star. L1 is the first Lagrangian point which is a saddle point of the potential field in which
the forces cancel out. If a star overflows its Roche lobe, matter can move freely through
L1 to the companion.

2



1.3 Binary evolution

Figure 1.1: The Roche potential of a close binary in a binary star with a mass ratio of

two in the co-rotating frame. On the top the Roche potential is shown in 3D,

where as on the bottom a contour plot is shown of equipotential surfaces. L1,

L2 and L3 are the Lagrangian points where forces cancel out. Courtesy of

Marc van der Sluys.
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Chapter 1 : Introduction

The Roche lobe geometry naturally distinguishes between three types of binary stars:

• Detached binaries
These are binaries in which the outer shells of both stars lie within their respective
Roche lobes. The stars only influence each other through tidal interactions or through
stellar winds.

• Semidetached binaries
In a semidetached binary, one of the star fills its Roche lobe. Mass is transferred
from the envelope of the Roche-lobe filling star through L1 towards the detached
companion star (see Fig. 1.1). The mass transfer significantly alters the evolution of
the two stars. In this thesis we will study how mass transfer affects binaries and their
stellar components.

• Contact binaries
Contact binaries are binaries in which both stars fill or overfill their Roche lobes.
Both stellar components are gravitationally distorted and surrounded by a common
photosphere through which the stars are in physical contact.

1.3.2 Mass transfer

When one of the stars overflows its Roche lobe, it tends to lose most of its envelope. The
evolution of the star is significantly shortened or even stopped prematurely. In the latter
case, nuclear burning ceases after the mass transfer phase. Consequently, the inert core
contracts and cools down to form a white dwarf2. On the other hand, the evolution of a
star is shortened e.g. for a star that loses its hydrogen-rich envelope but nuclear burning
continues in the helium-rich layers of the star.

The companion star can accrete none, a fraction, or all of the mass that is transferred
to it. The response of a non-degenerate star to accretion is to re-adjust its structure. This
can cause the stellar core to grow in mass adding unprocessed material (a process called
‘rejuvenation’). On the other hand, accretion onto white dwarfs is a complicated process
due to possible nuclear burning of the accreted matter (see Sect. 1.3.3).

If the mass transfer phase proceeds in a stable manner [Webbink, 1985; Hjellming &
Webbink, 1987; Pols & Marinus, 1994; Soberman et al., 1997], the donor star will stay within
its Roche lobe, approximately. The donor has to readjust its structure to recover hydrostatic
and thermal equilibrium. The orbit is affected by the re-arrangement (and possible loss)
of mass and angular momentum, and it widens in general. When mass transfer becomes
unstable, the donor star will overflow its Roche lobe further upon mass loss. Subsequently
the mass transfer rate increases even more leading to a runaway situation. A common

2This is strictly only true for the low- and intermediate-mass binaries that this thesis focuses on. More

massive stars can evolve into a neutron star or black hole.
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1.3 Binary evolution

envelope develops around both stars (see Sect. 1.3.4). The binary may evolve to a more
stable configuration or merge into a single, rapidly rotating star.

Mass transfer can become unstable through a dynamical or tidal instability. The dy-
namical stability of mass transfer depends on the response to mass loss of the donor star
and the Roche lobe of the donor star in the first place. When the Roche lobe of the donor
star shrinks faster than the radius of the donor star shrinks, a dynamical instability oc-
curs. Or vice versa, when the Roche lobe increases more slowly than the donor star, mass
transfer is dynamically unstable. In the second place the response of the companion star
is important. If the accretor star swells up while adjusting to its new equilibrium, it may
fill its Roche lobe leading to the formation of a contact binary.

Apart from the dynamical instability, a tidal instability [Darwin, 1879] can take place in
compact systems with extreme mass ratios. Tidal forces act to synchronize the rotation of
the stars with the orbit, but a stable orbit is not always possible. When there is insufficient
orbital angular momentum that can be transferred to the most massive star, the star cannot
stay in synchronous rotation. Tidal forces will cause the star to spin up by extracting
angular momentum from the orbit, but in turn the binary becomes more compact and
spins up. So that now the star needs even more angular momentum to stay in synchronous
rotation. The result is a runaway process of orbital decay.

Stable mass transfer can proceed on many timescales depending on the driving mech-
anism of the mass transfer. The donor star itself can drive Roche lobe overflow on the
timescale that it is evolving; due to its nuclear evolution or due to the thermal read-
justment of the star to the new mass. The timescale of mass transfer in the former
case is the nuclear evolution timescale of the donor (see Sect. 1.2). In the latter case
it is the thermal timescale of the donor star. The thermal timescale is approximately
3.1 · 107(M/M⊙)2(R/R⊙)−1(L/L⊙)−1yr. Mass loss can also be driven by the change in the
Roche lobe from the re-arrangement of mass and angular momentum in the binary system.
An example is angular momentum loss from the binary due to gravitational wave emission
or magnetic braking. Gravitational wave emission affects close binaries [Peters, 1964] which
makes them very interesting sources for gravitational wave interferometers such as LIGO,
Virgo or eLISA. Magnetic braking extracts angular momentum from a rotating star with
a magnetic field by means of a stellar wind. If the system is compact, tidal forces will keep
the star in corotation with the orbit such that magnetic braking removes orbital angular
momentum from the binary system as well [Verbunt & Zwaan, 1981].

1.3.3 Accretion onto white dwarfs

When a white dwarf accretes material, the matter spreads over the surface of the white
dwarf quickly, however, the matter may not be retained by the white dwarf. Depending on
the rate of accretion, and the resulting temperature and density structure near the surface
of the white dwarf [Nomoto, 1982; Nomoto et al., 2007; Shen & Bildsten, 2007], nuclear

5



Chapter 1 : Introduction

burning can take place in the accumulated surface layer. The burning occurs in a stable way
[Whelan & Iben, 1973; Nomoto, 1982] or in an unstable way in a thermo-nuclear runaway
[Schatzman, 1950; Starrfield et al., 1974].

At low mass transfer rates, the temperature and pressure in the surface layer are too
low for the matter to ignite immediately. The matter piles up on the surface of the white
dwarf. When ignition values are reached, nuclear burning quickly spreads through the layer
leading to a runaway. These events are observed as nova eruptions. During nova eruptions,
some or all of the accreted matter is ejected from the white dwarf, and possibly even
surface material of the white dwarf itself can be lost [Prialnik, 1986; Prialnik & Kovetz,
1995; Townsley & Bildsten, 2004; Yaron et al., 2005]. At higher accretion rates, the nuclear
burning on the surface of the white dwarf occurs in a stable and continuous way. Binaries
in which this occurs can be observed as supersoft X-ray sources. At even higher accretion
rates, an extended envelope develops around the white dwarf (similar to the envelope of
a giant star). Furthermore, the nuclear burning is strong enough to develop a wind from
the white dwarf [Kato & Hachisu, 1994; Hachisu et al., 1996; Hachisu et al., 1999b]. A
common envelope can be avoided if the wind attenuates the accretion rate sufficiently.

Concluding, even though the growth of white dwarfs is limited to a relatively narrow
range of mass accretion rates (for hydrogen accretion ∼ 10−7 − 10−6M⊙ yr−1), accretion
onto white dwarfs gives rise to many interesting processes.

1.3.4 Common-envelope evolution

When mass transfer is dynamically or tidally unstable, the envelope matter from the donor
star will quickly engulf the companion star [Paczynski, 1976]. Both the companion star
and the core of the donor star experience friction in their orbit around the center of mass
and spiral inward through the envelope. One possible outcome is a merger between the
companion star and the donor star’s core. However, if the common envelope (CE) can be
expelled before the merger, the spiral-in phase is halted and a close binary with a compact
object is born. Therefore the CE-phase plays an essential role in the formation of many
types of compact binary systems. Examples of systems are post-common envelope bina-
ries (PCEBs i.e. detached white dwarf - main-sequence binaries), cataclysmic variables
(semidetached white dwarf - main-sequence binaries), detached double white dwarf bina-
ries, semi-detached double white dwarf binaries (AM CVn), X-ray binaries (semidetached
binaries with accreting neutron stars or black holes).

Despite of the importance of the CE-phase and the enormous effort of the community,
the CE-phase is not well understood. In order for the envelope to be expelled, enough
energy and angular momentum must be transferred to it. Much of the discussion on CE-
evolution is focused on which energy sources (e.g. orbital energy, recombination energy)
can be used to expel the envelope and how efficient these sources can be used. Most of
our understanding of CE-evolution comes from theoretical considerations [e.g. Tutukov &

6



1.4 Supernovae Type Ia

Yungelson, 1979; Webbink, 1984] or binary population studies [e.g. Nelemans et al., 2000;
van der Sluys et al., 2006; Zorotovic et al., 2010]. Hydrodynamical simulations of the CE-
phase are a numerical challenge due to the large range in time-scales and length-scales,
however, due to advances in computer methodologies, it has become possible to simulate
parts of the CE-phase.

1.4 Supernovae Type Ia

Type Ia supernovae (SNIa) are one of the most energetic, explosive events known. They
cause a burst of radiation that for a brief amount of time outshines entire galaxies. Their
light curves show peak luminosities of around 1043erg s−1 and a gradual decline over several
weeks or months before the SNIa fades from view. The brightness of SNeIa makes allows us
to observe them at large distances from Earth. However, most importantly, the uniformity
[Phillips, 1993] in the lightcurves of SNeIa makes it possible to use SNIa as standard
candles to estimate extragalactic distances. As measuring distances in the Universe is
notoriously hard to do, observations of SNIa events have been of great importance in the
field of observational cosmology, even indicating that the Universe undergoes accelerated
expansion [e.g. Riess et al., 1998; Perlmutter et al., 1999]. SNIa explosions also play an
important role in galactic evolution as they enrich the interstellar medium with high mass
elements such as iron [e.g. Tsujimoto et al., 1995; Dupke & White, 2000; Sato et al., 2007].

Despite their significance, SNeIa are still poorly understood theoretically. It is generally
thought that SNIa are thermonuclear explosions of carbon-oxygen white dwarfs. Once
fusion has begun, the temperature of the white dwarf increases. The increase in temperature
does not affect the hydrodynamic equilibrium in a degenerate environment, contrary to
main-sequence stars which expand when heated and thus cool again. Therefore in a white
dwarf the fusion process accelerates dramatically leading to a runaway process. The energy
that is released in this process exceeds the binding energy of the white dwarf. Therefore
the white dwarf is expected to explode violently such that after a SNIa event no remnant
is left.

The details of the ignition are still poorly understood, and several evolutionary channels
have been suggested to instigate the fusion process in the WD. The two canonical channels
involve white dwarfs accreting material until they reach a maximum mass. A natural mass
limit occurs in white dwarfs when the electron degeneracy pressure is not able to support
the white dwarf against collapse. This is the case for white dwarfs that are more massive
than the Chandrasekhar mass limit, which lies at 1.44M⊙ for slowly-rotating white dwarfs.
However, the Chandrasekhar mass is not reached as carbon fusion commences in the core
at slightly lower masses. We note that as carbon-oxygen white dwarfs have masses close to
0.6M⊙ and up to about 1.1M⊙, the SNIa progenitors are biased to massive white dwarfs
and towards binaries with efficient accretion processes.

7
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One of the canonical SNIa models is the double degenerate (DD) model [Webbink,
1984; Iben & Tutukov, 1984]. In this theory two carbon-oxygen white dwarfs merge due to
the emission of gravitational waves that carry away energy and angular momentum from
the binary. If the combined mass of the system is above ∼ 1.4M⊙, it is assumed a SNIa
explosion can take place. The other canonical model is the single degenerate (SD) model
[Whelan & Iben, 1973] in which a carbon-oxygen white dwarf accretes matter from a non-
degenerate companion approaching the maximum mass limit. Understanding the accretion
process onto white dwarfs is of vital importance for this channel (see Sect. 1.3.3).

There are serious concerns about the viability of both models. The most important
concern about the single-degenerate channel is that the white dwarf should go through a
long phase of supersoft X-ray emission. However, it is unclear whether there are enough
sources of this emission to account for the observed SNIa rate [Di Stefano, 2010; Gilfanov
& Bogdán, 2010; Hachisu et al., 2010]. Regarding the double-degenerate channel, it has
long been thought that the merger would lead to a high-mass oxygen-neon white dwarf or
to the collapse of the remnant to a neutron star, however, some recent studies find that
the merger can resemble a SNIa-type explosion.

1.5 Binary population synthesis

The macroscopic properties of a specific population of binary systems are for example the
distribution of periods and mass ratios as well as space densities. These properties show the
imprint of the processes that govern the evolution of those binaries. However, the evolution
of binaries is not clear-cut and several of the processes are quite uncertain. We can study
these processes and the effect of the uncertainty of these processes on binary populations
with a binary population synthesis (BPS) approach.

BPS codes enable the rapid calculation of the evolution of a binary system. At every
timestep appropriate recipes for binary processes are taken into account. Examples of
such processes are stellar winds, stability of mass transfer, mass- and angular momentum-
loss, common-envelope evolution, tidal evolution, gravitational wave emission etc. As the
calculation of a single system with a BPS code takes merely a fraction of a second, BPS
codes are ideal for studying the most diverse properties of binary populations.

An important difference between BPS codes and detailed stellar evolution codes [such
as ev, Eggleton, 1971] is that the latter codes do resolve the stellar structure. Instead,
BPS codes use prescriptions that give the characteristics of a star as a function of time
and initial mass, such as radius, core mass and mass lost in stellar winds. Although
the additional information of a computationally resolved stellar structure is a significant
advantage when modelling binary interactions, it is computationally too expensive to evolve
a binary population from the main-sequence to remnant formation with a detailed stellar
evolution code. For the evolution of an individual binary system, the assumptions made in
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BPS codes are oversimplified, however, for the macroscopic properties of a population of
binaries the BPS approach works well (see also chapter 6).

Much effort has been devoted to increase the observational sample of specific populations
of binary systems to statistically significant levels, and to create homogeneously selected
samples. As large scale surveys (e.g. the Sloan Digital Sky Survey, Gaia) are and will be
providing us with an unprecedented number and a homogeneous set of observations, it is
an great moment to conduct BPS studies.

1.6 This thesis

In this thesis we study the formation and evolution of binaries with white dwarf components.
Starting from two zero-age main-sequence stars, we follow the evolution through the first
mass transfer phase when the initially more massive and faster evolving star fills its Roche
lobe and forms a white dwarf. In chapter 2 we study close detached systems consisting
of a white dwarf and a main-sequence companion which have evolved through a common-
envelope phase (see Fig. 1.2). From recent observations it has become clear that these
systems have short periods ranging from a few hours to a few days [Nebot Gómez-Morán
et al., 2011], however, BPS studies [de Kool & Ritter, 1993; Willems & Kolb, 2004; Politano
& Weiler, 2007; Davis et al., 2010] predict the existence of a population of long period
systems. In chapter 2 we study if the discrepancy is caused by observational selection
effects (that have not been taken into account in BPS studies previously) or by a lack of
understanding of binary evolution i.e. common-envelope evolution.

Further following the evolution of the binary, another mass transfer phase is initiated
as the main-sequence star evolves (see Fig. 1.2 bottom row). When the mass transfer is
dynamically and tidally stable, mass is transferred to the white dwarf. Under the right
circumstances, the mass can also be retained by the white dwarf (see also Sect. 1.3.3).
Accretion onto white dwarfs in a complicated process, but important because accreting
WDs can give rise to a SNIa explosion in the single-degenerate channel. The predictions
of the SNIa rate in the single-degenerate channel by different BPS studies vary strongly
[see e.g. Nelemans et al., 2013]. In chapter 3 we investigate whether these differences can
be explained by different assumptions for the mass retention efficiency of white dwarfs.

The mass retention efficiencies of white dwarf are calculated assuming constant mass
transfer rates. However, there are indications that the mass transfer rates fluctuate on
various timescales. In chapter 4 we investigate how this behaviour affects systems with
accreting white dwarf. We find that long-term mass-transfer variability allows for enhanced
mass retention of white dwarfs. If long-term mass-transfer variability is present, it is an
important effect to take into account in calculations of the SNIa rate from the single-
degenerate channel and the evolution of cataclysmic variables.
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Figure 1.2: Schematic evolution of a binary system from the zero-age main-sequence (top

row) to the formation of a semi-detached binary with a white dwarf and a

main-sequence star component (bottom row). The different rows show the

stars and their Roche lobes at different stages of their evolution. In this

system the stars initially have a mass of 5M⊙ and 2.25M⊙ and are in an

orbit with a period of 1200days. When the initially more massive star evolves

offs the main-sequence and fills its Roche lobe, a common-envelope phase

commences (second row from the top). The binary orbit shrinks by a factor

of about 100 (note the different scale in the top two and the bottom two

rows). The third row from the top shows a detached system with a remnant

and main-sequence component in a close orbit of 2.5days. After the CE-phase,

the donor star becomes a carbon-oxygen white dwarf of mass 0.97M⊙. After

121Myr of hydrogen burning (bottom row), the initially less massive star has

expanded sufficiently to fill its Roche lobe, that has been reduced greatly due

to the CE-phase. Mass is transferred to the white dwarf which will grow in

mass. This system is an example of a supernova type Ia progenitor in the

single-degenerate channel.
10
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On the other hand, if the mass transfer phase does not lead to a SNIa explosion and
a merger can be avoided, a double white dwarf binary is formed. Figure 1.3 shows an ex-
ample of the formation of a double white dwarf system. In this particular case, the first
phase of mass transfer is unstable, as well as the second. In chapter 5 we predict SNIa rates
from merging double white dwarfs in the double-degenerate channel with the additional
constraint that our models reproduce the observed double white dwarf population well. As
there are no double white dwarf binaries observed (yet!) that are SNIa progenitors unam-
biguously, BPS studies have not been able to constrain their SNIa models by comparing
with observed progenitors. However, because the evolution of the observed double white
dwarf population is similar to that of the SNIa progenitors, the former population can give
important constraints to the SNIa models.

In the last chapter we compare four binary population synthesis codes and their pre-
dictions for the populations of binaries with one white dwarf and with two white dwarf
components. The comparison is a complex process as BPS codes are often extended soft-
ware packages that are based on many assumptions. The goal of this project is to assess
the degree of consensus between the codes regarding the two binary populations, and to
understand whether the differences are caused by numerical effects (e.g. a lack of accuracy)
of by different assumptions in the physics of binary evolution.
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Figure 1.3: Schematic evolution of a binary system from the zero-age main-sequence (top

row) to the formation of a close double white dwarf system (bottom row).

The different rows show the stars and their Roche lobes at different stages

of their evolution. In this system the binary initially contains two stars of

mass 4M⊙ and 3M⊙ in an orbit of 200days. The initially more massive star

evolves off the main-sequence first and fills its Roche lobe in an unstable

way 180Myr after the formation of the binary system (second row from the

top). The donor star loses its envelope and becomes a carbon-oxygen white

dwarf of 0.63M⊙ (third row from the top). When the initially less massive

star evolves off the main-sequence and fills its corresponding Roche lobe, a

second CE-phase commences (fourth row from the top). Due to the loss of its

envelope, the donor star will turn into a white dwarf prematurely. The last

row shows the formation of a compact double white dwarf binary, however,

in the figure the binary stars are not resolved.
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of post-common-envelope binaries
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Abstract

An important ingredient in binary evolution is the common-envelope (CE)
phase. Although this phase is believed to be responsible for the formation
of many close binaries, the process is not well understood. We investigate the
characteristics of the population of post-common-envelope binaries (PCEB). As
the evolution of these binaries and their stellar components are relatively sim-
ple, this population can be directly used to constrain CE evolution. We use the
binary population synthesis code SeBa to simulate the current-day population
of PCEBs in the Galaxy. We incorporate the selection effects in our model that
are inherent to the general PCEB population and that are specific to the SDSS
survey, which enables a direct comparison for the first time between the syn-
thetic and observed population of visible PCEBs. We find that selection effects
do not play a significant role on the period distribution of visible PCEBs. To
explain the observed dearth of long-period systems, the α-CE efficiency of the
main evolutionary channel must be low. In the main channel, the CE is initiated
by a red giant as it fills its Roche lobe in a dynamically unstable way. Other
evolutionary paths cannot be constrained more. Additionally our model repro-
duces well the observed space density, the fraction of visible PCEBs amongst

13



Chapter 2 : The effect of CE evolution on the visible population of

PCEBs

white dwarf (WD)-main sequence (MS) binaries, and the WD mass versus MS
mass distribution, but overestimates the fraction of PCEBs with helium WD
companions.

2.1 Introduction

Many close binaries are believed to have encountered an unstable phase of mass transfer
leading to a common-envelope (CE) phase [Paczynski, 1976]. The CE phase is a short-lived
phase in which the envelope of the donor star engulfs the companion star. Subsequently,
the companion and the core of the donor star spiral inward through the envelope. If suf-
ficient energy and angular momentum is transferred to the envelope, it can be expelled,
and the spiral-in phase can be halted before the companion merges with the core of the
donor star. The CE phase plays an essential role in binary star evolution and, in par-
ticular, in the formation of short-period systems that contain compact objects, such as
post-common-envelope binaries (PCEBs), cataclysmic variables (CVs), the progenitors of
Type Ia supernovae, and gravitational wave sources, such as double white dwarfs.

Despite of the importance of the CE phase and the enormous efforts of the commu-
nity, all effort so far have not been successful in understanding the phenomenon in detail.
Much of the uncertainty in the CE phase comes from the discussion of which and how
efficient certain energy sources can be used to expel the envelope [e.g. orbital energy and
recombination energy, Iben & Livio, 1993; Han et al., 1995; Webbink, 2008], or if angular
momentum can be used [Nelemans et al., 2000; van der Sluys et al., 2006]. Even though
hydrodynamical simulations of parts of the CE phase [Ricker & Taam, 2008, 2012; Passy
et al., 2012] have become possible, simulations of the full CE phase are not feasible yet due
to the wide range in time and length scales that are involved [see Taam & Sandquist, 2000;
Taam & Ricker, 2010; Ivanova et al., 2013, for reviews].

In this study, a binary population synthesis (BPS) approach is used to study CE evo-
lution in a statistical way. BPS is an effective tool to study mechanisms that govern the
formation and evolution of binary systems and the effect of a mechanism on a binary pop-
ulation. Particularly interesting for CE research is the population of PCEBs (defined here
as close, detached WDMS-binaries with periods of less than 100d that underwent a CE
phase) for which the evolution of the binary and its stellar components is relatively simple.
Much effort has been devoted to increase the observational sample and to create a homo-
geneously selected sample of PCEBs [e.g. Schreiber & Gänsicke, 2003; Rebassa-Mansergas
et al., 2007; Nebot Gómez-Morán et al., 2011].
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In recent years, it has become clear that there is a discrepancy between PCEB obser-
vations and BPS results. BPS studies [de Kool & Ritter, 1993; Willems & Kolb, 2004;
Politano & Weiler, 2007; Davis et al., 2010] predict the existence of a population of long
period PCEBs (>10d) that have not been observed [e.g. Nebot Gómez-Morán et al., 2011].
It is unclear if the discrepancy is caused by a lack of understanding of binary formation
and evolution or by observational biases. This study aims to clarify this by considering
the observational selection effects that are inherent to the PCEB sample into the BPS
study. Using the BPS code SeBa, a population of binary stars is simulated with a realistic
model of the Galaxy and magnitudes and colors of the stellar components. In Sect. 2.2,
we describe the BPS models, and in Sect. 2.3, we present the synthetic PCEB populations
generated by the models. In Sect. 2.3.1, we incorporate the selection effects in our models
that are specific to the population of PCEBs found by the SDSS. Comparing this to the
observed PCEB sample [Nebot Gómez-Morán et al., 2011; Zorotovic et al., 2011a] leads to
a constraint on CE evolution, which will be discussed in Sect. 2.4.

2.2 Method

2.2.1 SeBa - a fast stellar and binary evolution code

We employ the binary population synthesis code SeBa [Portegies Zwart & Verbunt, 1996;
Nelemans et al., 2001c; Toonen et al., 2012] to simulate a large amount of binaries. We
use SeBa to evolve stars from the zero-age main sequence until remnant formation. At
every timestep, processes as stellar winds, mass transfer, angular momentum loss, common
envelope, magnetic braking, and gravitational radiation are considered with appropriate
recipes. Magnetic braking [Verbunt & Zwaan, 1981] is based on Rappaport et al. [1983]. A
number of updates to the code has been made since Toonen et al. [2012], which are described
in Appendix 2.A. The most important update concerns the tidal instability [Darwin, 1879;
Hut, 1980] in which a star is unable to extract sufficient angular momentum from the orbit
to remain in synchronized rotation, leading to orbital decay and a CE phase. Instead of
checking at RLOF, we assume that a tidal instability leads to a CE phase instantaneously
when tidal forces become affective i.e. when the stellar radius is less than one-fifth of the
periastron distance.

SeBa is incorporated in the Astrophysics Multipurpose Software Environment (AMUSE).
This is a component library with a homogeneous interface structure and can be downloaded
for free at amusecode.org [Portegies Zwart et al., 2009].
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2.2.2 The initial stellar population

The initial stellar population is generated on a Monte Carlo based approach, according to
appropriate distribution functions. These are

Prob(Mi) = KTG93 for 0.95M⊙ 6Mi 6 10M⊙,

Prob(qi) ∝ const for 0 < qi 6 1,
Prob(ai) ∝ a−1

i (A83) for 0 6 log ai/R⊙ 6 6
Prob(ei) ∝ 2ei (H75) for 0 6 ei ≤ 1,

(2.1)

where Mi is the initial mass of the more massive star in a specific binary system, the initial
mass ratio is defined as qi ≡ mi/Mi with mi the initial mass of the less massive star, ai is
the initial orbital separation and ei the initial eccentricity. Furthermore, KTG93 represents
Kroupa et al. [1993], A83 Abt [1983], and H75 Heggie [1975]. A binary fraction of 50% is
assumed and for the metallicity solar values.

2.2.3 Common-envelope evolution

For CE evolution, two evolutionary models are adopted that differ in their treatment of
the CE phase. The two models are based on a combination of different formalisms for the
CE phase. The α-formalism [Tutukov & Yungelson, 1979] is based on the energy budget,
whereas the γ-formalism [Nelemans et al., 2000] is based on the angular momentum balance.
In model αα, the α-formalism is used to determine the outcome of the CE phase. For model
γα, the γ-prescription is applied unless the CE is triggered by a tidal instability rather than
dynamically unstable Roche lobe overflow [see Toonen et al., 2012].

In the α-formalism, the α-parameter describes the efficiency with which orbital energy
is consumed to unbind the CE according to

Egr = α(Eorb,init − Eorb,final), (2.2)

where Eorb is the orbital energy and Egr is the binding energy of the envelope. The orbital
and binding energy are as shown in Webbink [1984], where Egr is approximated by

Egr =
GMdMd,env

λR
, (2.3)

where Md is the donor mass, Md,env is the envelope mass of the donor star, R is the radius
of the donor star and in principle, λ depends on the structure of the donor [de Kool et al.,
1987; Dewi & Tauris, 2000; Xu & Li, 2010; Loveridge et al., 2011].

In the γ-formalism, γ-parameter describes the efficiency with which orbital angular
momentum is used to expel the CE according to

Jb,init − Jb,final

Jb,init
= γ

∆Md

Md +Ma
, (2.4)
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Table 2.1: Common-envelope prescription and efficiencies for each model.

γ αλ

Model γα1 1.75 2
Model αα1 - 2
Model γα2 1.75 0.25
Model αα2 - 0.25

where Jb,init and Jb,final are the orbital angular momentum of the pre- and post-mass transfer
binary respectively, and Ma is the mass of the companion.

The motivation for the γ-formalism comes from the observed distribution of double
WD systems that could not be explained by the α-formalism nor stable mass transfer
for a Hertzsprung gap donor star [see Nelemans et al., 2000]. The idea is that angular
momentum can be used for the expulsion of the envelope, when there is a large amount of
angular momentum available such as in binaries with similar-mass objects. However, the
physical mechanism remains unclear.

In the standard model in SeBa, we assume γ = 1.75 and αλ = 2, based on the evolution
of double WDs [Nelemans et al., 2000, 2001c]. However, lower CE efficiencies have been
claimed [Zorotovic et al., 2010], and therefore, we construct a second set of models assuming
αλ = 0.25. See Table 2.1 for an overview of the models that are used in this paper.

2.2.4 Galactic model

When studying populations of stars that are several Gyr old on average, the star formation
history of the Galaxy becomes important. We follow Nelemans et al. [2004] in taking a
realistic model of the Galaxy based on Boissier & Prantzos [1999]. In this model, the star
formation rate is a function of time and position in the Galaxy. It peaks early in the history
of the Galaxy and has decreased substantially since then. We assume the Galactic scale
height of our binary systems to be 300 pc [Roelofs et al., 2007b,a]. The resulting population
of PCEBs at a time of 13.5 Gyr is analysed.

2.2.5 Magnitudes

For WDs, the absolute magnitudes are taken from the WD cooling curves of pure hydrogen
atmosphere models [Holberg & Bergeron, 2006; Kowalski & Saumon, 2006; Tremblay et al.,
2011, and references therein1]. These models cover the range of effective temperatures of
Teff = 1500 − 100000K and of surface gravities of log = 7.0 − 9.0 for WD masses between
0.2 and 1.2M⊙. For MS stars of spectral type A0-M9, we adopt the absolute magnitudes
as given by Kraus & Hillenbrand [2007]. Overall the colours, correspond well to colours
from other spectra, such as the observational spectra from Pickles [1998, with colors by

1See also http://www.astro.umontreal.ca/∼bergeron/CoolingModels.
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Covey et al. [2007]] and synthetic spectra [Munari et al., 2005] from Kurucz’s code [Kurucz
& Avrett, 1981; Kurucz, 1993]. For both the MS stars and WDs, we linearly interpolate
between the brightness models. For MSs and WDs that are not included in the grids, the
closest gridpoint is taken.

To convert absolute magnitudes to apparent magnitudes, the distance from the sun
is used as given by the Galactic model. Furthermore, we adopt the total extinction in
the V filter band from Nelemans et al. [2004], which is based on Sandage’s extinction law
[Sandage, 1972]. We assume the Galactic scale height of the dust to be 120 pc [Jonker
et al., 2011]. To evaluate the magnitude of extinction in the different bands of the ugriz-
photometric system, we use the conversion of Schlegel et al. [1998], which are based on the
extinction laws of Cardelli et al. [1989] and O’Donnell [1994] with RV = 3.1.

2.2.6 Selection effects

We assume that WDMS binaries can be observed in the magnitude range 15-20 in the
g-band. As WDs are inherently blue and MS are inherently red, we assume that WDMS
binaries can be distinguished from single MS stars if

∆g ≡ gWD − gMS < 1, (2.5)

where gWD and gMS are the magnitude in the g band of the WD and the MS respectively,
and distinguished from single WDs if

∆z ≡ zWD − zMS > −1, (2.6)

where zWD and zMS are the z band magnitudes of the WD and the MS respectively. The
g-band is used instead of the u-band, because the u-g colours of late-type MS stars are
fairly uncertain [Munari et al., 2005; Bochanski et al., 2007]. The effect of (varying) the
cuts will be discussed in forthcoming sections.

2.3 Results

Figures 2.1 and 2.2 show the full and visible population of PCEBs in ugriz color-color space
for model αα2. The full population of PCEBs lies close to the unreddened MS. Most
PCEB systems will be observed as apparent single MS stars. On the other hand, the
visible population of PCEBs is by construction clearly distinguished from the MS in the
u-g vs. g-r color-color diagram. In the r-i vs. i-z diagram and g-r vs. r-i diagram, most
visible systems lie close to the MS indicating that the WD components are generally cold
[see Augusteijn et al., 2008, Fig 2]. The u-g vs. g-r diagram also shows that the majority
of systems is relatively red confirming that samples of PCEBs that are discovered by their
blue colors [e.g. Schreiber & Gänsicke, 2003], are severely biased and incomplete. The

18



2.3 Results

�0.5 0.0 0.5 1.0 1.5 2.0
g-r

�1.0

�0.5

0.0

0.5

1.0

1.5

2.0

2.5

3.0

u
-g

�0.5 0.0 0.5 1.0 1.5 2.0
r-i

�1.0

�0.5

0.0

0.5

1.0

1.5

2.0

g
-r

�0.5 0.0 0.5 1.0 1.5
i-z

�0.5

0.0

0.5

1.0

1.5

2.0

r-
i

Figure 2.1: Color-color diagrams for the full population of PCEBs with orbital periods

less than 100d and for a limiting magnitude of g = 15 − 20 for model αα2.

On the top, it shows the u-g vs. g-r diagram, in the middle, the g-r vs. r-i

diagram, and on the bottom, the r-i vs. i-z diagram. The intensity of the

grey scale corresponds to the density of objects on a linear scale. The solid

line corresponds to the unreddened MS from A-type to M-type MS stars.
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Figure 2.2: Color-color diagrams for the visible population of PCEBs for model αα2. The

order of the diagrams is as in Fig. 2.1. The intensity of the grey scale corre-

sponds to the density of objects on a linear scale. The solid line corresponds

to the unreddened MS from A-type to M-type MS stars.
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Table 2.2: The space density of visible PCEBs within 200 and 500pc from the Sun in

10−6 pc−3for different models of CE evolution.

within 200pc within 500 pc
Model γα1 13 9.0
Model αα1 15 12
Model γα2 5.8 5.2
Model αα2 4.9 4.0

Observed 6-301

Notes:
1 Schreiber & Gänsicke [2003].

color-color diagrams for model αα1, model γα1, and model γα2 are very comparable to
those of model αα2.

The space density of visible PCEBs follows directly from our models where the position
of the PCEBs in the Galaxy is given by the Galactic model (see Sect. 2.2.4). The space
density (see Table 2.2) is calculated in a cylindrical volume with height above the plane of
200pc and radii of 200pc and 500pc centred on the Sun. At small distances (. 100pc) from
the Sun, our data is noisy due to low number statistics, and at larger distances, the PCEB
population is magnitude limited. The observed space density of PCEBs (6 −30) · 10−6 pc−3

[Schreiber & Gänsicke, 2003] is fairly uncertain and consistent with all BPS models.
Figures 2.3, 2.4, and 2.5 show the distribution of MS mass, WD mass, and orbital period

of the visible population of PCEBs. Model γα1, αα1 and γα2 show PCEB systems with
periods between 0.05-100d, whereas model αα2 shows a narrower period range of about
0.05-10d. Few PCEBs exist at periods of less than a few hours, as these systems come in
contact and possibly evolve into CVs. Figure 2.4 shows a relation between MS and WD
mass that is different for each model. The masses of WDs in visible PCEBs are roughly
between 0.2 and 0.8M⊙; most WDs have either helium (He) or carbon-oxygen (CO) cores.
Figure 2.5 shows that the model γα1 and model γα2 periods at a given WD mass can
be longer than for model αα1 and model αα2. This is because the CE phase leads to a
strong decrease in the orbital separation according to the α-prescription, while this is not
necessarily true in the γ-prescription.

Varying the cuts that determine which PCEBs are visible (see Sect. 2.2.6), does not
change our results much. The limiting magnitude of g = 15 − 20 does not affect the
relations between WD mass, MS mass, and period, but it can effect the space density of
visible PCEBs. If the sensitivity of the observations increases to g = 21, the space density
within 200pc and 500pc increases by about 15-30% and 30-50% respectively.

The cut that distinguishes WDMS from apparent single WDs (see eq. 2.6) has a small
effect on the population of PCEBs. If we assume a more conservative cut, less massive
MS stars are visible at a given WD temperature. Varying the cut between ∆z > 0 and
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Figure 2.3: Visible population of PCEBs as a function of orbital period and mass of the

MS star for all models. The intensity of the grey scale corresponds to the

density of objects on a linear scale.

∆z > −2 does not affect the space density significantly. The distribution of periods is not
affected. Making a cut in the i-band instead of the z-band has a similar effect on the visible
PCEB population as varying ∆z.

Varying the cut that distinguishes WDMS from apparent single MS stars (see eq. 2.5) is
important for the space density and the MS mass distribution of PCEBs, as the WD is less
bright than the secondary star for most systems . If a more conservative cut is appropriate
i.e. ∆g > 0, the space density decreases by about 30-40%, and the less massive MS stars are
visible at a given WD temperature. The space density increases by 40-50% when assuming
∆g > 2. Varying the cut between ∆g > 0 and ∆g > 2 affects the maximum MS mass in
PCEBs by ±0.1M⊙. Most importantly, the correlations of MS mass with WD mass and
period are, however, not affected. The effect on the visible PCEB population of making a
cut in the u-band is comparable to that in the g-band.
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Figure 2.4: Visible population of PCEBs as a function of mass of the WD and the MS

star for all models. The intensity of the grey scale corresponds to the density

of objects on a linear scale.
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Figure 2.5: Visible population of PCEBs as a function of orbital period and WD mass
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2.3.1 The SDSS PCEB sample

To compare our models with the results of Nebot Gómez-Morán et al. [2011] and Zorotovic
et al. [2011a], we place two additional constraints on the visible population of PCEBs in
comparison to those described in Sect. 2.2.6. Following these authors, we only consider WDs
that are hotter than 12000K and MS stars of the stellar classification M-type. However,
there is a discrepancy in the relation between spectral type and stellar mass used in those
papers and that of Kraus & Hillenbrand [2007] due to the uncertainty in stellar radii of
low-mass stars. Where the former [based on Rebassa-Mansergas et al., 2007] finds that
M-type stars have masses of less than 0.472M⊙, Kraus & Hillenbrand [2007] find that the
M-dwarf mass range is extended to 0.59M⊙. To do a consistent comparison, we will adopt
the relation between spectral type and stellar mass of Rebassa-Mansergas et al. [2007] and
the relation between magnitudes and spectral types of Kraus & Hillenbrand [2007]. The
effect of this discrepancy is further discussed in the Sect. 2.B.

Comparing the color-color diagrams of the visible PCEB population (see Fig. 2.2) with
that of the fraction that is visible in the SDSS (see Fig. 2.6) shows that the observed
population is biased toward late-type secondaries and hot WDs [see Augusteijn et al.,
2008, Fig. 2]. The bias against systems containing early-type secondaries is in accordance
with the findings of Rebassa-Mansergas et al. [2010] for the WDMS population from the
SDSS.

Nebot Gómez-Morán et al. [2011] studied the observed period distribution of observed
PCEBs. They find the distribution follows approximately a log-normal distribution that
peaks at about 10.3h and ranges from 1.9h to 4.3d (see points in Fig. 2.7). They also find
that the period distribution of the PCEBs found by the SDSS is very comparable to that
of previously known PCEBs. However, Nebot Gómez-Morán et al. [2011] point out that
the dearth of long-period systems is in contradiction with the results of binary population
synthesis studies [see de Kool & Ritter, 1993; Willems & Kolb, 2004; Politano & Weiler,
2007; Davis et al., 2010] indicating a low α-CE efficiency, if selection effects do not play a
role. Figure 2.7 shows that the selection effects do not cause a dearth of PCEBs with long
periods in model αα1, γα1, and γα2. Only the results of model αα2 with a reduced α-CE
efficiency are consistent with the observed period distribution.

Another observational constraint for our models can come from the relative population
sizes. Although the space density of PCEBs is not known very accurately, it has become
possible to determine the fraction of PCEBs amongst WDMS systems of all periods. From
SDSS observations, Nebot Gómez-Morán et al. [2011] find that the fraction of PCEBs
amongst unresolved WDMS with M-dwarf companions is 27±2%. Wide WDMS that are
blended or fully resolved are not included in their sample. To compensate for this effect,
we exclude those WDMS systems from our WDMS sample for which the angular size of an
object is larger than twice the seeing, where the size of the object is approximated by the
orbital separation, and where the distance to the WDMS is given by the Galactic model
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Figure 2.6: Color-color diagrams for the visible population of PCEBs in the SDSS for

model αα2. The order of the diagrams is as in Fig. 2.1. The intensity of the

grey scale corresponds to the density of objects on a linear scale. The solid

line corresponds to the unreddened MS from A-type to M-type MS stars. The

color-color diagrams are very comparable to those of model αα1, model γα1,

and model γα2.
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Figure 2.7: Visible population of PCEBs in the SDSS as a function of orbital period

and mass of the MS star for all models. The intensity of the grey scale

corresponds to the density of objects on a linear scale. Overplotted are the

observed PCEBs taken from Zorotovic et al. [2011a]. Thick points represent

systems that are found by the SDSS, and thin points represent previously

known PCEBs with accurately measured parameters. The previously known

sample of PCEBs is affected by other selection effects than the SDSS sample

or the synthetic sample. Note that Ik Peg has been removed from the sample

as its MS component is not an M-dwarf.
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Figure 2.8: Visible population of PCEBs in the SDSS as a function of mass of the WD

and the MS star for all models. The intensity of the grey scale corresponds to

the density of objects on a linear scale. Overplotted are the observed PCEBs

taken from Zorotovic et al. [2011a]. Thick points represent systems that are

found by the SDSS, and thin points represent previously known PCEBs with

accurately measured parameters. The previously known sample of PCEBs

is affected by other selection effects than the SDSS sample or the synthetic

sample. Note that Ik Peg has been removed from the sample as its MS

component is not an M-dwarf.
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Figure 2.9: Visible population of PCEBs in the SDSS as a function of orbital period and

WD mass for all models. The intensity of the grey scale corresponds to the

density of objects on a linear scale. Overplotted are the observed PCEBs

taken from Zorotovic et al. [2011a]. Thick points represent systems that are

found by the SDSS, and thin points represent previously known PCEBs with

accurately measured parameters. The previously known sample of PCEBs

is affected by other selection effects than the SDSS sample or the synthetic

sample. Note that Ik Peg has been removed from the sample as its MS

component is not an M-dwarf.
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Table 2.3: The fraction of visible PCEBs amongst unresolved WDMS for different models

of CE evolution. The errors are not statistical errors but come from varying

boundaries for the limiting period and seeing.

Model γα1 0.17-0.23
Model αα1 0.27-0.35
Model γα2 0.10-0.14
Model αα2 0.13-0.15

Observed 0.27 ± 0.021

Notes: 1Nebot Gómez-Morán et al. [2011]

(see Sect. 2.2.4). The seeing limit is varied between the median seeing of SDSS of 1.4′′

and an upper limit for over 90% of the SDSS data of 2′′. Furthermore, the SDSS PCEB
identification method is based on radial velocity measurements, and, as such dependent
on the number of spectra taken, the temporal sampling of the measurements and the
accuracy of the radial velocity measurement. Nebot Gómez-Morán et al. [2011] find that
their identification method is not sensitive to systems with periods of more than a few tens
of days, however, the observed period distribution that cuts off at a few days is not strongly
affected by this bias. In the calculation of the fraction of PCEBs amongst WDMS systems,
we therefore exclude long-period PCEBs from the PCEB sample (but include them in the
WDMS sample). As the sensitivity of the SDSS PCEB identification method depends
on the orbital period of the system [see Fig. 10 of Nebot Gómez-Morán et al., 2011], the
limiting period is varied between 10d and 50d. The fraction of visible PCEBs amongst
unresolved WDMS for all models are consistent with the observed value within a factor of
two (see Table 2.3). Based on a sample of WDs with near-infrared emission observed with
the Hubble Space Telescope, Farihi et al. [2010] also found a ratio of about 25%.

Zorotovic et al. [2011a] studied the mass dependencies of the orbital period distribu-
tion and found that systems containing high-mass secondaries tend to have longer orbital
periods. Figure 2.7 shows a similar trend in our models, however, model αα2 reproduces
the observations best due to the period distribution. The relation between WD and sec-
ondary mass cannot be used to differentiate between CE theories, because the models show
very similar distributions (see Fig. 2.8), which is contrary to the complete visible PCEB
sample (see Fig. 2.4). However, the models match well to the observed systems in Fig. 2.8
for WD masses less than about 0.7M⊙. The models show a lack of PCEBs with massive
WD components (see Sect. 2.4 for a discussion). Disregarding WDs with masses more than
about 0.8M⊙, Fig. 2.9 shows a good match between the observations and the predictions of
model αα2 regarding the distribution of orbital period versus WD mass. The discrepancy
between the observed period distribution and the synthetic ones from model αα1, model
γα1, and model γα2 is mainly found in PCEBs with helium WD components. For He-core
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Table 2.4: Percentage of helium WDs and carbon/oxygen (including oxygen/neon) WDs

in visible PCEBs in the SDSS for different models of CE evolution.

He WD CO WD
Model γα1 72 28
Model αα1 75 25
Model γα2 83 17
Model αα2 68 32

Observed1 33-46 54-67

Notes: 1Zorotovic et al. [2011b]. The percentages in the PCEB population that is found

by SDSS are similar to the percentages of the full sample of Zorotovic et al. [2011b] that is

given here. The observed type of the WD is determined by its mass with a limiting mass

of 0.5M⊙ for helium WDs, which is consistent with our models. The range in the observed

percentages is caused by a few systems in which the stellar type could not be determined

unambiguously.

WDs (i.e. MWD < 0.5M⊙), all models show an increase in orbital period with WD mass,
however, statistical evidence of this relation in the current observed sample has not been
found [Zorotovic et al., 2011a]. In addition, less than half of the observed systems contains
a He WD, which is in contradiction with our models for which at least 70% of PCEB WDs
are helium rich (see Table 2.4).

2.3.2 Variable CE efficiency

Next, we consider the possibility that CE evolution occurs differently for different types
of donor stars or types of instabilities. We differentiate between red giant (RG) donors
and asymptotic giant branch (AGB) donors and between dynamical (DY) and tidal (TI)
instabilities. The majority of PCEBs is formed through a dynamical instability initiated
by a RG (see Table 2.5, RG-DY). This evolutionary path is not much affected by processes
other than the CE phase, as the evolution is relatively simple: For example, the donor stars
do not suffer from superwinds as AGB stars. For this path, only the PCEBs from model
αα2 with a reduced CE efficiency of αλ = 0.25 are consistent with the observed period
distribution and its mass dependencies. Any other CE model produces a high number of
PCEBs at periods larger than 10d.

Subsequently, we study CE evolution in the other evolutionary channels with two hy-
potheses. First, we assume that CE interactions with red giant donors suffer from a low CE
efficiency and that those with AGB donors suffer from a high CE efficiency (RG-DY and
RG-TI according to model αα2, AGB-DY and AGB-TI according to model γα1 or αα1).
However, the PCEB population from this hypothesis does not reproduce the observed pe-
riod and mass distributions significantly better or worse than model αα2. The percentage
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Table 2.5: Percentage of visible PCEBs in the SDSS from different evolutionary paths for

different models of CE evolution. The last column represents the total number

of visible systems for each model in our simulations. RG and AGB represent

systems in which the CE phase is initiated by a red giant and a AGB star

respectively. DY and TI represent systems that evolve through a dynamical

or tidal instability, respectively.

RG-DY RG-TI AGB-DY AGB-TI Total
Model γα1 55 18 5 23 1958
Model αα1 64 11 11 14 2967
Model γα2 77 7 8 9 1390
Model αα2 61 7 24 8 1142

of systems containing a He WD improves slightly to about 60% and 50% for AGB-DY and
AGB-TI according to model γα1 and αα1 respectively. The second hypothesis is that all
systems evolving through dynamical instabilities suffer from low CE efficiency and that
systems evolving through a tidal instability do not (RG-DY and AGB-DY according to
model αα2 and RG-TI and AGB-TI according to model αα12). However, also this hy-
pothesis does not lead to a significant improvement (or worsening) in the period and mass
distributions compared to model αα2. The percentage of systems containing a He WD is
about 75%. Concluding, at current we cannot constrain the CE evolution or efficiencies
of the evolutionary channels RG-TI, AGB-DY and AGB-TI, although the percentage of
systems with helium WDs improves when assuming that the CE efficiency is lower when
the CE phase is initiated by a RG star than for an AGB star.

2.4 Discussion and conclusion

We have studied common-envelope evolution by theoretical modelling of the formation and
evolution of post-common-envelope binaries with constraints from observations. We have
considered four models of CE evolution that differ in the CE prescription and CE efficiency.
The SDSS has played an important role in providing the largest and most homogeneous
sample of PCEBs, however, the visible population of PCEBs is still affected by strong
selection effects. We presented here the first binary population models that consider the
selection effects that are inherent to the population of visible PCEBs.

We find that although selection effects are important, e.g. for the secondary mass
distribution, they do not lead to a dearth of long-period systems as is observed [e.g., Nebot
Gómez-Morán et al., 2011]. Furthermore, we find that the main evolutionary path of visible
PCEBs in the SDSS consists of a CE phase caused by a red giant that fills its Roche lobe
in a dynamically unstable manner. Most importantly, we find that the efficiency for this

2Note that model γα1 is identical to model αα1 for systems evolving through a tidal instability.
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channel at which orbital energy can be used to expel the envelope in the CE phase is low
- to reproduce the observed period distribution with few systems at 10-100d. Secondary
evolutionary paths cannot be constrained at present; low and high CE efficiencies for energy
consumption or angular momentum consumption are consistent with observations.

Besides the distribution of orbital periods, the results from the model with the reduced
α-CE efficiency are consistent with the observed space density, the fraction of PCEBs
amongst WDMS, and the WD mass vs. MS mass distribution, however, the fraction of
PCEBs containing He WDs is overestimated. When assuming that the CE efficiency is
higher when the CE phase is initiated by an AGB star rather than a RG star, the fraction
of He WDs in PCEBs is in better agreement with the observations. At face value, an
overestimation of the fraction of He WDs companions in PCEBs exaggerates the importance
of the RG-DY channel, however, the conclusion about the low CE efficiency for RG systems
is based on the the short periods that are observed for PCEBs with He WD components.

The fraction of He WDs amongst PCEBs depends on the CE efficiency as shown by
Table 2.4 [see also de Kool & Ritter, 1993; Willems & Kolb, 2004] and the initial distribution
of mass ratios and orbital separations. Willems & Kolb [2004] showed that the effect of the
CE efficiency and the initial mass ratios on the He-WD ratio for the full PCEB population
cannot be distinguished, but that the effect of the initial mass ratio distribution for low
CE efficiencies (αλ = 0.1) becomes negligible. Furthermore the He WD fraction is affected
by the cooling curves of WDs. We have adopted the cooling curves of Holberg & Bergeron
[2006]; Kowalski & Saumon [2006]; Tremblay et al. [2011] that assume a carbon and carbon-
oxygen composition of the core. However, He-core WDs for a given stellar mass have a
longer cooling time as the specific heat is larger (Althaus, Miller Bertolami, priv. comm).
If we systematically underestimated the brightness of He WDs compared to CO WDs, the
synthetic fraction of He WDs in visible PCEBs would be even higher.

So far, we have studied the CE efficiency (α) assuming a constant envelope-structure
parameter (λ). In other words we studied the combination αλ. While the CE efficiency
is not well known, the structure parameter has been calculated by several studies [Dewi
& Tauris, 2000; Xu & Li, 2010; Loveridge et al., 2011]. For low mass stars of M < 3M⊙,
λ ≈ 1.1 − 1.3 on the RG and λ ≈ 0.5 − 0.8 on the AGB on average at the onset of the CE
phase [van der Sluys et al., 2010, including internal energy in the envelope binding energy].
Therefore, our result of a small value for αλ is not due to a small value for λ; the CE
efficiency is low.

The SDSS has observed six (possibly eight) PCEBs with high WD masses of more
than 0.8M⊙. The number of massive WDs is small, but they represent about 10% of the
observed sample. Although our models do create massive WDs with M-dwarf companions,
the relative number to other PCEB systems is not reproduced by our models. If the
observed number of these systems increases to a statistical significant amount, it would
be interesting to look in more detail in the evolution of these systems, because it is hard
to envision how to form a high number of these systems with the current IMF and initial
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mass ratio distribution . It is particularly interesting in the context of CV-progenitors, as
WDs in CVs are on average significantly more massive than single WDs [e.g. Warner, 1995;
Savoury et al., 2011].

Constraints on CE evolution other than this study have come from reconstruction meth-
ods of the evolution of observed binaries. From observed PCEBs, Zorotovic et al. [2010]
deduces a value of α = 0.2 − 0.3 for the CE efficiency when including the internal energy
of the envelope into the energy balance equation. They find that the internal energy is
important for CE evolution when the CE phase is initiated by AGB donors, but the effect
is not significant for RG donors. We therefore conclude that our results are consistent with
those of Zorotovic et al. [2010].

From reconstructing the evolution of post-CE binaries (mostly pre-SDSS PCEBs and
some SdB+MS binaries), De Marco et al. [2011] found that the CE efficiency decreases
with mass ratio (q = Ma

Md

). The effect, however, has not been observed in the SDSS PCEB
population [Zorotovic et al., 2011b].

Portegies Zwart [2013] reconstructs the formation and evolution of the cataclysmic
variable HU Aquarius. The two planets that orbit this CV play an important role in
constraining the CE efficiency. Portegies Zwart [2013] find that the CE efficiency is low,
αλ = 0.45 ± 0.17. This is consistent with our conclusion.

From reconstructing the evolution of double He WDs, Nelemans et al. [2000] deduces two
constraints on CE evolution. First, CE evolution occurs very efficiently (i.e. αλ = 2) in a
binary system with a giant donor and a WD companion. The physical interpretation of this
is that more energy sources than orbital energy are used to expel the envelope. An example
of possible energy source is the internal energy of the envelope including recombination
energy [e.g. Han et al., 1995; Webbink, 2008]. Second, neither the α-CE prescription nor
stable mass transfer is able to explain the observations for the first phase of mass transfer in
the evolution of progenitor systems of double He WDs,and therefore, Nelemans et al. [2000]
proposed the γ-prescription. Furthermore, Nelemans et al. [2001c] showed in a BPS study
that the population of Galactic double WDs is well modelled when assuming γ = 1.75 and
αλ = 2, whereas the standard α-prescription does not. Recently,Woods et al. [2012, see
also Woods et al. 2010] suggested a new evolutionary model to create double WDs that
involves stable, non-conservative mass transfer between a RG and a MS star. The effect
on the orbit is a modest widening with a result alike to the γ-description.

Summarizing, the CE phase is a crucially important phase in the formation and evolu-
tion of binaries, however, it is not well understood. BPS and evolutionary reconstruction
studies have lead to valuable constraints on CE evolution that contribute to the forma-
tion of a coherent picture of CE evolution over mass ratios and stellar types involved in
the CE phase. In our option, the emerging picture of CE evolution with non-degenerate
companions thus far is that:
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• in approximately equal mass binaries that lead to the formation of double WDs, mass
transfer leads to a modest widening of the orbit;

• in binaries with low mass ratios (q ≈ 0.2 − 0.5) that lead to the formation of PCEBs,
CE evolution leads to a strong contraction of the orbital separation;

• in binaries with extreme low mass ratios (q . 0.2) the CE phase is caused by a
tidal instability rather than a dynamical instability and the CE phase might evolve
differently for that reason.
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2.A Population synthesis code SeBa

We present here the most important changes that we made to the population synthesis
code SeBa, since Toonen et al. [2012]. First, the method of modelling a tidal instability
[Darwin, 1879] is updated. This instability takes place in systems of extreme mass ratios
in which there is insufficient orbital angular momentum to keep the stars in synchronous
rotation [Hut, 1980]. The tidal forces that are responsible for the orbital decay are strongly
dependent on the ratio of the stellar radius and the distance between the stars [Zahn, 1977].
Instead of checking at RLOF, we assume tidal forces are effective if the stellar radius is
less than one-fifth of the periastron distance between the stars and that the orbital decay
proceeds instantaneously.

In addition, the winds of hydrogen-poor helium-burning stars are updated. We adopt
the formalism of Hurley et al. [2000], which consists of the maximum of the wind-mass loss
of Reimers [1975] and a Wolf-Rayet-like wind-mass loss.

Finally, the responses of the radius of helium stars to mass loss are updated. The
adiabatic response ζad and the thermal response ζeq [see Eq. A.14 and A.18 in Toonen
et al., 2012] are used to determine the stability of Roche lobe overflow. For helium MS-
stars and helium hertzsprung-gap stars, we assume ζad = 4. For helium giants, ζad is based
on the prescription of Hjellming & Webbink [1987]. For helium hertzsprung-gap stars and
helium giants, we assume ζth = −2.
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PCEBs

2.B The spectral type - mass relation

In the last decade, it has become clear that there is a discrepancy between theoretical
models of and observationally determined radii and masses of low-mass stars, challenging
our understanding of stellar evolution, structure, and atmospheres [see e.g. Hillenbrand
& White, 2004; Berger et al., 2006; López-Morales, 2007; Boyajian et al., 2012]. To ex-
clude these uncertainties from the comparison with the SDSS observations (see Sect. 2.3.1),
we have used the relation between spectral type and mass, as determined by Rebassa-
Mansergas et al. [2007] and the relation between spectral type and magnitudes, as given by
Kraus & Hillenbrand [2007]. There is a good agreement between the effective temperatures
as a function of spectral type of Rebassa-Mansergas et al. [2007] and Kraus & Hillenbrand
[2007]. For comparison, we show the synthetic populations of visible PCEBs in SDSS in
Fig. 2.10 where we assume the relation between spectral type and mass from Kraus & Hil-
lenbrand [2007]. The population is significantly extended to higher secondary masses when
compared to those shown in Fig. 2.7 and 2.8.
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Figure 2.10: Visible population of PCEBs in the SDSS assuming the spectral type-mass

relation of Kraus & Hillenbrand [2007] for model αα2.
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Chapter 3

The single degenerate supernova

type Ia progenitors: Studying the

influence of different mass

retention efficiencies

M. Bours, S. Toonen, G. Nelemans

Astronomy and Astrophysics, 2013, 552, A24

Abstract

There is general agreement that supernovae Ia correspond to the thermonuclear
runaway of a white dwarf that is part of a compact binary, but the details of the
progenitor systems are still unknown and much debated. One of the proposed
progenitor theories is the single-degenerate channel in which a white dwarf ac-
cretes from a companion, grows in mass, reaches a critical mass limit, and is
then consumed after thermonuclear runaway sets in. However, there are major
disagreements about the theoretical delay time distribution and the correspond-
ing time-integrated supernova Ia rate from this channel. We investigate whether
the differences are due to the uncertainty in the common envelope phase and the
fraction of transferred mass that is retained by the white dwarf. This so-called
retention efficiency may have a strong influence on the final amount and tim-
ing of supernovae Ia. Using the population synthesis code SeBa, we simulated
large numbers of binaries for various assumptions on common envelopes and
retention efficiencies. We compare the resulting supernova Ia rates and delay
time distributions with each other and with those from the literature, including
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Chapter 3 : The single degenerate SNIa progenitors

observational data. For the three assumed retention efficiencies, the integrated
rate varies by a factor 3-4 to even more than a factor 100, so in extreme cases,
the retention efficiency strongly suppresses the single-degenerate channel. Our
different assumptions for the common envelope phase change the integrated rate
by a factor 2-3. Although our results do recover the trend in the theoretical
predictions from different binary population synthesis codes, they do not fully
explain the large disagreement among them.

3.1 Introduction

Supernova Ia (SNIa) light curves are scalable to one prototype light curve due to the
consistent production of a certain peak luminosity [e.g. Phillips, 1993]. This characteristic
makes it relatively easy to estimate distances to observed SNeIa, which is why they can
be used as standard candles in cosmology [e.g. Leibundgut et al., 1991; Riess et al., 1998;
Perlmutter et al., 1999]. SNeIa also strongly affect the Galactic chemical evolution through
the expulsion of iron [e.g. van den Bergh & Tammann, 1991]. In addition, SNeIa play
an important role in astroparticle physics, because the accompanying shocks are prime
accelerator sites for galactic cosmic ray particles [Blandford & Ostriker, 1978]. Although
they are part of many research fields, their origin and the details of the underlying physical
processes are not fully understood.

It is generally accepted that SNIa events are caused by the thermonuclear explosions
of carbon/oxygen (C/O) white dwarfs (WDs) with masses near the Chandrasekhar mass
[Nomoto, 1982]. Of the two classical progenitor scenarios, we look at the single-degenerate
(SD) channel [Whelan & Iben, 1973], in which a WD accretes from a companion. The
double-degenerate (DD) channel describes the merger of two WDs [e.g. Iben & Tutukov,
1984; Webbink, 1984; Toonen et al., 2012]. Other channels are amongst others accret-
ing WDs from helium-rich, non-degenerate companions [see e.g. Wang et al., 2009b], and
mergers between a WD and the core of an asymptotic giant branch star [Kashi & Soker,
2011].

The progenitor theory should give a reliable description of the evolution of a SNIa
progenitor binary. Beyond this, it should be able to explain and reproduce general features
of the type Ia supernova class. Both the SD and DD scenarios have problems in matching
observed features of the SNeIa events. We briefly mention the most important issues;
however, see Livio [2000] and Wang & Han [2012] for reviews. Regarding the DD scenario,
a serious concern is whether the collapse of the remnant would lead to a supernova or to a
neutron star through accretion-induced collapse [see Nomoto & Iben, 1985; Saio & Nomoto,
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1985; Piersanti et al., 2003; Yoon et al., 2007; Pakmor et al., 2010, 2012; Shen et al., 2012].
In the SD channel, a SNIa-like event is more easily reproduced in the simulations of the
explosion process, although the explosion process needs to be fine-tuned to reproduce the
observed spectra and lightcurves [see e.g. Hillebrandt & Niemeyer, 2000, for a review].
Another issue is the long phase of supersoft X-ray emission SNIa SD progenitors should go
through. It is unclear whether there are enough of these sources to account for the SNIa
rate [see Di Stefano, 2010; Gilfanov & Bogdán, 2010; Hachisu et al., 2010]. Archival data of
known SNeIa have not shown this emission unambiguously, although there is possibly one
case [see Voss & Nelemans, 2008; Roelofs et al., 2008; Nielsen et al., 2010]. Finally, several
predictions for the SD rate have been made by different groups using binary population
synthesis (BPS) simulations [Yungelson & Livio, 2000; Han & Podsiadlowski, 2004; Ruiter
et al., 2009b; Meng et al., 2009; Mennekens et al., 2010; Wang et al., 2010; Yungelson,
2010; Claeys et al., 2011], time-integrated rates, as well as the distribution of rates over
time, the so-called delay time distribution (DTD). For an overview, see Nelemans et al.
[2013]. However, the results show a wide spread and do not agree with each other or with
observational data. The exact origin of these differences is so far unclear.

In this paper we try to uncover the reason for these differences, and we focus in particular
on the efficiency with which the WD accretes and retains matter from its companion and
on the common envelope (CE) phase. There are several prescriptions [Nomoto et al., 2007;
Ruiter et al., 2009b; Yungelson, 2010, hereafter NSKH07, RBF09 and Y10 respectively] in
the literature for the efficiency of retaining matter by the WD. The retention efficiencies of
NSKH07, RBF09 and Y10 differ strongly. We study how the retention efficiency influences
the SNIa rate and the DTD. Furthermore we investigate if the differences in the assumed
retention efficiencies can explain the differences in the predicted SNIa rate from different
BPS codes.

Differences between the retention efficiencies arise from the uncertainty in the novae
phase and the strength of the optically thick WD wind at high mass transfer rates [Kato
& Hachisu, 1994]. The optically thick wind stabilises mass transfer such that a CE phase
can be avoided. [Hachisu et al., 1999b, hereafter HKN99b] argues that the WD wind can
interact with the envelope of the companion and strip some of the envelope mass from
the donor, which stabilises the mass transfer further. The wind-stripping effect affects the
retention efficiency moderately, but enlarges the parameter space for producing SNeIa ef-
fectively. However, for low metallicities the wind attenuates [e.g. Kobayashi et al., 1998;
Kobayashi & Nomoto, 2009], but a low-metallicity threshold of SNeIa in comparison with
SNe type II have not been found in observations [Prieto et al., 2008; Badenes et al., 2009].
Regarding the novae phase, despite much progress in the understanding of classical novae,
they are still poorly understood e.g. the mixing between the accreted envelope and WD
[e.g. Denissenkov et al., 2013]. Currently it is unclear if a cycle of novae outbursts removes
more mass from the WD than the accreted envelope, effectively reducing the WD in mass
[Prialnik, 1986; Prialnik & Kovetz, 1995; Townsley & Bildsten, 2004; Yaron et al., 2005].
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In particular, the results from helium novae are different, which affects the chain of nuclear
burning in the SD channel for which first hydrogen-rich material is burned into helium-rich
material and consequently the helium-rich matter into carbon-rich material. The uncer-
tainty in helium accretion creates the strongest difference between the assumed retention
efficiencies.

In Sect. 3.2 the general evolution of a progenitor binary will be described. The CE phase
and the growth in mass of the WD will be discussed in detail. To predict the distribution
of SNIa rates for different assumptions we simulate the evolution for a large population of
binaries using the population synthesis code SeBa, which is described in Sect. 3.3. Different
methods for selecting those binaries that will evolve into a SNIa are also outlined. This
includes a straightforward selection on binary parameters and an implementation in SeBa
of the efficiency of mass retention on the WD. The resulting rates are presented in Sect. 3.4,
and compared with theoretical predictions from different groups in Sect. 3.5.

3.2 Evolution of single degenerate SNIa progenitors

3.2.1 Global evolution

The evolution of most binaries starts with two zero-age main sequence (ZAMS) stars in
orbit around their common centre of mass. This is shown as the first stage in Fig. 3.1,
which shows the evolutionary stages a SD progenitor binary goes through. The initially
more massive (hereafter primary) star has a mass of about 3-8M⊙ and evolves into a C/O
WD of about 0.6-1.2M⊙. In order to form a compact system, binaries go through one or
several mass transfer phases. The mass transfer can be stable or unstable, where the latter
is described by the CE phase, the onset of which is shown in the second stage in Fig. 3.1.
Here the primary has evolved off the main sequence (MS) and overfills its Roche lobe. In
the following CE phase the envelope of the primary star engulfs the initially less massive
star, hereafter secondary. The core of the primary and secondary spiral inward through
the envelope and the envelope itself is expelled. After the CE phase the binary consists of
a degenerate C/O WD and a MS star in a close binary, see the third stage in Fig. 3.1. Note
that the evolutionary stages following the MS are relatively short, so that even an initially
small mass difference can lead to a binary with a WD and a MS star. In spite of the
importance of the CE phase for creating short period systems containing compact objects,
the phenomenon is not yet well understood. In Sect. 3.2.2 we discuss two prescriptions for
the CE phase.

If the orbital separation of the binary after the CE phase is small, the secondary will
fill its Roche lobe when it evolves. Depending on the exact orbital distance this may occur
when the secondary is a late MS star, a Hertzsprung gap star, or after it has evolved into
a red giant.
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Mass from the outer layers of the secondary will be transferred through the first La-
grangian point onto the WD. The hydrogen-rich material accumulates in a layer on the
surface of the WD. When the pressure and temperature are high enough, the hydrogen
layer ignites. As a result (a fraction of the) mass can be expelled from the WD and (a
fraction of the) mass can be retained by the WD to form a helium layer on the WD. If
the helium layer ignites, carbon and oxygen will be formed. Under the right conditions
this mass too can be retained by the WD. A favourable combination of these two stages
is needed for the C/O WD to be able to grow significantly in mass. In Sect. 3.2.3 we will
discuss in more detail the possible mechanisms of helium and hydrogen burning layers and
expulsion efficiencies. As the mass of the WD approaches the critical mass limit of MSNIa

= 1.38M⊙
1, carbon ignites. Due to the degenerate nature of the WD a thermonuclear

runaway takes place, leading to a SNIa event.

3.2.2 Common envelope phase

The classical way to parametrise the CE phase is by the α-formalism [Paczynski, 1976;
Webbink, 1984] which is based on conservation of energy:

GMMe

λR
= α

(

GMcm

2af
− GMm

2ai

)

, (3.1)

where the left hand side represents the binding energy of the CE ∆Ebind and the right hand
side a fraction α of the orbital energy ∆Eorb of the binary. M represents the mass of the
donor star and the subscripts e and c refer to the envelope and core of the donor star. The
secondary mass is denoted by m and is assumed not to vary during the CE phase. The
ai and af are the initial and final separation of the binary. R is the radius of the donor
star and λ is a structural parameter of the envelope. All the uncertainty can be taken
into one parameter, the product αλ. For higher values of αλ, the CE is expelled more
efficiently and the change in orbital separation will be less dramatic. However, in all cases
the orbital separation shrinks as a result of the CE phase. Contradicting this, observed
double WD binaries seem to have mass ratios close to one [Maxted & Marsh, 1999]. To
form a double WD pair the binary usually goes through two CE phases. One when the
primary star evolves into a giant and subsequently a WD and one when the secondary
evolves. In order for the mass of the WDs to be roughly equal, the conditions at the start
of the first CE cannot differ much from those at the onset of the second CE. Therefore the
orbital separation of these systems cannot shrink substantially during the first CE phase.

As a possible solution to this problem the γ-algorithm was introduced by Nelemans
et al. [2000]. Based on the conservation of angular momentum, angular momentum is lost
in a linear way with mass according to:

∆J
J

= γ
∆Mtot

Mtot
= γ

Me

M +m
, (3.2)

1In accordance with most of the cited papers.
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CE

Figure 3.1: Binary evolution for a single-degenerate SNIa progenitor. In this case the

donor is a MS star. The top and bottom parts of the figure have different

scales due to the common envelope phase, denoted as CE in the figure.
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where J represents the angular momentum of the binary, Mtot is the total mass of the
binary and the other parameters have the same meaning as before. Depending on the mass
ratio, the orbital separation will be unchanged or decreased due to the description of the
CE phase. The physical mechanism behind the γ-description remains unclear. Interesting
to note here is that recently Woods et al. [2012] suggested a new evolutionary model to
create DWDs. These authors find that mass transfer between a red giant and a MS star
can be stable and non-conservative. The effect on the orbit is a modest widening, with a
result alike to the γ-description.

3.2.3 Growth of the white dwarf

How efficiently the WD grows in mass as a result of the accretion is described by the total
retention efficiency ηtot. This represents the fraction of transferred hydrogen-rich matter
from the companion that eventually burns into carbon-rich matter and stays on the WD.
Therefore ṀWD = ηtot|Ṁcomp|, where ṀWD represents the mass growth rate of the WD and
Ṁcomp the mass transfer rate of the companion. Note that Ṁcomp < 0, while ṀWD > 0.
Ultimately the retention efficiency of the transferred mass determines in which systems a
SNIa event takes place and therefore shapes the SNIa rate and delay time distribution.

3.2.3.1 Hydrogen-rich accretion

When hydrogen-rich material is transferred onto a WD, the evolution of the accreted layer
depends on the mass transfer rate of the companion Ṁcomp and the WD mass MWD. The
evolution can be split into three distinct regimes, separated by a so-called steady and
critical accretion rate Ṁst(MWD) and Ṁcr(MWD) [Nomoto, 1982; Hachisu & Kato, 2001].
These are both functions of the WD mass and are discussed in detail below.

For low mass transfer rates (|Ṁcomp| < Ṁst) the hydrogen-rich matter is transferred
to the WD conservatively, so that the mass transfer rate onto the WD is ṀH = |Ṁcomp|.
The temperature in the accumulating hydrogen layer on the WD is too low to ignite the
hydrogen immediately. The layer will gradually grow in mass, increasing the pressure
and temperature until hydrogen ignition values are reached. Then nuclear burning will
quickly spread through the layer, which starts expanding. The strength of these so-called
novae [Starrfield et al., 1972] depends strongly on the amount of mass involved. This also
determines how much of the processed layer is expelled from the binary and how much falls
back onto the WD as helium. The accretion rate of the helium-rich matter will be denoted
by ṀHe. We define the hydrogen retention efficiency to be the fraction of transferred mass
which is burned and retained by the WD:

ηH =
ṀHe

ṀH

. (3.3)

If none of the matter stays on the WD ηH = 0 and if all of the transferred matter is
retained by the WD as helium ηH = 1. In the nova regime ηH < 1. For very strong novae
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not only the complete layer but also some of the WD itself may be expelled. In these cases
ηH < 0. However, note that there may be observational evidence suggesting that WDs in
mass transfering cataclysmic variables grow in mass, even though these binaries have very
low mass transfer rates and therefore undergo strong novae [Zorotovic et al., 2011a]

Intermediate mass transfer rates are those between the steady and critical value, so that
Ṁst ≤ |Ṁcomp| ≤ Ṁcr. All of the mass lost by the companion star is transferred to the
WD, so that ṀH = |Ṁcomp|. On the WD the hydrogen accumulates in such a way that the
ignition values are reached at the bottom of the layer and the hydrogen stably burns into
helium. No material is lost from the layer or the WD, therefore ηH = 1 and ṀHe = ṀH.

For higher mass transfer rates exceeding the critical value (|Ṁcomp| > Ṁcr) a hydrogen
red-giant-like envelope forms around the WD. If the high accretion rate is maintained a
CE phase will soon follow. However, hydrogen burning on top of the WD is strong enough
for a wind to develop from the WD [Kato & Hachisu, 1994, HKN99b]. This attenuates
the mass transfer rate ṀH and hydrogen retention efficiency ηH, and ensures that the CE
phase is postponed. Part of the hydrogen-rich matter, corresponding to Ṁcr, is burned into
helium and stays on the WD. The remainder ṀH − Ṁcr = Ṁwind is carried away by the
wind. In this wind regime, ṀHe = Ṁcr = ηHṀH and so ηH < 1.

A possible second effect influencing the retention efficiency in this high mass transfer
rate regime, results from the wind if it reaches the companion star. There it heats up the
envelope of the companion, which expands and can then be stripped off by subsequent
wind [HKN99b]. It is now no longer the case that all of the mass lost by the companion
is transferred to the WD. The part that is transferred to the WD is equivalent to the
amount lost by the companion minus the amount stripped away by the WD wind: ṀH =

|Ṁcomp| − |Ṁstrip|, where Ṁstrip < 0. The strength of this stripping effect is represented by
the stripping parameter c1, defined by

Ṁstrip = c1Ṁwind. (3.4)

Details on how and when this stripping effect is taken into account are described in
Sect. 3.3 and appendix 3.A.

3.2.3.2 Helium-rich accretion

After a fraction of the hydrogen-rich matter is burned into helium-rich material, the helium-
rich material accumulates in a layer on the surface of the WD. This layer sits in between
the WD and the (still accumulating) hydrogen layer. For the helium-rich accretion similar
regimes exist for low and medium helium accretion rates, resulting in helium novae and
steady helium burning respectively. No helium wind regime exists because these high
helium accretion rates cannot be reached by the hydrogen burning. The fraction of helium
that is burned into carbon-rich material is represented by the helium retention efficiency
ηHe. The total retention efficiency is then given by:

ηtot = ηH(Ṁcomp) · ηHe(ṀHe). (3.5)
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3.3 Method

To test the viability of SD SNIa theory a population of binary stars is simulated and the
corresponding theoretical SNIa rate is compared to observational results. We employ the
binary population synthesis code SeBa [Portegies Zwart & Verbunt, 1996; Nelemans et al.,
2001c; Toonen et al., 2012] for fast stellar and binary evolution computations. In SeBa stars
are evolved from the ZAMS until remnant formation. At every timestep, processes as stellar
winds, mass transfer, angular momentum loss, magnetic braking and gravitational radiation
are taken into account with appropriate recipes. SeBa is a Monte Carlo based code in which
the initial binary parameters are generated randomly according to appropriate distribution
functions. The initial mass of the primary stars is drawn from a Kroupa Initial Mass
Function [Kroupa et al., 1993] which ranges from 0.1-100M⊙ and the initial mass of the
secondary from a flat mass ratio distribution with values between 0 and 1. We assume
that a complete stellar population consists of 50% binary stars and 50% single stars. The
semi-major axis of the binary is drawn from a power law distribution with an exponent of
-1 [Abt, 1983], ranging from 0 to 106R⊙ and the eccentricity from a thermal distribution,
ranging from 0 to 1 [Heggie, 1975]. For the metallicity solar values are assumed.

In this research we differentiate between four ways to determine which binaries will give
rise to a SNIa event. For the first method (model NSKH07) we adopt the retention effi-
ciencies given by NSKH07, including updates from Hachisu et al. [2008, hereafter HKN08].
Using SeBa in combination with these retention efficiencies, a population of binaries is sim-
ulated and those systems in which a C/O WD reaches the critical mass limit are selected as
SNIa progenitors. For the second approach (model RBF09) we utilise the retention efficien-
cies used in RBF09 and for the third approach (model Y10) the efficiencies based on Y10.
The assumed retention efficiencies differ strongly. For the final method (model Islands) the
phase of stable mass transfer onto the WD is not modelled by SeBa. Instead we select those
systems that at the formation of the C/O WD lie in specific regions of the parameter space
of orbital period, WD mass and companion mass (Porb - MWD - Mcomp). Systems in these
specific regions, hereafter islands, are determined to lead to SNeIa [HKN08; HKN99b, and
references therein].

In order to compare our simulated rates to the results of research groups that use the
same retention efficiencies, the prescription of the CE is varied to match different BPS
codes. We distinguish between two models. The first model is based on the α-prescription
assuming a value of α = 1 and λ = 0.5 as in accordance with RBF09. The second model
assumes the γ-formalism with a value of γ = 1.75 [see Nelemans et al., 2001c].2

In this section we describe the three prescriptions for the hydrogen and helium reten-
tion efficiencies as given by NSKH07 RBF09 and Y10. The total retention efficiency is a
combination of the hydrogen and helium one as described by eq. 3.5. The retention effi-

2The γ-formalism is applied, unless the binary contains a compact object or the CE is triggered by a

tidal instability [Darwin, 1879] for which the α-formalism is used.
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Figure 3.2: Examples of hydrogen and helium retention efficiencies as a function of the

mass transfer rate for a WD of 1M⊙. The prescriptions for the hydrogen

retention efficiency ηH1 [solid line - NSKH07; HKN08] & ηH2 [dashed line

- RBF09; Y10] and the helium retention efficiency ηHe1 [dot-dashed line -

Hachisu et al., 1999; Kato & Hachisu, 1999] & ηHe2 [dotted line - Iben &

Tutukov, 1996] are shown in Appendix 3.A. Note that the position of the peak

of ηH2 is dependent on the exact prescription for Ṁcr. The mass transfer rate

for hydrogen accretion is given by |Ṁcomp|. For helium accretion this is ṀHe.

ciency used in NSKH07, including updates from HKN08, is a combination of the hydrogen
retention efficiency ηH1 and the helium retention efficiency ηHe1, see Fig. 3.2. For ηH1 the
region of steady burning occurs at mass transfer rates between

Ṁst = 3.1 · 10−7(MWD − 0.54) M⊙yr−1 and (3.6)

Ṁcr = 7.5 · 10−7(MWD − 0.40) M⊙yr−1, (3.7)

which are the updated formulae from HKN08 with MWD in units of M⊙. This region is
visible in Fig. 3.2 as the plateau at intermediate mass transfer rates. In the wind regime
|Ṁcomp| > Ṁcr, the wind-stripping effect is included with c1 = 3 (see eq. 3.4). For the
prescription of ηHe1 see Appendix 3.A [Kato & Hachisu, 1999; HKN99b].

3.3.1 Retention efficiencies

The retention efficiency based on RBF09 combines ηHe1 with ηH2, see Fig. 3.2. In this model
there is no region of steady hydrogen burning. Instead the nova regime immediately borders
the wind regime. The critical mass transfer rate Ṁcr is given by eq. 3.7. The stripping effect
is not taken into account, hence c1 = 0 (see eq. 3.4). The retention efficiency in the nova
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regime (|Ṁcomp| < Ṁcr) is based on an interpolation of results from Prialnik & Kovetz
[1995]. Our own fit to these results is included in Appendix 3.A. For lower (higher) MWD

than assumed in Fig. 3.2, the retention efficiency in the nova regime stays the same between
10−8 < |Ṁcomp| < 10−7 and shifts with the peak in the regime 10−7 < |Ṁcomp| < Ṁcr.

The retention efficiency based on Y10 combines ηH2 with ηHe2, see Fig. 3.2. The critical
rate for the hydrogen accretion is given by

Ṁcr = 10−9.31+4.12MWD−1.42M2

WD M⊙yr−1, (3.8)

with MWD in units of M⊙. For the retention efficiency in the hydrogen nova regime the
same interpolation from Prialnik & Kovetz [1995] is used as for the efficiency of RBF09,
see Appendix 3.A. Again there is no region of steady hydrogen burning, the wind is taken
into account but the stripping effect is not. Due to the different prescription for Ṁcr the
position of the peak is slightly different from the example curve. Using eq. 3.8 as the border
to the wind regime for hydrogen accretion, the peak occurs at smaller values of |Ṁcomp|
for a given MWD, as compared to eq. 3.7. This reduces the total retention efficiency ηtot

substantially, as we will see in Fig. 3.3. Following Y10, the prescription for ηHe2 was taken
from Iben & Tutukov [1996].

The exact prescriptions of the hydrogen and helium retention efficiencies for NSKH07,
RBF09 and Y10 are detailed in Appendix 3.A. Figure 3.3 shows the large variety in the
total retention efficiency for the three prescriptions as a function of mass transfer rate of
the companion. The most optimistic retention efficiency is that of NSKH07 and the most
pessimistic that of Y10. Note that in the regime with strong novae the retention efficiency
ηtot ≤ 0. Here we have set ηtot = 0 in this regime for simplicity as these systems are not
part of the SD channel.

A complication of this method is that the instantaneous mass transfer rates in binary
population synthesis codes, such as SeBa, is only an approximation to the one derived from
detailed stellar evolution codes. Therefore, we also implemented a hybrid method in which
progenitors are selected from binary population synthesis according to results from the
literature based on more detailed mass transfer tracks. These tracks can be calculated by
an analytical approach e.g. HKN99b or by a detailed binary evolution code e.g. Li & van
den Heuvel [1997], Li & van den Heuvel [2002], Han & Podsiadlowski [2004] and HKN08.

3.3.2 Islands

In this method, the progenitor binaries are selected on Porb, MWD, and Mcomp at the time
of WD birth (third stage in Fig. 3.1). The parameter regions used are shown at the right
hand side in Fig. 3.4 for binaries containing a WD and a MS star or Hertzsprung gap star
(WD+MS binaries) and Fig. 3.5 for those containing a WD and a red giant star (WD+RG
binaries). They are made to match the islands in HKN08 and HKN99b respectively, which
are shown on the left hand side in these figures. For the WD+MS channels a moderate
wind-stripping parameter of c1 = 3 is taken (see eq. 3.4).
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Figure 3.3: Total retention efficiencies, resulting from different combinations of the hy-

drogen and helium retention efficiencies. In this figure we have assumed

MWD = 1M⊙ as an example. The mass transfer rate Ṁ = |Ṁcomp|. For

lower (higher) MWD the maximum retention efficiency shift to lower (higher)

|Ṁcomp|. For a more detailed explanation of the retention efficiencies see

Sect. 3.3.1.

Figure 3.4: Initial parameter regions for the WD+MS track to SNeIa. The different

contours are for different WD masses (increasing in size with increasing mass)

and the stripping parameter c1 = 3. Left: from HKN08. The hatched regions

indicate SNIa explosions with short delay times of t < 100Myr for masses of

M = 0.7M⊙ and M = 1.1M⊙. Right: initial parameter regions as used in

this work.
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Figure 3.5: Initial parameter regions for the WD+RG track to SNeIa. The different

contours are for different WD masses (increasing in size with increasing mass)

and the stripping parameter c1 = 1. Left: from HKN99b. Right: initial

parameter regions as used in this work.

3.4 Results: SNIa rates and delay times

We have simulated a population of SD SNIa progenitors for the four approaches described
in Sect. 3.3 assuming our model for the γ-prescription or the α-prescription. The delay
time distributions for the γ-prescription simulations can be seen in Fig. 3.6 and for the
α-prescription in Fig. 3.7. The delay time t is the time at which a SNIa occurs, where
t = 0 is the time when the binary is born as a double ZAMS-star binary. A DTD shows
the distribution of delay times after a single starburst involving a large number of binaries.
For model Islands, we assume the phase between the onset of mass transfer and the SNIa
explosion is short compared to the lifetime of the binary.

The progenitor islands are based on the work of NSKH07 and HKN08, as is our model
NSKH07 that uses the retention efficiencies directly. If we compare the DTD resulting from
model Islands with model NSKH07, there is a noticeable difference at early delay times.
The DTD of model Islands peaks earlier and higher. The reason is the extend of the Islands
to high donor masses of about 6M⊙for WD+MS progenitors. These massive companions
fill their Roche lobes soon and therefore the SNIa explosion occurs at earlier delay times
(t < 1Gyr). In SeBa, binaries with such high mass ratios undergo unstable mass transfer
and a CE phase. They do not develop a SNIa explosion, resulting in less SNeIa at early
delay times from the retention efficiencies method.

Our progenitor regions in model Island consist of adjacent slices that increase in size for
increasing MWD, for both WD+MS and WD+RG progenitors. These slices have a thickness
of 0.1M⊙ around the values MWD = 0.7, 0.8, 0.9, 1.0 and 1.1M⊙ for WD+MS binaries and
MWD = 0.8, 0.9, 1.0 and 1.1M⊙ for WD+RG binaries. Ideally the volume enclosing the
progenitor binaries has smooth edges in all three dimensions. Since this is not the case in
our approach we explored the resulting inaccuracy by increasing our resolution. We double
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Table 3.1: Time-integrated SNIa rates in the SD channel for different combinations of

the retention efficiency and the common envelope prescription in units of

10−4M⊙
−1.

Model Approach used γ-prescription α-prescription
Model NSKH07 Retention efficiency of NSKH071 0.59 1.3
Model RBF09 Retention efficiency of RBF092 0.19 0.35
Model Y10 Retention efficiency of Y103 <0.001 <0.001
Model Islands Islands of HKN084, HKN99b5 0.73 1.5

References: 1 Nomoto et al. [2007]; 2 Ruiter et al. [2009b]; 3 Yungelson [2010]; 4 Hachisu

et al. [2008]; 5 Hachisu et al. [1999b];

the amount of islands covering the same range of WD mass, so the thickness of each island
slice is now 0.05M⊙. We found that the change in the final integrated SNIa rate is 3-4%
and the DTD is barely affected.

The SNIa DTD and integrated rate are strongly influenced by the prescription of the
retention efficiency, as shown in Fig. 3.6 and 3.7, and Table 3.1. For more pessimistic values
of the total retention efficiency the rates and overall height of the DTD decreases. Note that
the total retention efficiency of model Y10 is so small that no SNeIa developed and only
an upper limit is given in Table 3.1. Model NSKH07 and RBF09 give rise to DTDs that
differ most strongly at short delay times. This is due to high donor masses that transfer
mass at a high rates, where the total retention efficiencies differ significantly, see Fig. 3.3.
This results from the inclusion of the wind stripping effect in NSKH07.

Changing the prescription used for the CE phase modifies the integrated SNIa rate
by a factor of about two. When the γ-prescription is applied, less (very) close binaries
are created as the binary orbits do not shrink as effectively as for the α-prescription. An
exception to this is when the mass ratio of the binary is extreme at the moment of Roche
lobe overflow. These systems merge at short delay times t<0.1Gyr. Therefore the DTD
when the γ-prescription is assumed declines faster with time than when the α-prescription
is assumed. The classical evolution path towards a SD binary as depicted in Fig. 3.1, is
less common in the BPS model using the γ-prescription. Assuming the α-prescription
80% of the SD binaries evolve through this channel, where as for the γ-prescription this
has decreased to 30-40% (depending on the retention efficiency). In the most common
evolution path for the model assuming the γ-prescription, the first phase of mass transfer
is stable.
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Figure 3.6: Delay time distribution assuming the γ-algorithm for the CE with γ = 1.75.

Different lines correspond to the delay time distributions that result from

four different approaches described in Sect 3.3, all for the γ-prescription. The

dot-dashed line shows the result of the Islands selection method, the three

other linestyles correspond to the retention efficiencies as in Fig. 3.3. Note

that for the retention efficiency of Y10 no SD binaries evolve into a SNeIa.
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Figure 3.7: Same as in Fig. 3.6 but assuming the α-formalism with αλ = 0.5. Again no

SD binaries evolve into a SNeIa for the retention efficiency of Y10.
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3.5 Discussion

The theoretical SD SNIa rates that follow from SeBa in this study can be compared to the
results of various other BPS research groups [e.g. RBF09; Y10; Mennekens et al., 2010;
Wang et al., 2010; Claeys et al., 2011]. Table 3.2 shows the time-integrated SNIa rates of
these groups taken from Nelemans et al. [2013]. The disagreement in the rates is large up
to a factor of about 600, but so far no explanation has been found. Note that Nelemans
et al. [2013] rescaled the results (if needed) to the same initial distribution of parameters
as discussed in Sect. 3.3. Assumptions and simplifications vary between the different BPS
codes [See Toonen et al. in prep. for a study on this] causing differences in their predictions.
An important assumption for the BPS simulations is the assumed CE-prescription, which
is also given in in Table 3.2. The effect of different values for α has been studied by several
groups, e.g. the effect on the DTD [Wang et al., 2010; Ruiter et al., 2009b; Mennekens
et al., 2010; Claeys et al., 2011]. The effect on the integrated rate of a small change in α

is of the order of a factor 0.7-3 [Ruiter et al., 2009b; Mennekens et al., 2010], however, the
effect can be up to an order of magnitude for larger changes in α (Claeys et al. in prep.).

The entries in Table 3.2 are ordered to increase in rate. The smallest rate is from the
work of Yungelson [Y10]. Similarly we find the lowest rate for model Y10, however, we
find an even lower rate than Yungelson. The preliminary rate of Claeys et al. [2011] is
significantly lower than our corresponding model. However, Claeys et al. [2011] does not
take wind stripping into account, as in Ruiter et al. [2009b]. The integrated rates of Ruiter
et al. [2009b] is a factor of about two lower than the rates of our best corresponding model.
The rates of Mennekens et al. [2010] and Wang et al. [2010] are a factor of a about seven
and two higher respectively. So although our results do recover the trend in the theoretical
predictions from different binary population synthesis codes, they do not fully explain the
large disagreement among them.

The integrated rates based on observations are given in Table 3.2. The most recent
measurements are based on field galaxies and generally show lower rates, while earlier es-
timates based on galaxy clusters are higher. At this moment it is unclear if the different
observed integrated rates are due to systematic effects or if there is a real enhancement
of SNeIa in cluster galaxies. See also Maoz et al. [2012] for a discussion. Even though
the different retention efficiency models affect the SNIa rates with a factor > 103, none of
the integrated rates comfortably matches the observed rates, especially those from galaxy
clusters. In addition, the DTD reconstructed from observations typically show a contin-
uation to longer delay times, which are absent in all our SD DTDs. We conclude from
this, that in the current model of SD SNIa theory, the main contribution to the SNIa rate
comes from other evolution channels. One possible channel involves semi-detached binaries
in which a WD accretes from a hydrogen-poor helium-rich donor, such as sdB stars. Wang
et al. [2009a], Ruiter et al. [2009b] and Claeys et al. [2011] showed that in this channel
the DTD peaks at delay times of about 100Myr, although rates at this delay time vary
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Table 3.2: Time-integrated SNIa rates in the SD channel for the assumptions of different

research groups in units of 10−4M⊙
−1. Columns 3 and 5 shows the integrated

rate predicted by SeBa and the BPS group in question respectively. The

assumption of the BPS group for the CE-evolution is shown in column 6 and

the best corresponding CE-model in SeBa is shown in column 4.

BPS WD accretion SNIa rate CE SNIa rate CE
Yungelson1 Y10 <0.001 γ = 1.5 0.006 γ = 1.5

Claeys2 HKN99b 1.3 αλ = 0.5 0.13 α = 1, λ = variable

Ruiter3 RBF09 0.35 αλ = 0.5 0.17 αλ = 0.5

Wang/Han4 HKN99b 1.3 αλ = 0.5 2.8 αλ = 0.5

Mennekens5 HKN99b, HKN08 0.55 αλ = 1 3.7 αλ = 1

Observed6 4-26

References: 1 Y10; 2 Claeys et al. [2011] (preliminary results); 3 RBF09; 4 Wang et al.

[2010]; 5 Mennekens et al. [2010]; 6 Maoz & Mannucci [2012a]; Perrett & et al. [2012]; Maoz

et al. [2012]; Graur & Maoz [2012];

between 10−4 − 10−2yr−1(1010M⊙)−1. The contribution from binaries of the DD channel is
debated heavily. Explosion models favour accretion-induced collapse to a neutron star over
a SNIa event [see e.g. Hillebrandt & Niemeyer, 2000, for a review]. However, BPS codes
find more SNIa events from the standard DD channel than the SD channel [RBF09; Y10;
Mennekens et al., 2010; Toonen et al., 2012]3. Toonen et al. [2012] study the contribution
from the double-degenerate channel with SeBa comparing the α- and γ-prescription for
the CE. They find that even though the DD DTDs fit the observed DTD beautifully, the
normalisation does not by a factor of about 7-12 compared to the cluster rates. Taking
into account the new rates from field galaxies, the factor becomes about 1.2-12. Other
contributions to the SNIa rate can possibly come from e.g. core-degenerate mergers [Kashi
& Soker, 2011], double detonating sub-Chandrasekhar accretors [see e.g. Kromer et al.,
2010] or Kozai oscillations in triple systems [Shappee & Thompson, 2012; Hamers et al.,
2013].

3.6 Conclusions

In this work we have studied the effect of the poorly understood phase of WD accretion
in the context of supernova type Ia rates. We employed the binary population synthesis
code SeBa [Portegies Zwart & Verbunt, 1996; Nelemans et al., 2001c; Toonen et al., 2012]
to study the SNIa rates and progenitors for different CE prescriptions. We differentiated

3Note that the integrated rate from the violent merger model for double WDs [Pakmor et al., 2010,

2011, 2012; Röpke et al., 2012] can be much lower [Toonen et al., 2012; Chen et al., 2012; Ruiter et al.,

2012]
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between four models assuming either one of three retention efficiencies of NSKH07, RBF09
and Y10 or making a selection of SNIa progenitors based on binary parameters at the
time of WD formation [HKN08; HKN99b]. The three retention efficiencies assumed by
different binary population synthesis codes differ strongly. The difference comes from a
lack of understanding at low mass transfer rates where novae occur, and mass transfer
rates higher than the rate for stable burning. This is true for the accretion of hydrogen
that is transferred to the WD by the companion, as well as the accretion of helium that
has been burned from hydrogen on the WD. The efficiency with which a C/O WD grows
in mass is strongly affected by the combination of the efficiency of hydrogen and helium
accretion. For example the hydrogen and helium retention efficiencies of Y10 are maximal
at different ranges of the mass transfer rate resulting in a low total retention efficiency.

The total number of SNIa progenitors is significantly influenced by the choice of the
model. The integrated SNIa rate vary between < 1 · 10−7 −1.5 · 10−4M⊙

−1, where the rates
are highest for the model that assume the retention efficiencies of NSKH07 and only an
upper limit can be given for Y10. Our method based on the parameter space of binaries at
WD birth of HKN08 and HKN99b consists of a discrete set of islands in the space spanned
by Porb, MWD and Mcomp. The discretisation introduces an error of 3-4% on the integrated
rates. We showed in this paper that independent of the WD accretion model the SNIa rate
approximately doubles when the α-prescription is assumed with αλ = 0.5 as compared
to the γ-formalism with γ = 1.75. The effect of different values for α on the SD SNIa
rate is a factor of 0.7-3 [Ruiter et al., 2009b; Mennekens et al., 2010] for small changes in
the CE-efficiency and up to an order of magnitude for larger changes in the CE-efficiency
(Claeys et al. in prep.). Also note that throughout this work we have assumed solar values
for the stellar metallicities. Using a broad range of metallicities in the BPS code might
influence the SNIa rates and DTDs, both in the Islands and retention efficiency approach.
See Kobayashi et al. [1998] for a study on how the progenitor islands depend on metallicity.

Several predictions for the SD rate have been made by different groups using binary pop-
ulation synthesis simulations. The results show a wide spread and do not agree with each
other or with observational data. The integrated rates vary between values of 6 ·10−7M⊙

−1

and 3.7 · 10−4M⊙
−1. In this study we find that also the model for the WD accretion is a

major source of uncertainty on the SNIa rates. The different prescriptions for the retention
efficiency introduce a source of uncertainty with an effect on the integrated rates by a factor
of about 3-4 (comparing our models that assume the retention efficiencies of NSKH07 with
RBF09) or even larger up to a factor of a few hundred (comparing with the efficiency of
Y10). Although our results do recover the trend in the theoretical predictions from dif-
ferent binary population synthesis codes, they do not fully explain the large disagreement
among them. As the exact origin of the differences in the SD rate remains unclear, Toonen
et al. in prep. study the results of four different binary population synthesis codes and
investigate the importance of the different assumptions and numerical approaches in these
codes.
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3.A Retention efficiencies

The total retention efficiency is the product of the hydrogen and helium retention efficien-
cies. In the equations in this appendix, all Ṁ are in units of M⊙/yr.

3.A.1 Retention efficiencies based on NSKH07

The hydrogen retention efficiency is a strong function of the mass transfer rate of the
companion Ṁcomp. Three regimes can be distinguished, separated by the stable and critical
mass transfer rates (Ṁst and Ṁcr), see Table 3.3. In the nova and stable burning regime
all the mass lost by the companion is transferred onto the WD. In the stable regime
all hydrogen-rich matter is burned into helium-rich matter and all stays on the WD, so
that ηH = 1. The nova regime is linearly interpolated between the lower boundary at
|Ṁcomp| = 10−7 and the start of the stable regime at Ṁst. In the third regime the nuclear
hydrogen burning on top of the white dwarf is so strong that a wind is produced which not
only attenuates the mass transfer rate but can also strip the companion’s outer envelope.
It is no longer the case that all the mass lost by the companion accretes onto the white
dwarf. The maximum that the white dwarf can accrete is Ṁcr, which is a fraction ηH of
the mass transferred to the white dwarf ṀH. All the excess is blown off by the wind.
The amount of matter that is stripped from the companion is defined by eq. 3.4 and the
stripping parameter is taken to be c1 = 3.

Table 3.3: The three regimes for different mass transfer rates of the companion star, as

in NSKH07.

Ṁcomp range

Nova regime |Ṁcomp| < Ṁst

Stable burning regime Ṁst ≤ |Ṁcomp| ≤ Ṁcr

Wind and stripping regime |Ṁcomp| > Ṁcr

The exact prescriptions for the stable and critical mass transfer rates are:

Ṁst = 3.1 · 10−7
(

MWD

M⊙

− 0.54
)

and (3.9)

Ṁcr = 7.5 · 10−7
(

MWD

M⊙

− 0.40
)

. (3.10)
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For the hydrogen retention efficiency we arrive at the following:

ηH =







































0 if |Ṁcomp| < 10−7

(log(|Ṁcomp|) + 7)/((log(Ṁst) + 7)

if 10−7 < |Ṁcomp| < Ṁst

1 if Ṁst < |Ṁcomp| < Ṁcr

Ṁcr/ṀH if Ṁcr < |Ṁcomp| < 10−4

(3.11)

with, for the wind and stripping regime,

Ṁcr

ṀH

=
(c1 + 1)Ṁcr

c1Ṁcr + |Ṁcomp| . (3.12)

This last equation follows from eq. 3.4. Furthermore, we take into account that
Ṁcomp, Ṁwind and Ṁstrip < 0, because they describe matter travelling away from one of the
stars. For the helium retention efficiency the following prescriptions were used:

ηHe =







































0 if ṀHe < 10−7.8

−0.175(log(ṀHe) + 5.35)2 + 1.05

if 10−7.8 < ṀHe < 10−5.9

1 if 10−5.9 < ṀHe < 10−5.0

0 if ṀHe > 10−5.0

(3.13)

where ṀHe = ηHṀcomp.

3.A.2 Retention efficiencies based on RBF09

For the hydrogen retention efficiency two regimes can be distinguished, the nova regime
and the wind regime, see Table 3.4. The stripping effect is not taken into account (c1 = 0).
In the hydrogen nova regime an interpolation of the results from Prialnik & Kovetz [1995]
is used for ηH. The amount of mass transferred to the white dwarf is always equal to the
amount of mass lost by the companion, |ṀH| = |Ṁcomp|.

Table 3.4: The two regimes for different mass transfer rates of the companion star, as in

RBF09.

Ṁcomp range

Nova regime |Ṁcomp| < Ṁcr

Wind regime |Ṁcomp| > Ṁcr

The critical mass transfer rate is given by:

Ṁcr = 7.5 · 10−7
(

MWD

M⊙

− 0.40
)

. (3.14)
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The hydrogen retention efficiency is:

ηH =







































0 if |Ṁcomp| < 10−8

0.25(log(|Ṁcomp|) + 8) if 10−8 < |Ṁcomp| < 10−7

0.25 + 0.75(log(|Ṁcomp|) + 7)/(log(Ṁcr) + 7)

if 10−7 < |Ṁcomp| < Ṁcr

Ṁcr/ṀH if Ṁcr < |Ṁcomp| < 10−4

(3.15)

where
Ṁcr

ṀH

=
Ṁcr

|Ṁcomp|
. (3.16)

The helium retention efficiency is given by

ηHe =







































0 if ṀHe < 10−7.3

−0.175(log(ṀHe) + 5.35)2 + 1.05

if 10−7.3 < ṀHe < 10−5.9

1 if 10−5.9 < ṀHe < 10−5.0

0 if ṀHe > 10−5.0

(3.17)

where ṀHe = ηHṀcomp. Note the similarity with the helium retention efficiency of NSKH07,
except for the lower limit of the mass transfer rate of the stable burning regime.

3.A.3 Retention efficiencies based on Y10

Two regimes can be distinguished for the hydrogen retention efficiency, the nova and wind
regimes, see Table 3.5. The same interpolation from Prialnik & Kovetz [1995] is used for
the hydrogen nova regime. The stripping effect is not taken into account (c1 = 0). In all
cases the amount of mass transferred to the white dwarf is equal to the amount of mass
lost by the companion, |ṀH| = |Ṁcomp|. It is very similar to the retention efficiencies in
Sect. 3.A.2, except that the prescription for Ṁcr is different.

Table 3.5: The two regimes for different mass transfer rates of the companion star, as in

Y10.

Ṁcomp range

Nova regime |Ṁcomp| < Ṁcr

Wind regime |Ṁcomp| > Ṁcr

The prescription for the critical mass transfer rate is:

Ṁcr = 10−9.31+4.12MWD−1.42M2

WD . (3.18)
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The hydrogen retention efficiency is given by:

ηH =







































0 if |Ṁcomp| < 10−8

0.25(log(|Ṁcomp|) + 8) if 10−8 < |Ṁcomp| < 10−7

0.25 + 0.75(log(|Ṁcomp|) + 7)/(log(Ṁcr) + 7)

if 10−7 < |Ṁcomp| < Ṁcr

Ṁcr/ṀH if Ṁcr < |Ṁcomp| < 10−4

(3.19)

with
Ṁcr

ṀH

=
Ṁcr

|Ṁcomp|
. (3.20)

The helium retention efficiency is:

ηHe =







































0 if ṀHe < 10−7.5

ṀHe

10−5.75 if 10−7.5 < ṀHe < 10−5.7

0.95 if 10−5.7 < ṀHe < 10−5.4

10−5.45

ṀHe

if 10−5.4 < ṀHe < 10−4.0

0 if ṀHe > 10−4.0

(3.21)

where ṀHe = ηHṀcomp.
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The influence of mass-transfer

variability on the growth of the

mass of white dwarfs in accreting

systems

S. Toonen, R. Voss, C. Knigge

will be submitted to MNRAS

Abstract

White dwarfs can increase their mass by accretion from companion stars, pro-
vided the mass accretion rate is high enough to avoid unstable nuclear burning.
Unstable burning manifests itself in nova eruptions, in which most or all of
the accreted mass is lost from the binary. The accretion regimes that allow
growth of the white dwarfs are usually calculated assuming constant mass-
transfer rates. However, it is possible that the type Ia supernova progenitor
systems are influenced by effects that cause the mass-transfer rate to fluctuate
on various timescales. We investigate how long-term mass-transfer variability
affects accreting white dwarfs systems. We show that, if such variability is
present, it expands the parameter space of binaries where the white dwarf can
effectively increase its mass through accretion. The variability allows binaries
with lower average accretion rates to grow compared to the standard scenario
without variability, because the variability allows them to spend part of the
time at accretion rates where hydrogen burns stably on their surface.
As an example, we study the effect of mass-transfer variability on the rate of
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type Ia supernovae (SNIa) in the single-degenerate channel. We find that the
SNIa rate is enhanced by a factor 2-3 to a rate that is comparable with the
lower limit of the observed rates. Due to the enhancement in the effective mass
retention efficiency, the parameter space of white dwarf binaries that evolve
to SNIa significantly widens, however, few initial binaries evolve into this pa-
rameter space. The changes in the delay time distribution allow for more type
Ia supernovae from the single degenerate channel in stellar populations with
ages of a few Gyr. Mass-transfer variability is also likely to affect other bi-
nary populations through enhanced growth of the white dwarf. For example, it
may explain why white dwarfs in cataclysmic variables are observed to be more
massive than single white dwarfs, on average.

4.1 introduction

White dwarfs (WDs) in binaries can accrete from their companion stars. Such binaries
are called cataclysmic variables (CVs) if the donor stars are low-mass main-sequence stars,
symbiotic binaries (SBs) if they are evolved red giants, or AM CVNs if the donor stars are
low-mass Helium WDs or Helium stars. For CVs and SBs, the matter accreted by the WD
consists mainly of hydrogen. As the matter piles up on the surface of the WD, it eventually
reaches temperatures and densities high enough for nuclear burning.

The burning can proceed in two ways, depending on the accretion rate and the mass
of the WD. For high accretion rates and WD masses, the hydrogen burning on the surface
of the WD is continuous [Whelan & Iben, 1973; Nomoto, 1982], whereas for low accretion
rates and WD masses the hydrogen is burned in thermo-nuclear runaway novae [Schatzman,
1950; Starrfield et al., 1974]. In general, the high mass-transfer rates needed for continuous
surface hydrogen burning can only be reached by SBs, where high mass-transfer rates can
be driven by the expansion of the evolved star and by systems with main-sequence donors
more massive than the accreting WDs [Nomoto et al., 2000]. The masses of WDs with high
accretion rates can grow effectively, but at very high accretion rates close to the Eddington
limit, the growth of the white dwarf is limited. At these rates a hydrogen red-giant-like
envelope forms around the WD and hydrogen burning on top of the WD is strong enough
for a wind to develop from the WD [Kato & Hachisu, 1994; Hachisu et al., 1996]. On
the other hand, at low accretion rates mass accretion onto the WD is not very efficient
either, as the nova eruptions ejects some or all of the accreted matter from the binary
system, possibly along with some of the surface material of the WD itself [e.g. Prialnik
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& Kovetz, 1995]. The average mass-transfer rate allowing growth of the white dwarf is
therefore limited to a relatively narrow range (∼ 10−7 − 10−6M⊙ yr−1).

The growth of WD masses can have important consequences. In the single-degenerate
(SD) scenario for type Ia supernova (SNIa) progenitors [Whelan & Iben, 1973; Nomoto,
1982] the accretion onto a carbon-oxygen WD pushes the mass above the critical mass
limit for WDs (close but not equal to the Chandrasekhar limit) which then explodes as a
SNIa. In this scenario, it is necessary for the WD to retain several tenths of solar masses
of accreted material. It is not possible to achieve such mass growth for the majority of
systems with mass-transfer rates in the nova regime, even if some of the accreted matter
is retained. Following this theory, the rate and delay time distribution (DTD, evolution
of the rate as a function of time after a single star formation episode) can be estimated
using population synthesis models [e.g. Yungelson et al., 1994; Han et al., 1995; Han &
Podsiadlowski, 2004; Yungelson, 2005; Bogomazov & Tutukov, 2009; Ruiter et al., 2009b;
Mennekens et al., 2010; Wang et al., 2010; Meng et al., 2011; Toonen et al., 2012; Bours
et al., 2013] While there currently is no consensus between the models as to the shape of
the DTD [Nelemans et al., 2013; Bours et al., 2013], the majority of models agree on two
problems: 1) There are not enough systems with high mass-transfer rates to account for
all the observed SNeIa, and 2) after an age of ∼ 6 − 7 Gyr, it is not possible to create SNIa
explosions through this scenario, as only low-mass donors remain.

The considerations above apply to systems where the mass-transfer rate is given by the
evolutionary state of the system, i.e. two binaries with the same parameters will have the
same mass-transfer rate. Observations of accreting WD systems indicates that the long-
term average mass-transfer rates do indeed follow the expectations [e.g. Knigge et al., 2011].
However, it is possible that the mass-transfer rates are highly variable on intermediate
timescales [Patterson, 1984; Verbunt, 1984; Warner, 1987; Hameury et al., 1989]. In this
paper, we discuss such variability and show that it affects the evolution of accreting WD
systems. In particular, the effects can be of high importance for understanding SD SNIa
progenitors, as it increases the volume of the parameter space of systems that can explode
as SNeIa.

4.2 Mass-transfer variability

Over the past decades there have been many studies discussing the theoretical and ob-
servational aspects of mass-transfer variability in WD binaries. Below we shortly review
the current knowledge in order to construct models that capture the main effects of the
possible variability. For a thorough review, see Knigge et al. [2011], section 4.
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4.2.1 Theoretical considerations

In the majority of accreting WD binaries (excepting strongly magnetic WDs with low
accretion rates), hydrogen rich matter is accreted through an accretion disk that deposits
the matter onto the surface of the white dwarf. The matter quickly spreads over the
surface of the white dwarf. What then happens depends on the rate of accretion and the
resulting temperature and density structure near the surface of the white dwarf [Nomoto,
1982; Nomoto et al., 2007; Shen & Bildsten, 2007]. At low accretion rates the temperature
of the white dwarf surface remains low and the accreted hydrogen burns in an unstable
manner, leading to nova eruptions that eject most (if not all) of the accreted matter. At
high accretion rates the hydrogen burning is stable and the matter remains on the WD,
except if the accretion rate is so high (∼ the Eddington limit) that most of the matter
cannot be retained by the WD.

For the fate of the accreted matter in a system with mass-transfer variability to be
different for a similar system without variability, the timescale must neither be too long,
nor too short. If it is too long, it will affect binary properties, such as the radius of the donor
star, that depend on the average long-term mass-transfer rate. This would be observable
and would also change the whole evolution of the binary [see e.g. Knigge et al., 2011]. On
the other hand, if the timescale of the variability is too short, the surface temperature of
the white dwarf will not adjust to the instantaneous mass-transfer rate, which is necessary
for the burning to be affected.

For example, in the accretion disk instability model [e.g. Osaki, 1996; Lasota, 2001],
the mass transfer rate is increased by a factor of ∼ 103 − 105 during outbursts (observed
as dwarf novae), and this model has been invoked to stabilize the hydrogen burning [King
et al., 2003; Alexander et al., 2011]. However, in this model, the accretion rate is only high
for a very short time, and the heat and density of the accreted layer is not raised enough
during the outburst to ignite [Tout, 2005], as also evidenced by the lack of hydrogen burning
events triggered by dwarf novae. The layer will therefore build up without a significant
temperature increase, and when burning eventually is ignited, it will be unstable and
therefore lead to a nova eruption1.

Another example regards nova outbursts. After the eruption, the temperature of the
white dwarf will be increased, and it is possible that for some time the burning can be
stable. Such short-lived stable surface burning triggered by nova eruptions is seen in some
systems [see Schaefer & Collazzi, 2010, and Sect. 4.2.2], but radiation losses during the
quiescent periods will quickly cool the WD down into the unstable burning regime.

Therefore, if mass-transfer variability is to significantly change the surface burning, the

1The effect of the instability of accretion discs on the SNIa rate has been studied by Wang et al. [2010]

with a model similar to our model CONST. If stable burning can be maintained, the SNIa rate is increased

by a factor 2-3 compared to a model without mass-transfer variability. Note that while the effect on the

SNIa rate is similar to our findings, the model that we assume (model NORM-MAX) is different.
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timescale of the mass-transfer fluctuations must at least be longer than the timescale of
the nova and dwarf novae eruptions. In this case a continuous high accretion rate after
an eruption ensures that the temperature on the surface of the WD is sufficient such that
the nuclear burning continues. Therefore only the variability of the rate of matter being
transferred from the companion star to the WD accretion disk can be of importance to the
growth of the WD (and not the variability of the transfer from the disk to the WD). Such
a variability can be achieved in two ways, either through the change in the radius of the
companion star, or through a change in the size of its Roche-lobe [see e.g. Knigge et al.,
2011].

One way that long-term variability can be induced is through irradiation of the donor
star from the accreting WD that heats the envelope of the donor star and causes it to expand
slightly. An increase in the mass-transfer rate leads to stronger irradiation and therefore
expansion of the donor star, whereas a decrease leads to weaker irradiation and contraction.
If the effects are strong enough, the mass transfer becomes unstable on long timescales,
and the system will go through so-called irradiation-induced mass-transfer cycles [IMC,
Podsiadlowski, 1991; Hameury et al., 1993; King et al., 1996; Büning & Ritter, 2004]. In
this theory, the mass-transfer rate is through a series of cycles on Myr timescales, with an
“off” state where there is little or no accretion, and an “on” state, where the mass-transfer
rate slowly increases towards a peak, and then decreases until returning to the “off” state.
Büning & Ritter [2004] find that the parameter space of WD binaries that are susceptible
to IMCs is highly uncertain. CVs that are most likely to be affected have relatively massive
(∼ 1M⊙) main-sequence or somewhat evolved donors with convective envelopes. Giant
donors are unlikely to be affected significantly because the radius variations caused by the
irradiation are small compared to the radial evolution of the envelope and the reaction to
mass loss.

Another way to achieve long term mass-transfer variability is from episodic mass loss
from the binary which can cause cyclic variations of the Roche-lobe radius. CVs naturally
experience such mass loss events when they erupt as novae [Shara et al., 1986; MacDonald,
1986]. If the angular momentum loss is high compared to the mass loss, the orbit will
contract in response to the nova eruption, whereas the orbit will widen if the angular mo-
mentum loss is low compared to the mass loss. The effects of this process are therefore most
likely stronger in systems with extreme mass ratios, where the specific angular momentum
of the two stars is very different.

4.2.2 Observations

The mass-transfer cycles discussed above are difficult to study observationally, as the
timescales are longer than the time we have been able to monitor CVs. A useful method
is by comparing systems with similar properties, as they would be expected to also have
similar mass-transfer rates. Townsley & Gänsicke [2009] used the effective temperatures of
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the WDs to trace the mass accretion rates. The seven non-magnetic CVs above the pe-
riod gap show a large scatter in WD effective temperature and inferred mass-transfer rate,
and this might be evidence for mass-transfer variability. Below the period gap, the mass
transfer differences found by Townsley & Gänsicke [2009] are much smaller, and a similar
result is found by Patterson [2009] using time-averaged accretion disk luminosities. The
co-existence of dwarf novae and novae-likes at the same orbital periods adds to the case of
weak mass-transfer variability below the period gap, but the evidence is not compelling.

The recurrent nova T Pyx might provide evidence for mass-transfer variability on its
own. At a period of 1.83 h [Patterson et al., 1998; Uthas et al., 2010] it is clearly below
the period-gap and should therefore be faint with a low mass accretion rate. However,
it is observed as a recurrent nova with a very high quiescent temperature, luminosity
and change in orbital period, implying an accretion rate > 10−8M⊙ yr−1, two orders of
magnitude above ordinary CVs at this period. Most likely the system is in a transient
evolutionary state. Schaefer & Collazzi [2010] suggest that it was an ordinary CV until it
erupted as a nova in 1866. This eruption triggered a wind-driven supersoft X-ray phase,
resulting in an unusually high luminosity and accretion rate [Knigge et al., 2000]. The
recurrence time of the nova eruptions of T Pyx has increased, and Schaefer & Collazzi
[2010] argue that the state is not self-sustaining. According to them the mass-transfer rate
has decreased from about 10−7M⊙ yr−1 after the first nova eruption in 1866 to the current
rate of about 10−8M⊙ yr−1. It is therefore likely that it will cease being a recurrent nova
in the near future and return to the population of faint CVs.

The mass distribution of the white dwarf components in CVs may indicate at mass
transfer variability as well. Contradicting the standard model of CV evolution [see also
Zorotovic et al., 2011b], white dwarfs in CVs are significantly more massive than single
white dwarfs [e.g. Warner, 1995; Savoury et al., 2011]. If long-term mass-transfer cycles
occur in CVs, the masses of the white dwarf components could be significantly enhanced.

4.3 Model

4.3.1 Mass-transfer variability

From Sect. 4.2 we conclude that there are both theoretical and observational support for
long-term mass-transfer variability in accreting WD binaries. To understand the effects of
the mass-transfer variability on the growth of white dwarfs we need to model it. However,
the observational evidence hardly constrain the theoretical models which rely on highly
uncertain parameters [e.g. Büning & Ritter, 2004]. Here our main goal is to understand
whether the effects of the variability are important, should such variability exist, rather
than studying in detail the effects of a particular theoretical model. We therefore set up
a number of toy models according to the following considerations: The mass-transfer rate
cycles between two separate states, “on” and “off”, with a duty cycle α < 1 representing
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the fraction of the time the source spends in the “on” state. In mathematical terms,
R̄MT = αR̄on + (1 −α)R̄off , where R̄MT is the average long-term mass-transfer rate, R̄on the
average mass transfer rate in the “on” state, and R̄off the average mass transfer rate in the
“off” state.

In most variability models, the stars do not fill their Roche-lobe in the “off”-state, either
because the stars shrink, or the orbit expands, and binary models show dramatic drops in
the mass-transfer rate when this happens. We therefore assume that all of the accretion
takes place in the “on” state. Even if mass transfer in the “off” state only drops by a factor
of f ≈ 10 below the average mass-transfer rate (i.e. R̄off = R̄MT/f), the fraction of mass
transferred in this state will be (1 − α)/f and will therefore only change our results at the
percentage level.

The behaviour in the “on” state is probably different from system to system, but to
retain the average long-term mass-transfer rate R̄MT, the average mass transfer rate in the
“on” state must be R̄on = R̄MT

α
· (1 − 1−α

f
) ≃ R̄MT/α. We employ two model types: (model

CONST) a constant mass-transfer rate, representing systems that quickly attain and keep
their peak rate, and (model NORM) a lognormal probability distribution (with a standard
deviation σe given in base e), representing systems with a gradual increase (or decrease)
of the mass transfer rate, as is typically seen in the IMC scenario. Examples of these
models are shown in Fig. 4.1, showing the fraction of time that a system with an average
mass-transfer rate of R̄MT = 2.0 × 10−9M⊙ yr−1 will spend at different accretion rates.

Also shown in Fig. 4.1 is a model (model NORM-MAX), in which there is a maximum
accretion rate that the systems can reach. The reason for this is that the models for
hydrogen surface burning have a critical mass Ṁcrit, above which mass is accreted too fast.
The luminosity of the hydrogen burning at Ṁcrit is similar to the Eddington luminosity,
and it is normally assumed that the surplus is ejected in the form of a wind [Hachisu
et al., 1996] or at very high accretion rates it piles up as “red giant” envelope. The wind
density will be high enough to obscure the X-rays from the hydrogen burning. As this
irradiation is necessary to keep the mass-transfer rate high in the IMC scenario, the rate
is unlikely to exceed Ṁcrit for long. For our lognormal model we therefore redistribute the
parts of the probability density function above Ṁcrit to lower mass-transfer rates, modifying
the function to retain the average mass-transfer rate. For model NORM-MAX it is per
definition not possible to construct models with α ≤ R̄MT/Ṁcrit as too much time is spent
at low accretion rates to reach R̄MT. For these models we therefore gradually increase the
duty cycle so α = R̄MT/Ṁcrit when necessary.

We furthermore assume that for mean mass-transfer rates in the classical hydrogen
burning regime (>few times10−7M⊙yr−1) the variability disappears. In almost all systems
with such high mass transfer rates, the mass transfer is transferred on the thermal timescale
of the donor star, which is shorter or comparable to the timescale of the mass-transfer cycles
(i.e. the star does not have the time to adjust to the heating before the heated layers are
lost).
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Figure 4.1: Example of the mass-transfer variability models, for an average mass-transfer

rate of R̄MT = 2.0 × 10−9M⊙ yr−1 (grey line). The lines show the fraction of

time that the system will stay at a given mass-transfer rate in the “on” state

for each of the models. The black lines indicate models with duty cycles of

α = 0.1 on the top and α = 0.01 on the bottom. The dotted line is model

CONST, the dash-dotted line is model NORM with σe = 1, and the solid line

model NORM-MAX with σe = 1. The dashed line is also model NORM-MAX

with with a larger spread σe = 2.
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4.3.2 Integrated retention efficiency

The retention efficiency η is the fraction of mass transferred that is retained by the WD.
This is the fraction of hydrogen that is burned stably into helium and where the helium
is also burned stably. The fraction of mass η that is retained depends on the mass of the
WD and on the accretion rate. We estimate η based on Nomoto [1982]; Nomoto et al.
[1984, 2007]; Hachisu et al. [2008]. These estimates takes a wind driven from the white
dwarf and the stripping effect on the companion star into account. We assume that for low
accretion rates the retention factor is η ≤0, corresponding to a net loss of mass from the
white dwarf, with values estimated from Prialnik & Kovetz [1995]. The model is shown in
Fig. 4.2, where the final retention efficiency as a function of the mass-transfer rate is shown
as the grey line. We use this model in the following analysis, but we caution that the
theoretical models that this is based on are calculated assuming constant accretion rates.
As discussed above, the properties of the WD (in particular the temperature) depend on
the accretion history, therefore it is not clear if these models are accurate for systems with
variable accretion rates. However, we note that in the irradiation-induced mass-transfer
scenario, the change in the mass-transfer rate is slow enough (timescales of Myr) that the
assumption of a constant mass-transfer rate is likely to be justified.

If we know the retention efficiency as a function of the mass-transfer rate, RMT, we can
find the effective retention factor for a given mean mass-transfer rate R̄MT for each of the
models:

ηeff =

∫

∞

0 p(RMT) · RMT · ·η(RMT)dRMT

R̄MT

(4.1)

where p(RMT) is the model probability of a given mass-transfer rate RMT.
Figure 4.2 shows the results of applying Eq. 4.1 to the examples of the mass-transfer

models. By construction, all of the models conform to the shape given in by the grey line
in Fig. 4.2 in the stable burning regime (with mass-transfer rates of a few times 10−7M⊙

to Ṁcrit), where we assume that there is no variability. Below this range the models with
mass-transfer cycles clearly distinguish themselves from the model without, as they are able
to retain a significant fraction of the accreted mass at much lower mean accretion rates
∼ α · 10−7M⊙yr−1, irrespective of the details of the model. The differences between the
models are easily understood: model CONST corresponds to a simple shift of the average
mass-transfer rate by a factor 1/α, and the retention curve is therefore keeping its narrow
shape, whereas model NORM both shifts the curve and broadens it due to the lognormal
variability. The maximum is shifted slightly downwards for this model, due to the difference
between the mean and the median of a lognormal model. Both curves display local minima
in the retention curves near R̄MT ∼ 10−7M⊙ yr−1, because above this value the peaks of
the mass-transfer cycles are located above Ṁcrit. As we argue above, this is probably not
realistic due to the obscuration of the X-rays from the white dwarf surface at these high
accretion rates. Most likely the systems that have accretion rates in this range (∼ 10−8

to ∼ 10−7 in Fig. 4.2) will either have higher duty cycles (the depressions only appear for
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Figure 4.2: Effective retention efficiency as a function of average mass-transfer rate for

different variability models (black lines) for a 1.3M⊙ WD accretor. Model

CONST is shown as a dotted line and model NORM with σe = 1 is shown

as the dash-dotted line. The solid and dashed lines are model NORM-MAX

with σe = 1 and σe = 2 respectively. On the top models with a duty cycle of

α = 0.1 and on the bottom α = 0.01. The grey line shows a model without

mass-transfer variability.
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duty cycles α . 0.1) and/or lower peak accretion rates than assumed, and will therefore
also retain much of the accreted mass. Indeed in model NORM-MAX where accretion is
not allowed to exceed Ṁcrit, the retention efficiency stays high in this accretion range.

For models NORM and NORM-MAX the retention efficiency stays above zero well
below R̄MT = 10−9M⊙ yr−1, despite the systems spending more time in accretion states
with negative retention efficiencies, because even if they only spend a short time at high
RMT, the fraction of mass accreted in this regime is still considerable. We believe that
model NORM-MAX captures the behaviour of IMCs best, such as the ones modelled by
Büning & Ritter [2004], because the formation of a WD envelope at high mass transfer
rates is likely to quenche the irradiation process (see also Sect. 4.3). We conclude that for
all of the models the WDs can effectively grow down to average mass-transfer rates a factor
of α lower than in the standard scenario without variability, irrespective of the specific
shape of the variability (assuming that the mass-transfer rate does not exceed Ṁcrit).

4.4 Application to binary stellar evolution

Our models of mass-transfer cycles from Sect. 4.3 significantly modify and enhance the mass
retention efficiency of accreting white dwarfs (see Fig. 4.2). This can have a significant
effect on the characteristics of the population of accreting white dwarf binaries, e.g. the
distribution of WD masses in cataclysmic variables. Furthermore, the growth of carbon-
oxygen white dwarfs is important for understanding the rate of SNIa and their delay time
distribution in the single-degenerate channel, which we study here as an example of the
implications of mass-transfer variability.

In the traditional picture without variability, the systems that can become type Ia
supernovae are distributed in two regions (“islands”) in the plane of the two parameters
- orbital period and secondary mass - just after the formation of the WD [Li & van den
Heuvel, 1997; Hachisu et al., 1999b; Li & van den Heuvel, 2002; Han & Podsiadlowski,
2004; Hachisu et al., 2008]. One of the islands consists of progenitors where the companion
has evolved to a giant before commencing the mass transfer. As mentioned above, these
systems are not likely to be susceptible to IMCs [Büning & Ritter, 2004]. The other island
consists of main-sequence or slightly evolved donors. If the mass of the donor star is much
higher than the white dwarf mass, the mass transfer will be dynamically or tidally unstable,
leading to a merger of the two stars, leading to a natural upper mass limit to the island.
The lower mass limit is determined by the fact that when the mass of the donor star comes
near to the mass of the white dwarf, the mass transfer rate drops below the stable surface
hydrogen burning limit. This typically happens around 1.5M⊙, and since the vast majority
of CO WDs are born below 1M⊙, the initial mass of the donor star must be above ∼ 2M⊙.

In the models with mass-transfer variability it is possible to retain the matter accreted
at lower mass-transfer rates. This will not affect the upper limit to the donor mass, since

71



Chapter 4 : mass-transfer variability

10-9

10-8

10-7

10-6

R̄
M
T
(M

K

/
yr

)

0.5

1.0

1.5

2.0

M
d
(M

K

)

105 106 107 108 109

Age (yr)

0.8

0.9

1.0

1.1

1.2

1.3

1.4

M
W
D
(M

K

)

105 106 107 108 109

Age (yr)

Figure 4.3: Binary tracks for two WD binaries starting mass transfer while the donor

star is on the main sequence. The initial mass of the WD is 0.8M⊙, the

initial orbital separation is 4.5R⊙, and the initial mass of the donor star is

1.8M⊙ (left) and 2.1M⊙ (right). The panels show the evolution of the (time-

averaged) mass-transfer rate R̄MT (upper), the donor mass Md (middle) and

the WD mass MW D(lower), for three different models: SeBa standard (grey

solid), model NORM-MAX with α = 0.1,σe = 1 (black solid) and model

NORM-MAX with α = 0.01,σe = 1 (black dashed).
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this limit is determined by the stability of mass transfer at high rates. However, the lower
mass limit of the donor star is likely to be affected. Therefore an increased retention at low
mass-transfer rates allows WDs in binaries with lower donor masses to grow, and therefore
allows systems with lower initial donor masses to become type Ia supernovae.

The limits depend on the strengths and shape of the mass-transfer variability, but also
on the evolution of the donor star and its reaction to the mass loss. To better understand
what our results mean for the evolution of binaries with WDs, we have calculated binary
evolutionary sequences with the binary population synthesis code SeBa [Portegies Zwart &
Verbunt, 1996; Nelemans et al., 2001c; Toonen et al., 2012, Toonen & Nelemans, submitted].
Our goal is to understand how the possible long-term variability affects the evolution of
accreting WD binaries that might become type Ia supernovae. We therefore compare
evolutionary tracks computed with a standard SeBa model to tracks where the accretion
efficiency has been modified by variability. The standard retention efficiency in SeBa is
based on Nomoto [1982]; Nomoto et al. [1984, 2007]; Hachisu et al. [2008] [see the grey line
in Fig. 4.2 and Bours et al., 2013, Eq. 5, A1-A5]. In the nova regime

R̄MT < Ṁst = 3.1 · 10−7
(

MWD

M⊙

− 0.54
)

(4.2)

with Ṁst as given by Hachisu et al. [2008], the retention efficiency η of model NORM-MAX
is additionally modified to:

η =



























0.8 if αṀST < R̄MT < ṀST

0.8(log(R̄MT) − log(αṀST)) if 0.1αṀST < R̄MT < αṀST

0 if R̄MT < 0.1αṀST

(4.3)

As can be seen from Fig. 4.2, other variability models might give somewhat smaller effects if
the peak accretion rate is not limited. For each model, we make the simplifying assumption
that the effective retention ηeff only depends on R̄MT and the mass of the WD, i.e. that
the shape and strength of the IMCs are the same irrespective of the properties of the donor
star. This is clearly unrealistic. However, the goal of our study is to understand if the
variability is likely to impact the SNIa population properties, and to indicate what the
possible effects might be, and the assumption is sufficient for this.

In Fig. 4.3 we show the results of evolving two WD binaries with close main-sequence
companions according to the standard SeBa model (grey solid lines) and model NORM-
MAX with σe = 1, and α = 0.1 (black solid lines) and α = 0.01 (black dashed lines).
The systems behave similarly after the initial contact, when the mass-transfer rate is high.
When it drops below the standard surface burning regime, differences appear, not just
in the WD growth (bottom panel), but also in the time-averaged mass-transfer rate itself
(top panel). This is because the matter ejected from the system carries angular momentum,
which can strongly affect the evolution of the binary orbit. Note that this is the only way
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in which we allow the time-averaged mass transfer rate to vary in our models. Furthermore
we assume that the matter that can not be accreted by the WD leaves the system with the
specific orbital angular momentum of the WD.

The main point of Fig. 4.3 is that for both systems of the standard model the mass of
the WD never reaches the critical explosion mass (∼ 1.4M⊙, for this model the initial com-
panion mass must be about 2.3M⊙ for the WD to reach this mass), whereas the variability
models do reach the explosion mass.

4.5 Binary population Synthesis

In the previous sections we have shown that mass-transfer variability has the potential to
significantly change the parameter space of initial WD binaries that can become type Ia
supernovae, towards both lower-mass donor stars as well as lower-mass white dwarfs. To
understand how this can affect the population of type Ia supernovae, we use the binary
population synthesis (BPS) code SeBa [Portegies Zwart & Verbunt, 1996; Nelemans et al.,
2001c; Toonen et al., 2012, Toonen & Nelemans, submitted] to model the evolution of SNIa
progenitors according to different mass-transfer variability models.

In SeBa, stars are evolved from the zero-age main sequence (ZAMS) until remnant
formation, and, at every timestep, processes such as stellar winds, mass transfer, angular
momentum loss, magnetic braking and gravitational radiation are taken into account with
appropriate recipes. The initial stellar population is generated with a Monte-Carlo ap-
proach according to appropriate distribution functions. Initial primary masses are drawn
from 0.95-10M⊙ from a Kroupa IMF [Kroupa et al., 1993] and secondary masses from a flat
mass ratio distribution between 0 and 1. The semi-major axis of the binary is drawn from a
power law distribution with an exponent of -1 [Abt, 1983], ranging from 0 to 106R⊙ and the
eccentricity from a thermal distribution, ranging from 0 to 1 [Heggie, 1975]. Furthermore,
solar metallicities and a binary fraction of 50% are assumed.

The CE-phase [Paczynski, 1976] plays an essential role in binary evolution in the for-
mation of close binaries with compact objects. Despite of the importance of the CE-phase
and the enormous efforts of the community, we still do not understand the phenomenon in
detail. To take into account the uncertainty in the CE-phase in our models, we differentiate
between two CE-models. The canonical CE-formalism is the αCE-formalism [Tutukov &
Yungelson, 1979; Webbink, 1984] that is based on the energy budget of the binary system.
The αCE-parameter describes the efficiency with which orbital energy Eorb is consumed to
unbind the CE, i.e.

GM1M1,e

λR
= αCE(Eorb,init −Eorb,final), (4.4)

where M1, M1,env and R are the mass, envelope mass and radius of the donor star and λ is
the envelope structure parameter [de Kool et al., 1987]. Based on the evolution of double
WDs, [Nelemans et al., 2000] derives a value of αCEλ = 2, which we have assumed here.
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Table 4.1: Time-integrated SNIa rates in the SD channel for different mass-transfer vari-

ability models and the common envelope prescriptions in units of 10−4M⊙
−1.

γ-prescription αCE-prescription
No variability 0.82 1.4
Model NORM-MAX (α = 0.1) 1.6 3.2
Model NORM-MAX (α = 0.01) 1.9 4.1

Observed 4− > 341

Notes: 1 Maoz & Mannucci [2012b]; Perrett & et al. [2012]; Maoz et al. [2012]; Graur &

Maoz [2013]

An alternative CE-prescription was introduced by Nelemans et al. [2000] in order to
explain the observed distribution of double WDs systems. The γ-formalism of CE-evolution
is based on the angular momentum balance. The γ-parameter describes the efficiency with
which orbital angular momentum is used to expel the CE according to:

Jb,init − Jb,final

Jb,init

= γ
∆M1

M1 +M2

, (4.5)

where Jb is the orbital angular momentum of the binary, and M2 is the mass of the compan-
ion. We assume γ = 1.75 [Nelemans et al., 2001c]. Although assuming the γ-prescription
in BPS codes leads to a significant improvement in the synthetic double WD population,
the physical mechanism remains unclear. Recently Woods et al. [2010, 2012] proposed that
double WDs can be formed by stable, non-conservative mass transfer between a red giant
and a main-sequence star. The effect on the orbit is a modest widening, with a result not
unlike the γ-description.

4.6 Results and discussion

Figure 4.4 and 4.5 shows the systems that become type Ia supernovae in the diagram of
orbital period - donor mass at the birth of the WD. The solid line marks the theoretical
region for the classical SD SNIa progenitors for a 1.1M⊙ WD [Hachisu et al., 2008, as
approximated by Bours et al. 2013]. Taking into account the formation and evolution of
the binary prior to the formation of the WD, Fig. 4.4a and 4.5a shows the distribution of
classical SD SNIa progenitors according to SeBa. Most systems have low-mass donor stars
and relatively long periods. Furthermore most systems lie in or close to the marked region
of Hachisu et al. [2008], where differences occur by different assumptions for the mass-
transfer rate and the (dynamical) stability of mass transfer. Figure 4.4b and 4.5b show
how the parameter space of systems that can become type Ia supernovae is extended for
model NORM-MAX with a duty cycle of α = 0.1, and Fig. 4.4c and 4.5c for a lower duty
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cycle of α = 0.01. These four figures show that the parameter space of SNIa progenitors
extends to lower donor masses when mass-transfer cycles are taken into account.

The time-integrated number of SNIa events is about 10−4M⊙
−1, see Table 4.1. When

taking into account mass-transfer variability according to model NORM-MAX, the rate is
increased by a factor of 2-2.3 and 2.3-2.9 for α = 0.1 and α = 0.01 respectively, compared to
the standard model of non-variable mass-transfer rates. The DTDs (assuming a single burst
of star formation at t=0) from all models show a strong decline with time (see Fig. 4.6).
When mass-transfer variability is included in our simulations, the DTDs are affected at
delay times from about 100Myr to a Hubble time. However, the shape of the DTDs has
not changed significantly.

The effect of including mass-transfer variability on the SNIa rate is mild, even though the
retention efficiency of WD accretion if greatly enhanced in our models. The extra number
of systems that become SNeIa due to mass-transfer variability is limited, compared to the
extra number of ZAMS systems that are born with secondaries in the extended mass range.
Our study shows that the reason for this is that, as the mass of the secondary decreases,
it becomes harder to create close binaries with massive WDs. As the initial binary mass
ratio is higher for these systems, the orbital separation is decreased more during the first
mass-transfer episode from the WD progenitor to the secondary star, and most of the lower-
mass secondaries end up being too close to survive until the formation of the WD. Most
of the systems that do survive experience Roche-lobe overflow from the WD progenitor
(primary) when it has become a helium star, which significantly increases their donor mass
and therefore decreases the evolutionary timescale. This speed-up means that they cannot
explode as the very delayed supernovae that could be expected of low-mass secondaries,
but rather on relatively short timescales below 1 Gyr.

From galaxy cluster measurements and cluster iron abundances, Maoz & Mannucci
[2012b] and Maoz et al. [2010] find an observed integrated rate of (18 − 29) · 10−4 M−1

⊙

and > 34 · 10−4 M−1
⊙

. Furthermore Maoz & Mannucci [2012b] finds that the delay time
distribution that roughly follows a ∼ t−1 power-law shape. Neither the integrated rate and
DTD from the standard model nor from the variability models are consistent with these
observations. Recent measurements in volumetric surveys, however, have shown lower rates;
(4.4±0.2)−(5.0±0.2)·10−4 M−1

⊙
by Perrett & et al. [2012] [(6−10)·10−4 M−1

⊙
when rescaling

the Salpeter IMF to a diet-Salpeter IMF to account for the reduced number of low-mass
stars Maoz et al., 2012], (13 ±1.5) · 10−4 M−1

⊙
by Maoz et al. [2012] and (4 −12) · 10−4 M−1

⊙

by Graur & Maoz [2013]. It is unclear if the different observed integrated rates are due
to systematic effects (for example overestimation of the cosmic star formation history or
over-correction of dust extinction) or if there is a real enhancement of SNeIa in cluster
galaxies [see also Maoz et al., 2012]. With these recent observations of the integrated rate,
the long-standing problem of BPS studies predicting too low SNIa rates has diminished.
The SNIa rates of our most optimistic models of low duty cycles are consistent with the
lowest observed integrated rates, but the corresponding synthetic DTD shows a stronger
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decline with time than the observed DTDs.
The increase in the SNIa rate in the mass-transfer variability models compared to the

standard model is limited by the formation of close binaries with low mass companions,
which is dependent on our understanding of binary evolution. A comprehensive comparison
of four BPS codes (including SeBa, see Toonen et al. submitted) showed that differences
between the predictions of BPS codes for low- and intermediate-mass stars are not caused
by numerical effects in the codes, but by different assumptions for phases in stellar and
binary evolution that are not understood well. When these assumptions are equalized,
the synthetic populations of the four BPS codes are similar. Important assumptions (or
uncertain processes) for the SD channel are the retention efficiency for WD accretion and
common-envelope (CE) evolution [Bours et al., 2013, Toonen et al. submitted, Claeys et
al. in prep.]. Bours et al. [2013] shows that the effect of different retention efficiencies can
effect the SNIa rate by a factor 3-4 to even more than a factor 100, which explains for a
large degree the large disagreement in the predictions of the SD SNIa rate by different BPS
studies. Regarding the poorly understood common-envelope phase, we have shown that
mass-transfer variability can effect the SNIa rate to a comparable degree as CE-evolution.
Especially now that the gap between observed and synthetic SNIa rates has decreased, it is
important to take uncertainties in binary evolution such as CE-evolution and mass-transfer
variability into account.

4.7 Conclusions

We have studied the effect of mass-transfer variability on accreting WDs in binary com-
panion stars. Long-term mass-transfer variability can be induced by e.g. irradiation of the
donor star by the accreting WD or by cyclic variations of the Roche lobe from mass loss
episodes [Knigge et al., 2011]. The timescale of the variability should be longer than the
thermal timescale of the non-degenerate surface layer of the WD so that the surface burn-
ing is affected. On the other hand, the timescale of the mass-transfer cycles should not be
too long, such that the binary is not affected in any observable way (e.g. strong bloating of
donor stars by irradiation). Currently observations hardly constrain the theoretical models
of mass-transfer variability [e.g. Büning & Ritter, 2004] and therefore we have constructed
a number of toy models rather than studying the details of a particular mass-transfer vari-
ability model. We show that long-term mass-transfer variability can significantly affect the
accretion process and retention efficiency of mass-transfer towards WDs.

Mass-transfer variability and accompanying enhanced retention efficiencies is likely to
impact the properties of accreting WD binaries. As an example, we study the evolution of
SNIa progenitors from the single-degenerate channel. We find that if mass-transfer cycles
take place, the parameter space of systems that become SNIa events is increased towards
low mass donor stars. Furthermore we find that the integrated SNIa rate increases by a
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Figure 4.4: Donor mass vs. orbital period at WD formation for the SD SNIa progenitors

assuming the γ-algorithm with γ = 1.75 for three different mass-transfer

models. On the top a model without mass-transfer variability, in the middle

model NORM-MAX with α = 0.1 and on the bottom model iii with a duty

cycle of α = 0.01. The intensity of the grey scale corresponds to the density

of objects on a linear scale. The solid lines mark the theoretical parameter

region [Hachisu et al., 2008] for main-sequence and slightly evolved donor

stars that transfer mass to a WD of 1.1M⊙.

78



4.7 Conclusions

R1.0 R0.5 0.0 0.5 1.0 1.5
log P (d)

0

1

2

3

4

5

6

7

M
d
 (
M

S

)

0.0

1.5

3.0

4.5

6.0

7.5

9.0

10.5

(a)

T1.0 T0.5 0.0 0.5 1.0 1.5
log P (d)

0

1

2

3

4

5

6

7

M
d
 (
M

U

)

0

1

2

3

4

5

6

7

8

9

(b)

V1.0 V0.5 0.0 0.5 1.0 1.5
log P (d)

0

1

2

3

4

5

6

7

M
d
 (
M

W

)

0

1

2

3

4

5

6

7

8

(c)

Figure 4.5: Donor mass vs. orbital period at WD formation for the SD SNIa progenitors

assuming the αCE-algorithm with αCEλ = 2. On the top a model without

mass-transfer variability, in the middle model NORM-MAX with α = 0.1

and on the bottom model NORM-MAX with a duty cycle of α = 0.01. The

intensity of the grey scale corresponds to the density of objects on a linear

scale. The solid lines mark the theoretical parameter region [Hachisu et al.,

2008] for main-sequence and slightly evolved donor stars for a WD of 1.1M⊙.
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Figure 4.6: Delay time distribution of SNIa events from the SD channel for three different

mass-transfer models. The black lines indicate model NORM-MAX with

α = 0.1 (solid) and α = 0.01 (dashed). The grey line shows a model without

mass-transfer variability. On the top assuming the γ-algorithm with γ = 1.75

and on the bottom assuming the αCE-algorithm with αCEλ = 2.
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factor of about 2-3, which is comparable with the lower limit of the observed rates [see
Maoz & Mannucci, 2012b; Perrett & et al., 2012; Maoz et al., 2012; Graur & Maoz, 2013].
Variability models in which the maximum mass-transfer rate is not limited will affect the
SNIa rate less.
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Chapter 5
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Abstract

The study of Type Ia supernovae (SNIa) has lead to greatly improved insights
into many fields in astrophysics, e.g. cosmology, and also into the metal enrich-
ment of the universe. Although a theoretical explanation of the origin of these
events is still lacking, there is a general consensus that SNIa are caused by the
thermonuclear explosions of carbon/oxygen white dwarfs with masses near the
Chandrasekhar mass. We investigate the potential contribution to the super-
nova Type Ia rate from the population of merging double carbon-oxygen white
dwarfs. We aim to develope a model that fits the observed SNIa progenitors as
well as the observed close double white dwarf population. We differentiate be-
tween two scenarios for the common-envelope (CE) evolution; the α-formalism
based on the energy equation and the γ-formalism that is based on the angular
momentum equation. In one model we apply the α-formalism always. In the
second model the γ-formalism is applied, unless the binary contains a compact
object or the CE is triggered by a tidal instability for which the α-formalism
is used. The binary population synthesis code SeBa was used to evolve bi-
nary systems from the zero-age main sequence to the formation of double white
dwarfs and subsequent mergers. SeBa has been thoroughly updated since the
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last publication of the content of the code. The limited sample of observed
double white dwarfs is better represented by the simulated population using
the γ-formalism for the first CE phase than the α-formalism. For both CE
formalisms, we find that although the morphology of the simulated delay time
distribution matches that of the observations within the errors, the normalisa-
tion and time-integrated rate per stellar mass are a factor of about 7-12 lower
than observed. Furthermore, the characteristics of the simulated populations
of merging double carbon-oxygen white dwarfs are discussed and put in the
context of alternative SNIa models for merging double white dwarfs.

5.1 Introduction

Type Ia supernovae (SNIa) are one of the most energetic explosive events known. They have
been of great importance in many fields, most notably as a tool in observational cosmology.
They have been used very successfully as standard candles on cosmological distance scales
[e.g. Riess et al., 1998; Perlmutter et al., 1999], owing to the special property of great
uniformity in the light curves [e.g. Phillips, 1993]. The SNIa also strongly affect the Galactic
chemical evolution through the expulsion of iron [e.g. van den Bergh & Tammann, 1991].
Despite their significance Type Ia supernovae are still poorly understood theoretically.

Supernovae Type Ia are generally thought to be caused by thermonuclear explosions
of carbon/oxygen (CO) white dwarfs (WDs) with masses near the Chandrasekhar mass
Mch ≈ 1.4M⊙ [e.g. Nomoto, 1982]. Various progenitor scenarios have been proposed.
The standard scenarios can be divided into two schools of thoughts: the single-degenerate
(SD) [Whelan & Iben, 1973] and double-degenerate (DD) scenario [Webbink, 1984; Iben &
Tutukov, 1984]. In the SD scenario, a CO WD explodes as an SNIa if its mass approaches
Mch through accretion from a non-degenerate companion. In the DD scenario, two CO
WDs can produce an SN Ia while merging if their combined mass is larger than Mch.

However, observationally as well as theoretically, the exact nature of the SNIa pro-
genitors remains unclear. The explosion mechanism is complex due to the interaction of
hydrodynamics and nuclear reactions. Several models exist that vary for example between
a detonation or deflagration disruption or vary between explosions at the Chandrasekhar
mass or sub-Chandrasekhar masses [see e.g. Hillebrandt & Niemeyer, 2000, for a review].
It also remains unclear whether the DD and SD scenario both contribute to the SNIa rate
or if one of the scenarios dominates. Both scenarios have problems in matching theories
with observations. A serious concern about the DD scenario is whether the collapse of the
remnant would lead to a supernova or to a neutron star through accretion-induced collapse
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[see Nomoto & Iben, 1985; Saio & Nomoto, 1985; Piersanti et al., 2003; Yoon et al., 2007;
Pakmor et al., 2010, 2012; Shen et al., 2012]. Although in the SD channel the models for the
explosion process need to be fine-tuned to reproduce the observed spectra and light curves,
an SNIa like event is more easily reproduced in the simulations of the explosion process.
One problem with the SD scenario is that the white dwarfs should go through a long phase
of supersoft X-ray emission, although it is unclear if there are enough of these sources to
account for the SNIa rate [see Di Stefano, 2010; Gilfanov & Bogdán, 2010; Hachisu et al.,
2010]. Moreover archival data of known SNIa have not shown this emission unambiguously,
but there is may be one case [see Voss & Nelemans, 2008; Roelofs et al., 2008; Nielsen et al.,
2010]. Furthermore, SNIa that take place more than a few 109 years after the starburst
[see e.g. Maoz et al., 2010] are hard to create in this channel [e.g. Yungelson & Livio, 2000;
Han & Podsiadlowski, 2004].

To use SNIa as proper standard candles, we need to know what SNIa are, when they
happen and what their progenitors are. Therefore, we study the binary evolution of low-
and intermediate mass stars. In a forthcoming paper (Bours, Toonen & Nelemans, in
preparation) we study the SD-scenario by looking into the poorly understood physics of
accretion onto white dwarfs. In this paper we focus on the DD scenario and the effect of
the as yet very uncertain phases of common-envelope (CE) evolution on the double white
dwarf (DWD) population. These DWD systems are interesting sources for studying various
phases of stellar evolution, in our case the CE evolution. Gravitational wave emission
is also important as this affects the binary system by decreasing the orbital period and
eventually leading to a merger [Kraft et al., 1962; Peters, 1964], or possible a SNIa. The
DWDs are expected to be the dominant source [Evans et al., 1987; Nelemans et al., 2001a]
of gravitational waves for the future space-born gravitational wave observatories such as
eLISA [Amaro-Seoane et al., 2012a,b].

We study the population of merging DWDs that might lead to a SNIa from a theoretical
point of view. We incorporated results from observations where possible. We use the
population synthesis code SeBa for simulating the stellar and binary evolution of stellar
systems that leads to close DWDs. In Sect. 5.2 we describe the code and the updates
since the last publication of SeBa. A major influence on the merging double-degenerate
population is the poorly understood CE phase [Paczynski, 1976; Webbink, 1984; Nelemans
et al., 2000]. We adopt two different models for the CE. In Sect. 5.3 we describe these
models and their implications for the observations of close DWDs. In Sect. 5.4 we discuss
the binary paths leading to SNIa for each model. The SNIa rates and time-integrated
numbers are derived in Sect. 5.5. The properties of the population of merging DWDs are
discussed in the context of the classical and alternative sub- and super-Chandrasekhar SNIa
explosion models in Sect. 5.6. A discussion and conclusion follows in Sect. 5.7.

85



Chapter 5 : SNIa progenitors from merging double white dwarfs

(a)

(b)

Figure 5.1: Simulated population of visible double white dwarfs as a function of orbital

period and mass of the brighter white dwarf. Top: the stellar evolution tracks

according to EFT are used; bottom: HPT (using model γα, see Sect. 5.3).

The intensity of the grey scale corresponds to the density of objects on a

linear scale. The same grey scale is used for both plots. Observed binary

white dwarfs are overplotted with filled circles. Thick points taken are from

Marsh et al. [2011], thinner points from Tovmassian et al. [2004]; Napiwotzki

et al. [2005]; Kulkarni & van Kerkwijk [2010]; Brown et al. [2010, 2011]; Marsh

et al. [2011]; Kilic et al. [2011a,c,b], see Sect. 5.2.1 for a discussion.
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5.2 SeBa - a fast stellar and binary evolution code

We present an update to the software package SeBa [Portegies Zwart & Verbunt, 1996;
Nelemans et al., 2001c] for fast stellar and binary evolution computations. Stars are evolved
from the zero-age main sequence (ZAMS) until remnant formation and beyond. Stars are
parametrised by mass, radius, luminosity, core mass, etc. as functions of time and initial
mass. Mass loss from winds, which is substantial e.g. for massive stars and post main-
sequence stars, is included. Binary interactions such as mass loss, mass transfer, angular
momentum loss, CE, magnetic braking, and gravitational radiation are taken into account
with appropriate recipes at every timestep [Portegies Zwart & Verbunt, 1996; Portegies
Zwart & Yungelson, 1998]. Following mass transfer in a binary, the donor may turn into
a helium-burning star without hydrogen envelope. When the mass transfer leads to a
merger between the binary stars, we estimate the resulting stellar product and follow the
evolution further. Note that we do not solve the equations of stellar structure. The stellar
tracks instead assume stellar models in hydrostatic equilibrium. When this is not the case,
however the gas envelope surrounding the core may puff outward (see Appendix 5.A.2 for
details on the formalism). In our simulation the mass transfer rate is calculated from the
relevant timescales (see Appendix 5.A.3) and not from than the stellar radii. Therefore
binary evolution is not critically dependent on out-of-equilibrium parameter values.

The philosophy of SeBa is to not a priori define the binary’s evolution, but rather to
determine this at runtime depending on the parameters of the stellar system. When more
sophisticated models become available of processes that influence stellar evolution, these
can be included, and the effect can be studied without altering the formalism of binary
interactions. An example is the accretion efficiency onto the accretor star during mass
transfer. Instead of prescribing a specific constant percentage of the transferred matter
to be accreted (and the rest to be lost from the system), the efficiency depends on the
properties of the accreting star, such as the thermal timescale, the radius and the Roche
lobe of the accretor (see Appendix 5.A.2 for details). Another example is the stability of
mass transfer. In our simulations the stability and rate of mass transfer are dependent on
the reaction to mass change of the stellar radii and the corresponding Roche lobes. The
advantage of this is that the (de)stabilising effect of non-conservativeness of stable mass
transfer [see Soberman et al., 1997] is taken into account automatically. There is no need to
make the assumption in the stability calculation that stable mass transfer is conservative,
as with methods that depend on the mass ratio [Hjellming & Webbink, 1987; Tout et al.,
1997; Hurley et al., 2002].

Since the last publication of the code content, many changes have been made. We
briefly discuss the most important changes below, and provide more detail in Appendix 5.A.
First, the wind mass loss prescriptions that we implemented are mostly based on the
recommendations by Hurley et al. [2000]. The specific prescriptions for different types of
stars are described in Appendix 5.A.1. Second, a summary of the treatment of accretion
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onto different stars can be found in Appendix 5.A.2. The accretion procedure previously
used in SeBa is complemented with a procedure for accretion from a hydrogen-poor star.
We assume that for ordinary stars, helium-rich matter is accreted directly to the core of the
star. The mass accretion process onto white dwarfs is updated with new efficiencies of mass
retention on the surface of the white dwarf. For hydrogen accretion we have the option
to choose between the efficiencies of Hachisu et al. [2008] and Prialnik & Kovetz [1995].
Helium retention can be modelled according to Kato & Hachisu [1999] [with updates from
Hachisu et al., 1999] or Iben & Tutukov [1996]. In this research we used the efficiencies
of Hachisu et al. [2008], Kato & Hachisu [1999], and Hachisu et al. [1999]. For a study of
different retention efficiencies and the effect on the Supernova Type Ia rate using the new
version of SeBa, see Bours, Toonen & Nelemans, in preparation. Third, the stability of
mass transfer is based on the adiabatic and thermal response of the donor star to mass loss
and the response of the Roche lobe. The adjustment of the Roche lobe is dependent on
the mass transfer rate, which in turn sets the efficiency of accretion onto the accretor star,
see Appendix 5.A.3. Fourth, regarding the stellar tracks, previously, stellar evolution has
been based on evolutionary tracks described by analytic formulae given by Eggleton et al.
[1989, hereafter EFT] with updates from Tout et al. [1997] and helium star evolution as
described by Portegies Zwart & Verbunt [1996] based on Iben & Tutukov [1985]. In the new
version, the evolution of ordinary stars and hydrogen-poor stars is based on Hurley et al.
[2000, hereafter HPT]. We do not adopt the HPT tracks for remnants, instead we maintain
our prescription [Portegies Zwart & Verbunt, 1996; Nelemans et al., 2001c], which includes
processes such as natal kick velocities to compact objects in supernovae explosions.

5.2.1 Impact on the population of double white dwarfs

Figure 5.1 shows the visible close DWD population simulated by SeBa . On the left a
simulation is shown of the previous version of SeBa that a.o. uses the EFT tracks and
on the right we show the current version using the HPT tracks. Initial parameters are
distributed according to the distributions described in Table 5.1. Primary masses are drawn
from 0.96M⊙ to 11M⊙ to include all stars that evolve into a white dwarf in a Hubble time.
For the mass ratio and eccentricity we cover the full range 0-1, and the orbital separation out
to 106R⊙. We assumed solar metallicity, unless specified otherwise. In the normalisation of
the simulation we assumed that primary masses lie in the range 0.1-100M⊙. Our method
to estimate the visible population of DWDs is described in Nelemans et al. [2004], in which
the Galactic star formation history is based on Boissier & Prantzos [1999] and WD cooling
according to Hansen [1999]. We assume a magnitude limit of 21. In Fig. 5.1, the observed
DWDs are overplotted with filled circles. The systems are described by Marsh [2011]
and references therein, as well as Tovmassian et al. [2004] and Rodríguez-Gil et al. [2010].
Additionally, we included 19 newly discovered DWDs from Kulkarni & van Kerkwijk [2010];
Brown et al. [2010, 2011]; Marsh et al. [2011]; Kilic et al. [2011a,c] and Kilic et al. [2011b].
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Table 5.1: Distributions of the initial binary parameter mass, mass ratio, orbital separa-

tion and eccentricity.

Parameter Distribution

Mass of single stars Kroupa IMF (1)

Mass of binary primaries Kroupa IMF (1)

Mass ratio Flat distribution
Orbital separation N(a)da ∝ a−1da (2)

Eccentricity Thermal distribution (3)

References: (1) Kroupa et al. [1993]; (2) Abt [1983]; (3) Heggie [1975];

These new systems are displayed with smaller circles and thinner lines to separate them
from the previously found systems. We did this because the observational biases are very
different. The previously found systems were selected from a magnitude-limited sample
down to 16-17 magnitude. The new systems are much fainter at about 20 magnitude.
Moreover, most of the new systems are discovered as part of the ELM survey [Brown
et al., 2010]. This survey focuses on finding extremely low-mass white dwarfs from follow-
up observations of spectroscopically selected objects from the Sloan Digital Sky Survey.
Therefore, the set of new systems is biased to lower masses. One should take this bias into
account while comparing with the simulations and not take the combined set of observed
systems as a representative sample of the DWD population. Kilic et al. [2011a] showed in
their Fig. 12 a visualisation of the population of visible DWDs simulated by SeBa, where
this selection effect has been taken into account.

The locations of the observed DWDs in Fig. 5.1 correspond reasonably well to the
predictions of both models. The overall structure of the simulated populations from both
models are similar. At masses of about 0.5M⊙ and periods of 1 − 10 hr, there is a very
pronounced region in the plot from the EFT tracks that seems to be missing in the HPT
plot. However, this is not really the case. These systems mainly consist of one helium (He)
WD and one CO WD. Masses of CO WDs span a wider range of values in the HPT tracks,
which distributes the pronounced region in EFT over a larger region in mass and period in
HPT.

For a single burst of star formation the number of created DWDs within 13.5 Gyr and
with an orbital period P < 1000hr for the HPT and EFT stellar tracks is very similar;
6.9 · 10−3 per M⊙ of created stars for both models. The time-integrated merger rate is
2.4 · 10−3M−1

⊙
for HPT and 3.2 · 10−3M−1

⊙
for EFT. The current merger rate in the Milky

Way according to the HPT and EFT stellar tracks is very similar; 1.4 · 10−2 yr−1 for HPT
and 1.2 · 10−2 yr−1 for EFT, for which we have assumed a star formation history as in
Nelemans et al. [2004] based on Boissier & Prantzos [1999].

Classically, the population of double He dwarfs is thought to dominate in number over
the other types of close DWDs. Using the EFT tracks for a single burst of star formation, we
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predict a percentage of [He-He, He-CO, CO-CO] = [60%, 17%, 21%] and a negligible number
of DWDs containing oxygen/neon (ONe) dwarfs. For the HPT tracks, the percentage of
double He dwarfs decreases to 38%. The population consists of [He-He, He-CO, CO-
CO]=[38%, 27%, 33%] and 2% CO - ONe dwarfs. The decrease in number of He WDs
is caused by a difference in the stellar tracks related to helium ignition under degenerate
conditions. As shown by Han et al. [2002], degenerate stars do not ignite helium at a fixed
core mass, but instead the core mass at helium ignition is a decreasing function of the
ZAMS mass of the star. Taking this into account, more WDs in close binaries are labelled
CO WDs.

5.3 Two models for common-envelope evolution

Close DWDs are believed to encounter at least two phases of mass transfer in which one
of the stars loses its hydrogen envelope. In at least one of these phases mass transfer
from the evolving more massive star to the less massive companion is dynamically unstable
[Paczynski, 1976; Webbink, 1984] which leads to a common-envelope phase. The core of the
donor and companion spiral inward through the envelope, expelling the gaseous envelope
around them. Because of the loss of significant amounts of mass and angular momentum,
the CE phase plays an essential role in binary star evolution in particular the formation of
short-period systems that contain a compact object.

Despite of the importance of the CE phase and the enormous efforts of the community,
all effort so far have not been successful in understanding the phenomenon. Several pre-
scriptions for CE evolution have been proposed. The α-formalism [Webbink, 1984] is based
on the conservation of orbital energy. The α-parameter describes the efficiency with which
orbital energy is consumed to unbind the CE according to

Egr = α(Eorb,init − Eorb,final), (5.1)

where Eorb is the orbital energy and Egr is the binding energy between the envelope mass
Menv and the mass of the donor M . Egr is often approximated by

Egr =
GMMenv

λR
, (5.2)

where R is the radius of the donor star and λ depends on the structure of the donor. We
assume αλ = 2. Nelemans et al. [2000] deduced this value from reconstructing the last
phase of mass transfer for 10 known DWDs using the unique core-mass – radius relation
for giants.

To explain the observed distribution of DWDs, Nelemans et al. [2000] proposed an
alternative formalism. According to this γ-formalism, mass transfer is unstable and non-
conservative. The mass-loss reduces the angular momentum of the system in a linear way
according to

Jinit − Jfinal

Jinit
= γ

∆M

M +m
, (5.3)
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where Jinit resp. Jfinal is the angular momentum of the pre- and post-mass transfer binary
respectively, and m is the mass of the companion. We assumed γ = 1.75, see Nelemans
et al. [2001c].

We adopt two evolutionary models that differ in their treatment of the CE phase. In
model αα the α-formalism is used to determine the outcome of every CE. For model γα
the γ-prescription is applied unless the binary contains a compact object or the CE is
triggered by a tidal instability (rather than dynamically unstable Roche lobe overflow, see
Appendix 5.A.3). Typically, the second CE (with a giant donor and white dwarf companion)
is described by the α-formalism, which gives consistent results when compared with the
observations [Nelemans et al., 2000]. If the first phase of mass transfer is unstable, it
typically evolves through a γ-CE. In model γα and αα, if both stars are evolved when
the CE develops, we assumed that both cores spiral-in [see Nelemans et al., 2001c]. The
envelopes are expelled according to

Egr,⋆don + Egr,⋆comp = α(Eorb,init − Eorb,final), (5.4)

analogous to Eq.5.1, where Egr,⋆don represents the binding energy of the envelope of the
donor star and Egr,⋆comp of the companion star.

The motivation for the alternative formalism is the large amount of angular momen-
tum available in binaries with similar-mass objects. The physical mechanism behind the
formalism remains unclear however. Interesting to note here is that recently Woods et al.
[2010, 2012] suggested a new evolutionary model to create DWDs. It differs from standard
assumptions in the first phase of mass transfer. These authors find that mass transfer be-
tween a red giant and a main-sequence star can be stable and nonconservative. The effect
on the orbit is a modest widening, with a result alike to the γ-description.

5.3.1 Impact on the population of double white dwarfs and type

Ia supernova progenitors

Figure 5.2 shows the mass ratio of the visible population (see Sect. 5.2.1) of DWDs versus
the orbital period according to model γα and αα. Overlayed with filled circles are the
observed populations. For systems for which only a lower limit to the mass of the companion
is known, we show a plausible range of mass ratios of that system with an arrow. The arrow
is drawn starting from the maximum mass ratio, which corresponds to an inclination of 90
degrees. It extends to a companion mass that corresponds to an inclination of 41 degrees.
Within this range of inclinations there is a 75% probability that the actual mass ratio lies
along the arrow. The filled circles overplotted on the arrow indicate the mass ratio for the
median for random orientations, i.e., 60 degrees.

Using model αα, the DWDs cluster around a mass ratio of q ≈ 0.5, while model γα
shows a wider range in mass ratio. This agrees better with the observed binaries. The
different mass ratio distributions are inherent to the models and only slightly dependent
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(a)

(b)

Figure 5.2: Simulated population of visible double white dwarfs as a function of orbital

period and mass ratio, where mass ratio is defined as the mass of the brighter

white dwarf divided by that of the dimmer white dwarf. In the top model γα

is used, in the bottom model αα. The intensity of the grey scale corresponds

to the density of objects on a linear scale. The same grey scale is used for

both plots. Observed binary white dwarfs are overplotted with filled circles,

see Fig. 5.1 for references.
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on the CE efficiency. This is because in the first CE phase, the γ-CE allows for widening or
very mild shrinkage of the orbit, whereas in the α-prescription the orbit will always shrink.
The resulting orbital separation determines when the secondary will fill its Roche lobe, and
the corresponding core mass of the secondary, which determines the mass ratio distribution
of the prospective DWD.

In Fig. 5.3 the population of observed and simulated DWDs are shown as a function of
combined mass of the two WDs for the two models of CE evolution. The left upper corner
bounded by the dotted and dashed lines contains SNIa progenitors. In Fig. 5.3 there are
two systems that have a probability to fall in this region. These systems are the planetary
nebulae nuclei with WD companions TS 01 (PN G135.9+55.9)[Tovmassian et al., 2004;
Napiwotzki et al., 2005; Tovmassian et al., 2010] and V458 Vul [Rodríguez-Gil et al., 2010].
An immediate precursor of a DWD that is possibly a progenitor candidate for a SN Ia via
the DD channel has also been observed; a subdwarf with a white dwarf companion, KPD
1930+2752 [Maxted et al., 2000; Geier et al., 2007].

In our model of the visible population of DWDs (see Sect. 5.2.1), the percentage of
merging DWDs with a total mass exceeding the Chandrasekhar is 1.2% for model γα and
4.3% for model αα. Including only double CO WDs, the percentage is 0.9 and 2.9%,
respectively. Because the number of observed close DWDs until today is low, we do not
expect to observe many SNIa progenitors [see also Nelemans et al., 2001c]. Therefore a
comparison of the SNIa progenitors with population synthesis by a statistical approach
is unfortunately not yet possible. We find it important to compare the observed close
DWD population with the simulated one, since these systems go through similar evolutions
and are strongly influenced by the same processes. Although the observed population
mostly consists of He DWDs and He - CO DWDs instead of CO DWDs required for SNIa
progenitors, at this time the population of all close DWDs are the closest related systems
that are visible in bulk.

5.4 Evolutionary paths to supernova type Ia from the

double degenerate channel

In this section we discuss the most common binary scenarios that leads to a potential
supernova type Ia in the DD channel. We assume that every merger of two carbon/oxygen
white dwarf with a mass exceeding 1.4M⊙ will lead to a supernova. The contribution of
merging systems that contains a helium white dwarf that surpasses the Chandrasekhar
mass is negligible. In the canonical scenario a DWD is formed through two consecutive
CEs. This we label the ’common-envelope channel’. In accordance with Mennekens et al.
[2010], we find that there are other channels that can lead to a SNIa as well. We find that
the common-envelope scenario can account for less than half of the supernova progenitors
in a single burst of star formation, 34% for model γα and 45% for model αα. We distinguish
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(a)

(b)

Figure 5.3: Simulated population of visible double white dwarfs as a function of orbital

period and the combined mass of the two dwarfs. On the top the common-

envelope phase is parametrised according to model γα, on the bottom accord-

ing to model αα (see Sect. 5.3). The intensity of the grey scale corresponds to

the density of objects on a linear scale. The same grey scale is used for both

plots. Observed binary white dwarfs are overplotted with filled circles, see

Fig. 5.1 for references. The Chandrasekhar mass limit is indicated with the

dotted line. The dashed line roughly demarks the region in which systems

merge within a Hubble time. Systems located to the left of the dashed line

and above the dotted line are supernova type Ia progenitors in the standard

picture.
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between three scenarios labelled ’common-envelope’, ’stable mass transfer’ and ’formation
reversal’. The names of the first two tracks refer to the first phase of mass transfer, whereas
’formation reversal’ applies to the reversed order in which the two white dwarf are formed,
see Sect. 5.4.3). The stable mass transfer channel accounts for 52% and 32% assuming
model γα and αα, respectively, for a single burst of star formation. The formation reversal
channel accounts for a lower percentage of all SNIa, 14% for model γα and 23% for model
αα for a single starburst. Note that the importance of the stable mass transfer channel
strongly depends on the assumed amount of mass loss and angular momentum loss.

In population synthesis studies all known information about binary evolution is com-
bined, and different evolutionary paths emerge out of these quite naturally. As noted by
Mennekens et al. [2010], the significant contribution to the SNIa rate from other channels
than the common-envelope channel complicates the use of analytical formalisms for de-
termining the distribution of SNIa delay times. The SNIa delay time of a binary is the
time of the SNIa since the formation of the system. This is commonly used to compare
observational and synthetic rates to constrain different physical scenarios [e.g. Yungelson
& Livio, 2000; Ruiter et al., 2009b; Mennekens et al., 2010, see also Sect. 5.5 in this paper].
During a CE phase the companion is assumed to be hardly affected e.g. by accretion. If
this is not the case, as in stable mass transfer, the assumption that the formation timescale
of the DWD is approximately the main-sequence lifetime of the least massive component is
not valid any more. Furthermore, the in-spiral timescale from DWD formation to merger
due to gravitational waves is strongly dependent on the orbital separation at DWD forma-
tion. This can be very different for systems that undergo stable mass transfer instead of
a CE evolution. Concluding, the delay time, which is the sum of the DWD formation and
in-spiral timescale can be significantly different when these tracks are not properly taken
into account.

5.4.1 common-envelope channel

In the canonical path, both stars lose their hydrogen envelopes through two consecutive
common-envelope phases. An example of a typical evolution is shown in Fig. 5.4. In this
example two zero-age main-sequence stars of 6M⊙ and 4M⊙ are in an orbit of 125 days.
When the initially more massive star (hereafter primary) ascends the giant branch, it fills
its Roche lobe and a CE commences. The primary loses its hydrogen envelope, but does not
become a WD immediately and a helium star is born. The primary becomes a white dwarf
of about solar mass. When the initially less massive star (hereafter secondary) evolves off
the main sequence and its radius significantly increases, another common-envelope phase
occurs. As a result, the orbit shrinks. The secondary evolves further as a helium star
without a hydrogen envelope until it eventually turns into a white dwarf. For model αα
the orbit decreases more severely in the first phase of mass transfer. Therefore the initial
periods in this channel are higher, by a factor of about 1.5-3 and the primaries are typically
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Figure 5.4: Evolutionary track for the merger of two carbon/oxygen white dwarfs of

a combined mass that exceeds the Chandrasekhar mass. In this scenario

the first phase of mass transfer is dynamically unstable which results in a

common-envelope phase. In this figure we show a representative example of

model γα, see Sect. 5.3.
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more evolved giants when the donors fill their Roche lobes. In this evolution channel both
the primary and secondary can fill their Roche lobes as helium giants. If this happens,
mass transfer is usually dynamically stable, but the effect on the orbit is small.

A variation of this evolution can occur when the secondary has reached the giant stages
of its evolution when the primary fills its Roche lobe. This happens for systems of nearly
equal masses. We assume both stars lose their envelope in the CE phase according to
Eq. 5.4, in which the orbit is severely decreased. This variation contributes 23% of the
systems in the common-envelope channel for model γα and 10% for model αα.

With the α-CE prescription it is likely to have another variation on the evolution, in
which the primary becomes a white dwarf immediately after the first phase of mass transfer.
This can happen when the primary fills its Roche lobe very late on the asymptotic giant
branch when the star experiences thermal pulses. These systems have initial periods that
are a factor 5 lger than in the standard CE channel using model αα. This subchannel
contributes 43% to the CE channel for model αα. When using the γα-model for the CE, the
contribution from this subchannel is 20%. However, these systems are not formed through
a standard γ-CE because the orbit does not shrink severely enough to obtain a significant
contribution. Instead these systems are formed through a double-CE as described by Eq.5.4.
For model αα the double-CE mechanism is important in only 18% of the 43%.

5.4.2 Stable mass transfer channel

In this channel the initial masses of the stars and the initial orbits are smaller than for the
common-envelope channel. Typical values are a primary mass of 5M⊙, a secondary mass
of 3M⊙ and an orbital separation of 40R⊙ (assuming a circular orbit). The primary fills
the Roche lobe as a Hertzsprung gap star and mass transfer occurs stably. Which fraction
of transferred mass is actually accreted by the secondary and how much is lost from the
system depends on the mass and radius of the secondary and the secondary’s Roche lobe
(see Appendix 5.A.2 for more details). In Fig. 5.5 an example of a typical evolution is
shown. When the secondary fills its Roche lobe, a CE commences. In this channel the
tidal instability (see Appendix 5.A.3) is important. In one third of the systems the CE
occurs because of a tidal instability, the other part is caused by a dynamical instability.
The secondary turns into a hydrogen-deficient helium-burning star in a system in which
the period has decreased by one or two orders of magnitude. As in the previous channel,
the primary and secondary can fill their Roche lobe as helium giants. If the primary fills its
Roche lobe, mass transfer is usually dynamically stable and has little effect on the orbit. If
the secondary fills its Roche lobe, mass transfer can be stable or unstable. In the example
of Fig. 5.5 when the secondary fills its Roche lobe again as it ascends the helium giant
branch, the mass transfer is unstable and the orbital separation decreases by a factor of
about 5.
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CE

Figure 5.5: Evolutionary tracks for the merger of two carbon/oxygen white dwarfs of a

combined mass exceeding the Chandrasekhar mass in the stable mass transfer

channel. In this scenario the first phase of mass transfer is dynamically stable.

The top and bottom parts of the figure have different scales due to a common-

envelope phase, denoted as CE in the figure.
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5.4.3 Formation reversal channel

We present a scenario1 in which in the first mass transfer a helium star (sdB star) is formed
that becomes a white dwarf only after the companion has become a white dwarf. A typical
example of an evolution like this is shown in Fig. 5.6. The first phase of mass transfer
is stable, like the stable mass transfer track. However, the resulting helium stars in this
channel have low masses in the range of 0.5-0.8M⊙ and long lifetimes of about 108 yr. The
first mass transfer occurs approximately conservatively. As a consequence, the subsequent
evolution of the high-mass secondary (5-8M⊙) accelerates. When the secondary fills its
Roche lobe, mass transfer is tidally unstable (see Appendix 5.A.3). The secondary loses
its hydrogen and helium envelope in two consecutive CEs and becomes a white dwarf.
Subsequently, the original primary evolves of the helium main-sequence and becomes a
white dwarf.

To our knowledge, this track has not been studied in detail before. Therefore we eval-
uated this track by performing detailed numerical calculations using the ev binary stellar-
evolution code originally developed by Eggleton [Eggleton, 1971, 1972; Yakut & Eggleton,
2005, and references therein] and updated as described in Pols et al. [1995] and Glebbeek
et al. [2008]. The code solves the equations of stellar structure and evolution for the two
components of a binary simultaneously. The simulation showed that indeed the evolution of
the secondary can be accelerated through accretion so that the secondary can stop helium
burning prior to the primary.

5.5 Delay time distribution

One way to constrain the population of SNIa progenitors is through the delay time dis-
tribution (DTD), where the delay times is the time between the formation of the binary
system and the SNIa event. In a simulation of a single burst of star formation the DTD
gives the SNIa rate as a function of time after the starburst. The DTD is linked to the
nuclear timescales of the progenitors and the binary evolution timescales up to the merger.
We assumed a 50% binary fraction and initial parameters are distributed according to the
distributions described in Table 5.1.

In Fig. 5.7a we compare the delay time distribution for the two different models of CE
evolution. The sharp cut-off near 13.5 Gyr is artificial, because evolution was only allowed
to proceed for 13.5 Gyr. The delay time distribution shows that these mergers are expected
to take place in young as well as old populations. The peak in the supernova Ia rate is

1This track is a close analogy of the track proposed by Sipior et al. [2004] regarding recycled pulsars.

In the scenario proposed by these authors the end states of the two components are reversed, resulting in

a neutron star that forms prior to a black hole. However, in our scenario the name ’formation reversal’

applies to the evolutionary timescales of the primary and secondary. Although the primary first evolves

off the main sequence, the secondary becomes a remnant first.
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CE

Figure 5.6: Evolutionary tracks for the merger of two carbon/oxygen white dwarfs of a

combined mass exceeding the Chandrasekhar mass in the formation reversal

channel. In this scenario the first phase of mass transfer is dynamically stable

which results in a low-mass helium-star with a long lifetime. The initially less

massive star becomes the first formed white dwarf. The top and bottom parts

of the figure have different scales due to a common-envelope phase, denoted

as CE in the figure.
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(a)

(b)

Figure 5.7: Merger rate of double carbon/oxygen white dwarfs with a total mass above

the Chandrasekhar mass as a function of delay time. Rates are in yr−1 per

1010M⊙ formed stellar mass of the parent galaxy. Delay times are shown for

two different prescriptions of the CE phase. In black we plot model γα and in

grey model αα, see Sect. 5.3. Top: Solar metallicity (Z = 0.02) is assumed.

Overplotted with black circles are the observed values of the SNIa rate of

Totani et al. [2008], Maoz et al. [2010], Maoz & Badenes [2010] and Maoz

et al. [2011] [see Maoz & Mannucci, 2012a, for a review]. For comparison the

grey circles show the observations scaled down by a factor 10. Bottom: A

metallicity of 0.001 is assumed.

101



Chapter 5 : SNIa progenitors from merging double white dwarfs

at about 150 Myr for both models. The median delay time is 0.7 Gyr for model αα and
1.0 Gyr for model γα. The normalisations of the delay time distribution of model αα and
γα are comparable. The time-integrated number of SNe Ia per unit formed stellar mass
is 2.0 · 10−4M−1

⊙
and 3.3 · 10−4M−1

⊙
for model γα and αα, respectively. From the Lick

Observatory Supernova Search, Maoz et al. [2011] inferred a value of 2.3 ± 0.6 · 10−3 M−1
⊙

,
which is a factor 7-12 higher than the predictions from our models.

The morphologies of the DTD of model γα and αα resemble each other in that they
show a strong decline with delay time, although with a slightly different slope. Model αα
shows higher rates at short delay times, whereas the rate for model γα shows higher rates
at long delay times. This is because the α-CE causes a stronger decrease of the orbital
separation than the γ-CE in the first phase of mass transfer. The observed rates from
Totani et al. [2008], Maoz et al. [2010], Maoz & Badenes [2010], and Maoz et al. [2011]
[see Maoz & Mannucci, 2012a, for a review], shown in Fig. 5.7a, are much higher than the
predicted rates from both models. To compare the morphological shapes of the DTDs
more easily, we scaled down the observations by a factor 10 in Fig. 5.7a in light grey. The
shape of the observed DTD fits the synthetic DTDs well. At long delay times > 6 Gyr, the
flattening of the DTD is better reproduced by the γα-model.

We have a last remark about Fig. 5.7a, about the datapoint from Maoz et al. [2010] at
185Myr and a rate of 0.165 yr−1 (1010M⊙)−1. If this datapoint is true, it could indicate a
steep rise of the delay time distribution at the shortest delay times. Neither model γα, or
αα reproduces the steep rise indicated by this point. At short delay times the contribution
to the SNIa rate from other channels might be significant, for instance the contribution from
helium donors in the SD channel. Wang et al. [2009a], Ruiter et al. [2009b] and Claeys et al.
[2011] showed that at delay times of about 100Myr, the DTD from helium donors in the SD
channel peaks, although rates at this delay time vary between 10−4 −10−2 yr−1 (1010M⊙)−1.
Hydrogen donors in the SD channel are a possible contributor to the SNIa rate as well,
but there is a strong disagreement over the DTD from this channel, [see for example
Nelemans et al., 2013, for an overview]. In that paper it was shown that the simulated
peaks of the DTDs lie anywhere between 0.1 to 3 Gyr and the peak rates vary between
10−6 − 10−2 yr−1 (1010M⊙)−1.

If we do not assume an instantaneous burst of star formation, but instead convolve the
DTD with a star formation rate, we can estimate the SNIa rate from double degenerates
for spiral galaxies like the Milky Way. If we assume a Galactic star formation rate as in
Nelemans et al. [2004] based on Boissier & Prantzos [1999], model αα gives 8.3 · 10−4 SNIa
yr−1. Model γα gives a Galactic rate of 5.8 · 10−4 SNIa yr−1. The reason for the relatively
high Galactic rate for model γα in comparison with model αα relative to the integrated
rates is that the peak of star formation occurs at long delay times where the DTD of model
γα dominates over model αα. The empirical SN Ia rate from Sbc-type galaxies like our
own [Cappellaro & Turatto, 2001] is 4 ± 2 · 10−3 yr−1, which is a factor of about 5-7 higher
than the simulated rates.
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When convolving the DTD with a star formation history, one should also take into
account a metallicity dependence of the stars. To study the effect of metallicity on the
SNIa rate, we simulated a delay time distribution from a single burst of stars of metallicity
Z = 0.001. The important part of the DTDs in this respect are the long delay times
because this is where the fraction of metal poor stars is highest. The DTD of model γα
for Z = 0.001 is lower at long delay times and higher at short delay times than the same
CE model for solar metallicities. The time-integrated number of SNe Ia per unit formed
stellar mass is 2.8 · 10−4M−1

⊙
for model γα. This is an increase of about 60% with respect

to Z = 0.02. The integrated rate for model αα for Z = 0.001 is 4.2 · 10−4M−1
⊙

, which is an
increase of about 30% with respect to Z = 0.02. The DTD for Z = 0.001 is roughly similar
in morphological shape to that for Z = 0.02, see Fig. 5.7b. The DTDs of both metallicities
for model αα are similar at long delay times, and consequently the effect on the Galactic
SNIa rate is expected to be marginal.

5.6 Population of merging double white dwarfs

In this section we discuss the properties of the population of SNIa progenitors from merging
DWD and place it in the context of recent studies of the SNIa explosion itself. Figure 5.8
shows the combined mass of the system as a function of delay time for merging CO DWDs.
It shows that for classical SNIa progenitors, the number of merging events decreases with
time and that the number decreases faster with time for model αα than for model γα, as
discussed in Sect. 5.5. Moreover, the figure shows that mergers near the Chandrasekhar
mass are most common, independent of delay time.

Fryer et al. [2010] showed that if super-Chandrasekhar mergers of CO DWDs of about
2M⊙ produce thermonuclear explosions, the light curves are broader than the observed
SNIa sample. These authors argued that these mergers cannot dominate the current SNIa
sample. We find indeed in both models that mergers with combined masses of about
2M⊙ are much less common than mergers in systems with a combined mass near the
Chandrasekhar mass limit.

Where Fryer et al. [2010] studied a merger of a 1.2M⊙ CO WD with a 0.9M⊙ CO WD,
Pakmor et al. [2010] focused on mergers of nearly equal mass WDs. In their scenario both
WDs are distorted in the merger process and the internal structure of the merger remnant
is quite different. Pakmor et al. [2010] argued that these mergers become hot enough
to ignite carbon burning if the WD masses exceed M & 0.9M⊙. They found that these
systems resemble subluminous SNIa such as SN 1991bg. Li et al. [2001] found 1991bg-like
supernovae account for 16±6% of all SNIa. From an improved sample Li et al. [2011] found
a percentage of 15.26.8

5.9. If we assume that 1991bg-like events account for 15% of all SNIa
and the time-integrated of all SNIa types is If we assume in a simplistic way that all CO
DWD mergers of q = M2/M1 > 0.92 and M1 > 0.9 (where M1 is the most massive WD and
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M2 the least massive WD) would lead to a 1991bg-like event, the time-integrated number
of events is 2.3 · 10−5M−1

⊙
according to model γα and 1.8 · 10−5M−1

⊙
assuming model αα.

While the SNIa rate from the classical progenitors from model γα is comparable to that
of model αα, the population of DWDs is very different. In Sect. 5.3.1 we showed that the
type of CE parametrisation introduces a bias in the mass ratio distribution of observed
DWDs, which mostly consist of (double) He DWDs and He-CO DWDs. In Fig. 5.9 we
show that this is also the case for the population of merging CO DWDs. Although the
mass ratio distribution is not important for the standard DD scenario, it is important for
the scenario proposed by Pakmor et al. [2010]. If the standard scenario and the scenario
proposed by Pakmor et al. [2010] hold, SN 1991bg-like events are more common in model
γα. We have to make a side remark on the expected delay times of this scenario. The
median delay times are 180 Myr for model γα and 150 Myr for model αα. The timescales
are short because generally, more massive WDs have more massive progenitor stars, whose
evolutionary timescales are short compared to those of less massive stars. Observations
show, however, that subluminous SNIa are associated with old stellar populations of about
5-12Gyr [Howell, 2001].

In our simulations the majority of merging CO DWDs have combined masses below the
Chandrasekhar mass, see Fig. 5.8. Sub-Chandrasekhar models have long been proposed in
order to raise total number of SNIa to match observations. Sim et al. [2010] found that
if sub-Chandrasekhar WDs can be detonated, especially in the range 1.0 − 1.2M⊙, the
explosions match several observed properties of SNIa reasonably well. In the hypothetical
situation that all double CO WDs that merge lead to an SNIa event, the integrated rate
is 8.3 · 10−4M−1

⊙
for model γα and 9.3 · 10−4M−1

⊙
for model αα. This is still a factor 3

lower than the observed rate of 2.3 ± 0.6 · 10−3M−1
⊙

[Maoz et al., 2011]. Only if we assume
that all mergers between a CO WD and a CO or He WD lead to an SNIa, the rates of
1.6 · 10−3M−1

⊙
and 2.1 · 10−3M−1

⊙
for model γα and αα, respectively, match the observed

rate.
The challenge for sub-Chandrasekhar models is how to detonate the white dwarf. A

scenario for this was recently suggested by van Kerkwijk et al. [2010]. In this scenario
two CO WDs with nearly equal masses merge. The merger remnant itself is too cold and
insufficiently dense to produce an SNIa by itself, as noted by Pakmor et al. [2010]. van
Kerkwijk et al. [2010] proposed that accretion of the thick disk that surrounds the remnant
leads to an SNIa through compressional heating. If we simplistically assume that every
merger of a double CO DWD with q > 0.8 and M1 +M2 < 1.4 leads to an SNIa, the time-
integrated number per unit formed mass is 1.3·10−4M−1

⊙
for model γα and 8.8·10−5M−1

⊙
for

model αα. Relaxing the condition of M1 +M2 < 1.4 to all masses, 2.3 · 10−4M−1
⊙

for model
γα and 1.9 · 10−4M−1

⊙
for model αα. As in the scenario proposed by Pakmor et al. [2010],

when a scenario is biased to merging systems of high-mass ratio, the relative contribution
from this scenario in the γα model is higher than the αα model.
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(a)

(b)

Figure 5.8: Simulated distribution of the population of merging double CO white dwarfs

from a single burst of star formation as a function of delay time and total

mass of the system. On the top model γα is used for the common-envelope

parametrisation, on the bottom model αα (see Sect. 5.3). The intensity of

the grey scale corresponds to the density of objects on a linear scale in units

of number of systems per 105M⊙. The black line corresponds to a combined

mass of 1.4M⊙.
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(a)

(b)

Figure 5.9: Simulated population of merging double CO white dwarfs from a single burst

of star formation as a function of the masses of the two white dwarfs. Mmassive

is the mass of the most massive white dwarf, Mnon−massive corresponds to the

least massive white dwarf. On the top model γα is used for the common-

envelope parametrisation, on the bottom model αα (see Sect. 5.3). The in-

tensity of the grey scale corresponds to the density of objects on a linear scale

in units of number of systems per 105M⊙. To increase the contrast, we placed

an upper limit on the intensity, which effects only one bin for model γα and

two bins for model αα. The black solid line corresponds to a combined mass

of 1.4M⊙. The dashed and dashed-dotted line correspond to a mass ratio

q = m/M of 1 and 0.8, respectively.
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5.7 Conclusion and discussion

We studied the population of SNIa progenitors from merging double CO WDs with a
combined mass exceeding the Chandrasekhar mass, the so-called DD progenitors. We
considered two prescriptions of the CE phase. The CE evolution is a crucial ingredient
in the formation of close double degenerate compact objects, but the process itself is still
poorly understood. The first model assumes the α-formalism for all CE. The second model
is a combination of the α-formalism and the γ-formalism (see Sect. 5.3). Typically, the first
CE is described by the γ-scenario and the second by the α-formalism, if mass transfer is
unstable.

We applied the updated version of the population synthesis code SeBa to simulate the
population of DWDs and SNIa progenitors. At present, close DWDs (of all WD types) are
the closest related systems to the DD SNIa progenitors that are visible in bulk. The mass
ratio distribution of the DWDs in model αα is inconsistent with the observations. Using
model γα the simulated population of DWDs compares well with observations, nevertheless,
this is what the γ-formalism was designed to do.

Recently, Webbink [2008] and Zorotovic et al. [2010] claimed that the predictive power
of the γ-scenario is more restricted. They suggested that the α-scenario is valid when
sources of an energy other than the binding energy of the envelope is available, such as,
the energy released by recombination in the common envelope. This could explain the high
value of α found by Nelemans et al. [2000] for the second CE, but certainly does not solve
the problem for the first CE for which Nelemans et al. [2000] found a value of α < 0.

The delay time distributions from our two models show the characteristic shape of a
strong decay with time. This strong decay is expected when the delay time is dominated
by the gravitational wave timescale (tgr ∝ a4) and the distribution of orbital separations
at DWD formation is similar to the initial (ZAMS) distribution of N(a)da ∝ a−1da [Abt,
1983]. The DTD from model γα fits the shape of the observed DTD best. Mennekens
et al. [2010] also showed a DTD using the γ-scenario for the CE phase. They found
that the DD DTD lies almost an order of magnitude lower in absolute rate than when
using the α-scenario. However, they used the γ-formalism for all CE phases. In our
prescription (see Sect. 5.3) the γ-formalism is typically used in the first CE phase only. The
reason for this is that in equal mass systems there is more angular momentum compared
to unequal mass systems with similar orbits. Mennekens et al. [2010] and also Yungelson
& Livio [2000]; Ruiter et al. [2009b] and Claeys et al. [2011] showed DD DTDs using the
α-scenario (however their CE-prescriptions may differ slightly from Eq.5.2). Surprisingly,
but as realised before, even though different groups used different binary evolution codes
with different versions of the α-CE and CE efficiencies, the DTDs of the DD channel are
very uniform in that they show a strong decline with time [see for example Nelemans et al.,
2013, for an overview].

Usually in synthetic DTD studies, the shape and normalisation of the DTD are discussed
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separately. This might not be valid any more, as more and more observed rates are available
and the conversion from observational units to synthetic units (e.g. the star formation
history (SFH) and rate in per K-band luminosity instead of per M⊙ of created stars) is
better understood. For example, the SFH is often convolved with the DTD to estimate the
SNIa rate in spiral galaxies like our Milky Way. The problem with this is that different
assumptions for the Galactic SFH can significantly alter the theoretical Galactic SNIa rate.
Since the SNIa rate follows the SFH with typical delay times of a few Gyr, the synthetic
Galactic SNIa rate is very sensitive to the assumed SFH at recent times. When a constant
SFH (of & 3M⊙ yr−1) is assumed, the SNIa rate is artificially enhanced compared with
detailed SFHs that show a peak in the star formation at a few Gyr and a decline to
1M⊙ yr−1 at recent times, see e.g. Nelemans et al. [2004]. In the observed SNIa rates of
Maoz & Badenes [2010] and Maoz et al. [2011] the detailed SFH of every individual galaxy
or galaxy subunit was taken into account to reconstruct the DTD. Therefore it is no longer
necessary to convolve the theoretical SNIa rate from a burst of star formation with an
approximate SFH. The theoretical calculations of the SNIa rate from a single starburst can
directly be compared with observations.

We found that the normalisation of the DTD of model αα and γα do not differ much,
even though the CE evolution is very different. The time-integrated number of SNIa
in model αα (3.3 · 10−4M−1

⊙
) is 70% larger as in model γα (2.0 · 10−4M−1

⊙
). But most

importantly, the simulated time-integrated numbers do not match the observed number of
2.3 ± 0.6 · 10−3M−1

⊙
by [Maoz et al., 2011] by a factor of about 7-12. If our understanding

of binary evolution and initial parameter distributions is correct, the standard DD channel
is not a major contributor to the SNIa rate.

For the SNIa model proposed by Pakmor et al. [2010], in which carbon burning is
ignited in the merger process of two massive white dwarfs of nearly equal mass, we found
an SNIa rate of 2.3 · 10−5M−1

⊙
for model γα and 1.8 · 10−5M−1

⊙
for model αα. Pakmor et al.

[2010] founds that these systems resemble subluminous SNIa such as SN 1991bg. Assuming
the fraction of 1991bg-like events to all SNIa events is 15±6% [Li et al., 2001, 2011], the
observed event rate is 3.5 ± 1.6 · 10−4M−1

⊙
. van Kerkwijk et al. [2010] proposed a model in

which sub-Chandrasekhar WDs can explode as an SNIa. In this scenario two white dwarfs
of nearly equal mass merge, though carbon ignition occurs only after the merger when the
thick disk surrounding the remnant is accreted onto it. The event rate is 2.3 · 10−4M−1

⊙
for

model γα and 1.9 · 10−4M−1
⊙

for model αα. When only taking into account systems with a
combined mass below 1.4M⊙, the rates are 1.3 · 10−4M−1

⊙
and 8.8 · 10−5M−1

⊙
, respectively.

In the scenario proposed by Pakmor et al. [2010] and in the scenario by van Kerkwijk
et al. [2010], systems are required to have high mass ratios. We showed that the mass ratio
distribution of DWDs depends on the prescription for the CE. When the γ-scenario is used,
the average mass ratio of DWDs lies closer to one, which increases the SNIa rate in the
above described scenario with respect to the α-scenario. The rates of the channel proposed
by van Kerkwijk et al. [2010] for systems with sub-Chandrasekhar masses are on the same
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order of magnitude as the rates of the standard DWD channel. Therefore the combination
of the two models is not sufficient to explain the observed rates. For our synthetic rates
of the DD scenario to match the observed SNIa rates, within our current model of binary
evolution, the parameter space of the DD progenitors has to be increased severely, e.g. to
include all CO-CO and CO-He mergers, which seems unlikely.

Alternatively (and if contributions from channels other than the DD are minor), our
model underpredicts the fraction of standard DD SNIa progenitors in the entire DWD
population. Our model of the visible population of DWDs predicts 0.9-2.9% of the visible
DWDs (depending on the model) to be SNIa progenitors. To match the observed rate of
Maoz et al. [2011], 10-30% (excluding any errors on the observed and synthetic values) of
the observed DWDs should lie in the SNIa progenitor region (upper left corner of Fig. 5.3).
With 46 observed DWDs so far, 4-15 SNIa progenitors are expected without taking non-
uniform selection effects into account. So far, only two systems have been found that
possibly are SNIa progenitors, which makes it improbable, but not impossible, that our
model underpredicts the number of DD SNIa progenitors. When the population of observed
DWDs is increased, the fraction of SNIa progenitors amongst DWDs will give more insight
into the validity of our knowledge of binary evolution of massive DWDs.

Concluding, although the shape of the DD DTD fits the observed DTD beautifully,
the normalisation does not. An important point is that we did not optimise our model
to fit the observed DTD in shape or number. We showed that the normalisation can be
influenced by the metallicity; about 30-60% depending on the model for Z = 0.001 with
respect to Z = 0.02. Furthermore, the normalisation depends on the initial mass function,
the percentage of single stars, and the initial distribution of mass ratios and orbital periods.
In this paper and in Nelemans et al. [2013] we assumed the percentage of single stars to
be 50%. Results from e.g. Kouwenhoven et al. [2007, see also Raghavan et al. 2010]
showed that the binary fraction might be as high as 70% or more for A- and B-type stars,
potentially raising the synthetic SNIa rate by a factor < 2. Preliminary results show that
the initial distribution of mass ratio and orbital separation affects the slope of the DTD,
still the strong decline with time remains. Moreover, the integrated rates are not affected
by factors sufficient to match the observed rate. Additional research is needed to study if
the normalisation can be raised sufficiently to match the observed rate. If not, the main
contribution to the SNIa rate comes from other channels, such as the SD scenario (e.g.
supersoft sources), double detonating sub-Chandrasekhar accretors [see e.g. Kromer et al.,
2010], or Kozai oscillations in triple systems (Shappee & Thompson 2012; Hamers et al. in
prep.).
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5.A Most important changes to the population syn-

thesis code SeBa

5.A.1 Treatment of wind mass-loss

Each star may lose mass in the form of a stellar wind. In a binary system the stellar wind
matter from a binary component can be accreted by the companion star or lost from the
system (see Appendix 5.A.2). This influences the binary parameters via the loss of mass
and angular momentum from the system. We assume that the matter that is lost from
the system carries a specific angular momentum equal to that of the star from which it
originates. Furthermore, we assume that wind accretion onto the binary companion is
Bondi-Hoyle accretion [Bondi & Hoyle, 1944], as re-formulated by Livio & Warner [1984].
The wind mass loss prescriptions for different types of stars used in SeBa are updated e.g.
to include metallicity dependency where possible. The prescriptions correspond to some
degree to the recommendations by Hurley et al. [2000]. If multiple mass loss predictions
are applicable to a star, we take the one that predicts the maximum mass loss rate.

• For all types of luminous stars (L > 4000L⊙) from the main sequence (MS) to the
asymptotic giant branch (AGB) we apply the empirical mass loss rate by Nieuwen-
huijzen & de Jager [1990] given by

Ṁ = 9.631 · 10−15 R0.81 L1.24 M0.16 M⊙ yr−1, (5.5)

where Ṁ is the mass accretion rate, R the stellar radius in R⊙, L the luminosity in
L⊙ and M the stellar mass in M⊙. We assume that the formalism of Nieuwenhuijzen
& de Jager [1990] is dependent on the initial metallicity as Ṁ(z) = (z/z⊙)1/2 Ṁ(z⊙)

[see Kudritzki et al., 1987].

• For a massive MS star we give preference to the rates of Vink et al. [2000, 2001].
Where they do not apply, the rates of Nieuwenhuijzen & de Jager [1990] are used.
Massive MS suffer from strong winds driven by radiation pressure in lines and in the
continuum. Vink et al. [2000, 2001] take into account multiple scattering effects of
photons. They find good agreement between observations and theoretical mass-loss
rates.

• For stars in giant phases we adopt the empirical relation found by Reimers [1975],

Ṁ = 4 · 10−13 ηRL

M
M⊙ yr−1. (5.6)
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We assume a numerical prefactor of η = 0.5, see Maeder & Meynet [1989] and Hurley
et al. [2000].

• AGB stars can experience severe mass-loss caused by radiation pressure on dust that
condensates in the upper atmosphere of the stars. Empirically, the mass-loss rate has
been coupled to the period of large-amplitude radial pulsations Ppuls [Vassiliadis &
Wood, 1993]:

log Ppuls (days) = −2.07 + 1.94 · log(R) − 0.9 · log(M). (5.7)

We apply mass-loss to the envelope according to the prescription of Vassiliadis &
Wood [1993]. During the superwind phase the radiation pressure driven wind is
modelled by

Ṁ =
L

cvexp

, (5.8)

where c represents the speed of light and vexp the stellar wind expansion velocity. The
latter is given by:

vexp(km s−1) = −13.5 + 0.056Ppuls(days). (5.9)

Furthermore, vexp is constrained to the range 3.0-15.0 km s−1.

Before the superwind phase, the mass loss rate increases exponentially with Ppuls as

logṀ (M⊙ yr−1) = (5.10)






−11.4 + 0.0123 · Ppuls if M ≤ 2.5,

−11.4 + 0.0125 · (Ppuls − 100 · (M − 2.5)) if M > 2.5.

The mass loss rate of Vassiliadis & Wood [1993] is given by the minimum of Eq. 5.8
and Eq. 5.10.

• Luminous blue variables (LBVs) are extremely massive and luminous stars near the
Humphreys-Davidson limit [Humphreys & Davidson, 1994] with enormous mass-loss
rates. We use the LBV mass loss prescription and implementation suggested by
Hurley et al. [2000]:

Ṁ = 0.1 ×
(

10−5RL1/2 − 1.0
)3

(

L

6.0 · 105
− 1.0

)

M⊙ yr−1, (5.11)

if L > 6.0 · 105L⊙ and 10−5RL1/2 > 1.0.

• Wolf-Rayet stars are stars in a stage of evolution following the LBV phase where
weak or no hydrogen lines are observed in their spectra. Like Hurley et al. [2000]
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we include a Wolf-Rayet-like mass-loss for stars with a small hydrogen-envelope mass
(µ < 1.0 from their Eq. 97). The prescription itself, however, is different. We model
it according to Nelemans & van den Heuvel [2001]:

Ṁ = 1.38 · 10−8 M2.87 M⊙ yr−1. (5.12)

This is a fit to observed mass-loss rates from Nugis & Lamers [2000]. We multiply
with a factor (1 − µ) to smoothly switch on mass loss.

• In addition to the evolution of ordinary hydrogen rich stars, the evolution of helium
burning stars with hydrogen poor envelopes is simulated as well. For helium main-
sequence stars with a mass M > 2.5M⊙ we assume the same relation as for Wolf-
Rayet-like stars. For helium giants, either on the equivalent of the Hertzsprung or
giant branch, we describe mass loss in a very general way similar to Nelemans et al.
[2001c]. We presume 30% of the mass of the envelope Menv will be lost during the
naked helium giant phase with a rate that increases in time according to

∆Mwind = 0.3Menv

[(t+ ∆t

tf

)6.8 −
( t

tf

)6.8]

, (5.13)

where ∆Mwind is the amount of mass lost in the wind in M⊙ in a timestep ∆t, tf
is the duration of the helium giant phase and t the time since the beginning of the
phase.

Special attention has been given to prevent large wind mass losses in single timesteps
because the mass loss prescriptions are very dependent on the stellar parameters of that
timestep. For this reason we implemented an adaptive timestep in situations where strong
winds are expected, e.g. at the tip of the giant branch. This procedure is accurate to
differences in stellar mass of less than 4% for masses below 12M⊙.

5.A.2 Accretion onto stellar objects

Roche lobe overflow mass transfer and subsequent accretion can substantially alter the
stars and the binary orbit. Mass accretion can affect the structure of the receiver star and
its subsequent evolution. When more mass is transferred than the accretor can accrete,
we assume that the non-accreted matter leaves the system with an angular momentum of
2.5 times the specific angular momentum of the binary [Portegies Zwart & Verbunt, 1996;
Nelemans et al., 2001c]. For compact accretors we assume the matter leaves the system
with the specific angular momentum of the compact remnant. In this section we discuss
the limiting accretion rate, the response of the accretor to regain equilibrium, and the
subsequent evolution of the new object for different types of accretors.
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5.A.2.1 Accretion onto ordinary stars

For ordinary stars from MS to AGB stars, we distinguish between two types of accretion;
accretion from a hydrogen-rich or a helium-rich envelope. Hydrogen-rich accretion can
occur for example when a donor star ascends the giant branch and fills its Roche lobe. After
it loses its hydrogen envelope, it can become a helium-burning core. When this helium star
ascends the helium equivalent of the giant branch, a fraction of the helium-rich envelope
can be transferred onto the accretor. We name this type of accretion ’helium accretion’. We
assume that the accreted helium settles and sinks to the core instantaneously. The helium
accretion rate is limited by the Eddington limit. Hydrogen is accreted onto the envelope
of the receiver star. The accretion rate is bounded by the star’s thermal timescale times
a factor that is dependent of the ratio of Roche lobe radius of the receivers to its effective
radius, as described by Portegies Zwart & Verbunt [1996]. The formalism is proposed by
Pols & Marinus [1994], which is based on Kippenhahn & Meyer-Hofmeister [1977]; Neo
et al. [1977] and Packet & De Greve [1979]. If the mass transfer rate is higher than the
maximum mass accretion rate, the excess material is assumed to leave the binary system.

Because of the accretion, the star falls temporarily out of thermal equilibrium. While
regaining equilibrium, the gas envelope surrounding the core puffs outward. Because we
do not solve the equations of stellar structure and the stellar evolution tracks describe
single stars in equilibrium, we add a procedure to account for a temporal increase in radius
as in Portegies Zwart & Verbunt [1996]. This is important for example to determine if
an accretor star fills its Roche lobe. It also affects the magnetic braking process and the
Darwin-Riemann instability through the increased stellar angular momentum. Note that
the mass transfer rate is not dependent on the stellar radius in our simulations, so that the
binary evolution is not critically dependent on out-of-equilibrium parameter values.

Accretion can also affect the structure of the receiver star and its subsequent evolution.
It is modelled by changing the stellar track and moving along the track. The former is
described by the track mass, which is equivalent to the zero-age main-sequence mass that
the star would have had without interaction. The latter is described by the relative age trel

of the star. We distinguish two cases:

• Rejuvenation of an MS star
Accretion onto an MS star rejuvenates the star. The star evolves similarly to a
younger star of its new mass and its MS lifetime can be extended. It would show
up in a Hertzsprung-Russell diagram as a blue straggler. For hydrogen accretion the
track mass is always updated and the renewed relative age of the star

t′rel = trel
t′ms

tms

M

M ′
, (5.14)

where primes denote quantities after a small amount of mass accretion, tms the main-
sequence lifetime, and M the mass of the star.
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For helium accretion we assume the mass accretes to the core instantaneously and
the track mass is increased accordingly. These stars appear older than for hydro-
gen accretion because more hydrogen has been burned previously. The rejuvenation
process is described by

t′rel = trel
t′ms

tms

M

M ′
+
δMt′ms

0.1M ′
, (5.15)

where we assume 10% of the mass of the star will be burned during the MS phase.

• Rejuvenation of a giant
During the giant phases the envelope is discoupled from the core in terms of stellar
structure. The evolution of the star will therefore not be influenced directly by small
amounts of hydrogen accretion to the envelope. The track is only updated when the
new mass is larger than the track mass to account for severe hydrogen accretion. The
mass before accretion can be much lower than the track mass because of wind mass
loss, which can be strong for giants. For helium accretion to the core, the track is
always updated. An exception to this is the early AGB where the helium core does
not grow. In this stage there is a one-to-one relation between the helium core mass
and the track mass [Eq.66 in Hurley et al., 2000].

When a giant accretor star moves to a new evolutionary track, we need to determine
the location of the star along this track. In a more physical picture this means
determining the relative age of the star trel. For a giant its evolution is mainly
determined by its core. Therefore for a given evolutionary track and core mass, the
relative age is effectively constrained. For both types of accretion, we insist that the
star stays in its same evolutionary state after its mass increase. When no solution
can be found for trel, the relative age is set to the beginning or end of the current
evolutionary state and the track mass is varied to find a fitting track that ensures
mass conservation.

5.A.2.2 Accretion onto helium-burning cores

For accretion onto helium-burning stars that have lost their hydrogen envelopes, accretion
is limited by the Eddington limit. Helium accretion onto a helium main-sequence star is
similar as hydrogen accretion onto normal main-sequences stars. We assume that the star
evolves similarly to a younger star of its new mass according to Eq. 5.14 where tms should
be replaced by the helium main-sequence life time. We assume that for helium giants the
envelope is discoupled from the core in terms of stellar structure, as with hydrogen-rich
giants. Therefore we assume that the evolution of the giant is not affected and only update
the track when the new mass is larger than the track mass.

The effect of hydrogen accretion onto helium stars is more complicated. If the hydrogen
layer is sufficiently thick, the layer can ignite. This can significantly increase the radius of
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the star and essentially turn it into a born-again star on the horizontal or asymptotic giant
branch. We studied the effect of hydrogen accretion to helium stars with stellar models
simulated by the stellar evolution code STARS. This code models stellar structure and
evolution in detail by solving the stellar structure equations. The code is based on Eggleton
[1971] and includes updated input physics as described in Hu et al. [2010]. The models do
not include atomic diffusion. For mass accretion rates at ten percent of the Eddington rate
of the accretor for about 104 − 105 yr, the accreted hydrogen layer ignites. Helium stars
that are more massive than about 0.55M⊙ resemble horizontal branch stars after accretion,
but most of the luminosity still comes from helium burning. For lower mass helium stars
this is not the case, because the corresponding horizontal branch stars (< 3.5M⊙) can have
ignited helium in a degenerate core, which strongly affects the characteristics of the star.
For both mass ranges, the accretor expands by a factor of about 10-100 compared to the
original helium star. Because hydrogen accretion to helium stars is not very likely, we
model this very simply. When more than 5% of the total mass is accreted, the radius of
the star is increased by a factor 50. With few exceptions, this leads to a merger of the two
components.

The effect of hydrogen accretion to helium giants is not known very well and additional
research is necessary. For now, because it is very unlikely to happen, we treat it in the
same way as helium accretion onto the envelope of the giant.

5.A.2.3 Accretion onto remnants

White dwarf, neutron star and black hole accretors can accrete with a maximum rate of
the Eddington limit. If more mass is transferred, the surplus material leaves the system
with the specific angular momentum of the compact remnant. For neutron stars and black
holes we assume that the transferred mass is temporarily stored in a disk. From this disk,
mass will flow onto the surface of the remnant with ten percent of the Eddington limit. We
assume that a neutron star collapses onto a black hole when its mass exceeds 1.5M⊙.

For white dwarfs, the accretion process is more complicated because of possible ther-
monuclear runaways in the accreted material on the surface of the white dwarf. In SeBa
there are several options to model the effectiveness of the white dwarf to retain the trans-
ferred material. For hydrogen accretion we can choose between the efficiencies of Hachisu
et al. [2008] and Prialnik & Kovetz [1995]. For helium retention, the option is between Kato
& Hachisu [1999] [with updates from Hachisu et al., 1999] and Iben & Tutukov [1996].

5.A.3 Stability of mass transfer

A semi-detached system can become unstable in two ways. In a mass transfer instability, the
Roche-lobe-filling star expands faster than the Roche lobe itself on the relevant timescale.
In the other case tidal interactions lead to an instability [Darwin, 1879].
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5.A.3.1 Tidal instability

A tidal instability can take place in systems of extreme mass ratios. When there is insuf-
ficient orbital angular momentum Jb that can be transferred onto the most massive star,
the star cannot stay in synchronous rotation. Tidal forces will cause the companion to
spiral into the envelope of the donor star. The tidal instability occurs when the angular
momentum of the star J⋆ >

1
3
Jb, where

Jb = Mm

√

Ga

M +m
, (5.16)

where Jb is the orbital angular momentum of the circularised binary, a is the orbital
separation, M the mass of the donor star and m the mass of the accretor star. The angular
momentum J⋆ of a star with radius R is given by

J⋆ = k2MR2ω, (5.17)

where k2 is the gyration radius described by Nelemans et al. [2001c] and ω is the angular
velocity of the donor star, which is assumed to be synchronised with the orbit. It is given
by ω = 2π/Pb, where Pb is the orbital period. We model the inspiral according to the
standard α-CE (see Sect. 5.3). Owing to the expulsion of the envelope, the binary may
evolve to a more stable configuration or merge. If the mass-losing star is a main-sequence
star, we assume that the instability always leads to a merger.

5.A.3.2 Mass transfer instability

The stability of mass transfer from Roche lobe overflow and its consequences on the binary
depend on the response of the radius and the Roche lobe of the donor star to the imposed
mass loss (e.g. Webbink 1985; Hjellming & Webbink 1987 (hereafter HW87); Pols &
Marinus 1994; Soberman et al. 1997). We distinguish four modes of mass transfer; on
the dynamical, thermal, nuclear timescale of the donor or on the angular-momentum-loss
timescale. The response of the accretor star to the mass that is transferred onto it and the
effect of this on the orbit is described in Appendix 5.A.2. The response of the donor star to
mass loss is to readjust its structure to recover hydrostatic and thermal equilibrium. The
dynamical timescale to recover hydrostatic equilibrium is short compared to the thermal
timescale. For mass transfer to be dynamically stable, the dynamical timescale of the star
is important. The change in radius due to adiabatic adjustment of hydrostatic equilibrium
is expressed as a logarithmic derivative of the radius with respect of mass,

ζad =

(

d ln R

d ln M

)

ad

, (5.18)

where M and R are the mass and radius of the donor star. The assumed values of ζad are
shown in Table 5.2.
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The response of the Roche lobe RL of the donor star is expressed as the logarithmic
derivative of the Roche lobe radius with respect to mass:

ζL =
d ln RL

d ln M
. (5.19)

The value of ζL is calculated numerically by transferring a test mass of 10−5 M⊙. Because
ζL = ζL(M1,M2, a), ζL is dependent on the mass accretion efficiency of the secondary,
and therefore on the mass accretion rate of the test mass. For instance, for high mass
ratios q ≫ 1 the loss of some mass and corresponding angular momentum can have a
stabilising effect on the mass-transferring binary. To determine the dynamical stability of
mass transfer, we assume that the mass transfer rate of the test mass is on the thermal
timescale of the donor star:

τth =
GM2

RL
. (5.20)

1. When ζL > ζad, mass transfer is dynamically unstable. We model this as a CE phase2,
as described in Sect. 5.3.

When ζL < ζad mass transfer is dynamically stable. The donor star is able to regain
hydrostatic equilibrium and shrinks within its Roche lobe on a dynamical timescale. To
determine if the donor star is also able to regain thermal equilibrium during mass transfer,
we calculate the change in the radius of the star as it adjusts to the new thermal equilibrium:

ζeq =

(

d ln R

d ln M

)

th

. (5.21)

The assumed values for ζeq are described in Table 5.2.
To calculate the response of the Roche lobe ζL,eq, we assume that the mass transfer rate

of the test mass is on the nuclear evolution timescale:

τnuc = dt
R

dReq
, (5.22)

where R represents the equilibrium radius of the star according to the single-star tracks.
dReq is the change in R in a short timestep dt without binary interactions.

2. When ζL,eq < min(ζeq, ζad) mass transfer is driven by the expansion of the stellar
radius due to its internal evolution.

2 When the timescale of the CE phase becomes relevant, we assume that it proceeds on a time scale τ

given by the geometric mean of the thermal τth and dynamical τd timescales of the donor [see Paczyiński

& Sienkiewicz, 1972]:

τ =
√

τdτth; τd =

√

R3

GM
.

117



Chapter 5 : SNIa progenitors from merging double white dwarfs

3. When ζL,eq > min(ζeq, ζad), the mass transfer is thermally unstable and proceeds on
the thermal time scale of the donor.

4. The previous modes of mass transfer are caused by an expanding donor star. The
final mode is caused by shrinking of the orbit caused by angular momentum loss. We
assume that this mode takes place when the corresponding timescale τJ is shorter than
the timescales at which the other three modes of mass transfer take place. Angular
momentum loss can happen due to gravitational wave radiation J̇gr [Kraft et al.,
1962] and magnetic braking J̇mb [Schatzman, 1962; Huang, 1966; Skumanich, 1972;
Verbunt & Zwaan, 1981]. Mass transfer proceeds on the time scale on which these
processes occur:

τJ =
Jb

J̇gr + J̇mb

, (5.23)

where Jb is the angular momentum of the circularized binary given by Eq. 5.16. Next
we discuss the assumptions and implications of J̇gr and J̇mb.

Gravitational wave radiation most strongly influences close binaries since it is a strong
function of orbital separation. The change in orbital separation ȧ averaged over a full
orbit is given by [Peters, 1964]

ȧgr = −64

5

G3Mm(M +m)

c5a3(1 − e2)7.2

(

1 +
73

24
e2 +

37

96
e4
)

, (5.24)

where J̇gr/Jb = ȧgr/(2a).

Magnetic braking affects stars within the mass range of 0.6 . M/M⊙ . 1.5. These
stars suffer from winds that are magnetically coupled to the star. Although the mass
loss in this process is negligible, the associated angular momentum loss can be severe
[Rappaport et al., 1983]:

J̇mb

Jb
= −3.8 · 10−30R4−β

⊙ (M +m)Rβω2

ma2
, (5.25)

where β is a parameter that represents the dependence of the braking on the radius
of the donor star. We take β = 2.5.
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Table 5.2: Values of the adiabatic ζad and thermal ζeq response of the radius to mass loss

for different types of stars.

k Evolutionary state ζad ζeq

0,1 Main-sequence:
Mo < 0.4 −1/3 0
0.4 < Mo < 1.5 2 0.9
Mo > 1.5 4 0.55

2 Hertzsprung gap:
Mo < 0.4 4 0
Mo > 0.4 4 -2

3 First giant branch:
· shallow convective layer 4 0
· deep convective layer HW87 0

4 Horizontal branch:
Mo < MHef 4 4
MHef < Mo < MFGB:
· decent along GB as k = 3 0
· blue phase 4 4
Mo > MFGB:
· blue phase 4 -2
· ascent to AGB HW87 0

5,6 Asymptotic giant branch HW87 0
7 Helium main-sequence:

M < 0.2 15 -0.19
M > 0.2 15 1

8,9 Helium giant:
Mc < 0.4 HW87 −1/3

Mc > 0.4 HW87 -2
10,11,12 White dwarf −1/3 −1/3

Notes: The types of stars correspond to the definition by Hurley et al. [2000] expressed

by their integer k. The stellar tracks are distinguished by the mass Mo, which is equivalent

to the ZAMS mass the star would have had without interaction. MHef and MFGB are

defined by Eq. 2 and 3 from Hurley et al. [2000]. MHef represents the maximum initial

mass for which helium ignites degenerately in a helium flash, which is about 2M⊙ for solar

metallicities. MFGB is the maximum initial mass for which helium ignites on the first giant

branch, which is about 13M⊙ for solar metallicities. M is the total mass of the star and

Mc the mass of the core. HW87 represents Hjellming & Webbink [1987]. For stars on the

first giant branch there are two prescriptions of ζad. If the convective zone in the upper

layers of the envelope is shallow [fits from Yungelson, private communication], we assumed

the envelope responds to mass loss in a similar manner as radiative envelopes.
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Abstract

Binary population synthesis (BPS) modelling is a very effective tool to study
the evolution and properties of various types of close binary systems. The
uncertainty in the parameters of the model and their effect on a population can
be tested in a statistical way, which then leads to a deeper understanding of the
underlying (sometimes poorly understood) physical processes involved. Several
BPS codes exist that have been developed with different philosophies and aims.
Although BPS has been very successful for studies of many populations of
binary stars, in the particular case of the study of the progenitors of supernovae
Type Ia, the predicted rates and ZAMS progenitors vary substantially between
different BPS codes. To understand the predictive power of BPS codes, we
study the similarities and differences in the predictions of four different BPS
codes for low- and intermediate-mass binaries. We investigate the differences in
the characteristics of the predicted populations, and whether they are caused by
different assumptions made in the BPS codes or by numerical effects, e.g. a lack
of accuracy in BPS codes. We compare a large number of evolutionary sequences
for binary stars, starting with the same initial conditions following the evolution
until the first (and when applicable, the second) white dwarf (WD) is formed.
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To simplify the complex problem of comparing BPS codes that are based on
many (often different) assumptions, we equalise the assumptions as much as
possible to examine the inherent differences of the four BPS codes. We find
that the simulated populations are similar between the codes. Regarding the
population of binaries with one WD, there is very good agreement between the
physical characteristics, the evolutionary channels that lead to the birth of these
systems, and their birthrates. Regarding the double WD population, there is
a good agreement on which evolutionary channels exist to create double WDs
and a rough agreement on the characteristics of the double WD population.
Regarding which progenitor systems lead to a single and double WD system
and which systems do not, the four codes agree well. Most importantly, we find
that for these two populations, the differences in the predictions from the four
codes are not due to numerical differences, but because of different inherent
assumptions. We identify critical assumptions for BPS studies that need to be
studied in more detail.

6.1 Introduction

Binary population synthesis codes (hereafter BPS codes) enable the rapid calculation of the
evolution of a large number of binary stars over the course of the binary lifetime. With such
models, we can study the contribution of binary stars to an environment, e.g. the chemical
enrichment of a region, or the frequency of an astrophysical event. We can learn about
and study the formation and evolution of stellar systems that are important for a wide
range of astronomical topics: novae, X-ray binaries, symbiotics, subdwarf B stars, gamma
ray bursts, R Coronae Borealis stars, AM CVn stars, Type Ia and Type Ib/c supernovae,
runaway stars, binary pulsars, blue stragglers, etc.

To carefully study binary populations, in principle it is necessary to follow the evolution
of every binary system in detail. However, it is not feasible to evolve a population of bi-
nary stars from the zero-age main-sequence (ZAMS) to remnant formation with a detailed
stellar evolution code. Such a task is computationally expensive as there are many physical
processes which must be taken into account over large physical and temporal scales: tidal
evolution, Roche lobe Overflow (RLOF), mass transfer. Moreover not all processes can
be modelled with detailed codes, e.g. common envelope evolution, contact phases. There-
fore, simplifying assumptions are made about the binary evolution process and many of its
facets are modelled by the use of parameters. This process is generally known as binary
population synthesis. Examples of such parametrisation are straightforward descriptions
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for the stability of mass transfer, the accretion efficiency during mass transfer, the angular
momentum loss during non-conservative mass transfer, etc. For the evolution of an individ-
ual system, the above can of course be an oversimplification. However, for the treatment
of the general characteristics of a large population of binaries this process works very well
[e.g. Eggleton et al., 1989].

The use of BPS codes dates back several decades [see e.g. Iben & Tutukov, 1984; Melnick
et al., 1985; Eggleton et al., 1989; Meurs & van den Heuvel, 1989; Yungelson et al., 1993,
for some early examples] and they were used to calculate the most diverse properties of
binary populations [for a very thorough review, see Han et al., 2001]. A number of BPS
codes are being used in the field, and (sometimes large) differences exist in the way the
codes are designed to treat various stages of binary evolution. The physics of binary star
evolution is not clear-cut, since many mechanisms that govern important processes are
quite uncertain (e.g. mass transfer and transport of angular momentum in and from the
binary). In all BPS codes, certain physical processes are modelled in some detail, while
others are modelled using simple approximations, to e.g. save computational time. To
some degree, the effects that are most important for the problem being studied will be
more elaborately included in the corresponding BPS codes.

Recently, several BPS codes have been used to study the progenitors of Type Ia super-
novae [e.g. Yungelson et al., 1994; Han et al., 1995; Jorgensen et al., 1997; Yungelson &
Livio, 2000; Nelemans et al., 2001c; Han & Podsiadlowski, 2004; De Donder & Vanbeveren,
2004; Yungelson, 2005; Lipunov et al., 2009; Ruiter et al., 2009b, 2011; Mennekens et al.,
2010; Wang et al., 2010; Meng et al., 2011; Bogomazov & Tutukov, 2009, 2011; Ruiter
et al., 2013; Toonen et al., 2012; Mennekens et al., 2012, Claeys et al. in prep.]. From these
recent studies, it has become evident that the various codes show different results in terms
of the SNe Ia rate [Nelemans et al., 2013], in particular for the single degenerate channel in
which binary systems can produce a SNe Ia by accretion from a non-degenerate companion
to a WD. The differences in the predicted SNIa rate are largely, but not completely, due to
differences in the assumed retention efficiency of the accretion onto the WD [Bours et al.,
2013]. While it has long been expected by groups working on population synthesis that
the differences in the BPS results were the result of different assumptions being made in
these various studies rather than numerical in nature, it became ever more clear that a
quantitative study of the nature and causes of these differences is necessary.

This paper aims to do this by clarifying, for four different BPS codes, the respective
ingredients and assumptions included in the population codes and comparing models of
several simulated populations for which all assumptions have been made the same as much
as possible. We discuss the similarities and differences in the predicted populations and
examine the causes for the differences that remain. The causes for differences are valuable
information for interpreting binary population synthesis results, and as input for the as-
tronomical community to increase our understanding of binary evolution. The project is
known as PopCORN - Population synthesis of Compact Objects Research Network. It is

123



Chapter 6 : PopCORN

not the purpose of this paper to discuss the advantages or shortcomings of the respective
methods used in BPS codes, nor to judge which assumptions made for binary evolutionary
aspects are the most desirable.

The paper focuses on low and intermediate mass close binaries, i.e. those with ini-
tial stellar masses below 10 M⊙. The reason for this is twofold: firstly, as the project
originates from differences in the predictions of SNe Ia rates, the systems that produce
white dwarfs are the main focus. Secondly, since the evolution of massive stars is even less
straightforward, and its modelling includes even more uncertainties, comparing massive
star population synthesis will be a whole new project.

In Sect. 6.2 we give an overview of the relevant processes for the evolution of low- and
intermediate-mass binaries. Section 6.3 describes the codes involved in this project. The
method we use to conduct the BPS comparison is described in Sect. 6.4. We compare
the simulated populations of systems containing one WD in Sect. 6.5.1 and two WDs in
Sect. 6.5.2. Both sections start with a comparison of all systems and their progenitors and
present the main results of the paper. A more detailed comparison follows in subsequent
subsections of Sect. 6.5.1 and 6.5.2. In Sect. 6.6 we summarise and discuss the causes for
differences that were found in Sect. 6.5. Our conclusions are given in Sect. 6.7. An overview
of the inherent and typical assumptions of each code can be found in Appendix 6.A and 6.B
respectively.

6.2 Binary evolution

In this section we will give a rough outline of binary evolution and the most important pro-
cesses that take place in low and intermediate mass binaries. The actual implementation in
the four BPS codes under consideration in this study is described in Appendix 6.A and 6.B.

6.2.1 Roche lobe overflow

Low-and intermediate-mass systems with initial periods less than approximately 10 years
and primary masses above approximately 0.8M⊙, will come into Roche lobe contact within
a Hubble time. The stars in a binary system evolve effectively as single stars, slowly
increasing in radius and luminosity, until one or both of the stars fills its Roche lobe. At
this point mass from the outer layers of the star can flow through the first Lagrangian point
leaving the donor star.

Depending on the reaction of the star upon mass loss and the reaction of the Roche
lobe upon the rearrangement of mass and angular momentum in the system, mass transfer
can be stable or unstable. When mass transfer becomes unstable, the loss of mass from the
donor star will cause it to overfill its Roche lobe further. In turn this increases the mass loss
rate leading to a runaway process. In comparison, when mass transfer is stable, the donor
star will stay approximately within the Roche lobe. Mass transfer is maintained by the
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expansion of the donor star, or the contraction of the Roche lobe from the rearrangement
of mass and angular momentum in the binary system.

RLOF influences the evolution of the donor star by the decrease in mass. The evolution
of the companion star is affected too if some or all of the mass lost by the donor is accreted.
This is particularly true if some of the accreted (hydrogen-rich) matter makes its way to
the core through internal mixing, where it will thus lead to replenishment of hydrogen, a
process known as rejuvenation [see e.g. Vanbeveren & De Loore, 1994].

Orbits of close binaries are affected by angular momentum loss (AML) from gravita-
tional wave emission [e.g. Peters, 1964], possibly magnetic braking [Verbunt & Zwaan, 1981;
Knigge et al., 2011] and tidal interaction. Magnetic braking extracts angular momentum
from a rotating star by a stellar wind that is magnetically coupled to the star. If the star
is in corotation with the orbit, angular momentum is essentially also removed from the
binary orbit. Tidal interaction plays a crucial role in circularising binaries and will strive
to synchronise the rotational period of each star with the orbital period. While it is known
that tidal effects will eventually achieve tidal locking of both components, the strength of
tidal effects is still subject to debate [see e.g. Zahn, 1977; Hut, 1981].

6.2.1.1 Stable mass transfer

In the case of conservative RLOF the variation in the orbital separation a during the
mass transfer phase is dictated solely by the masses. If the gainer star accretes mass non-
conservatively, there is a loss of matter and angular momentum from the system. We define
the accretion efficiency:

β =
∣

∣

∣Ṁa/Ṁd

∣

∣

∣ , (6.1)

where Md is the mass of the donor star and Ma is the mass of the accreting companion. If
β < 1, it is also necessary to make an assumption about how much angular momentum J

is carried away with it. We define this with a parameter η such that:

J̇

J
= η

Ṁ

Md +Ma
(1 − β). (6.2)

The amount of angular momentum that is lost from the system due to mass loss has a
large influence on the evolution of the binary. Several prescriptions for AML exist. They
can be divided in four modes of AML or combinations of these modes [see e.g. Soberman
et al., 1997, for an overview of the effect of the different prescriptions on the stability of
the system].

• Orbital angular momentum loss mode;
In this mode the mass is assumed to leave the binary system, with (a multiple of)
the specific orbital angular momentum of the binary, i.e η = constant.

• Jeans mode;
Mass is assumed to leave the system from the vicinity of the donor star in a fast
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Figure 6.1: Angular momentum loss (in terms of Ṁ(1−β)
Md+Ma

) as a function of mass ratio

for four modes: specific angular momentum loss mode (solid, for η = 1),

Jeans mode (dotted), isotropic re-emission mode (dashed) and in the case of

a circumbinary ring (dashed-dotted, for aring/a = 2.3). See text for definition

and explication of modes.

spherically symmetric wind. In this mode, the wind matter does not interact with
the system. It takes with it the specific orbital angular momentum of the donor in
its relative orbit around the centre of mass. Making the assumption that the donor
star can be approximated by a point mass, the specific angular momentum loss is as
in eq. 6.2 with:

η =
Ma

Md

. (6.3)

• Isotropic re-emission;
In this case mass is assumed to leave the system from the position of the gainer in a
spherically symmetric way (or at least symmetric with respect to the equatorial plane
of the star). Possible scenarios are an enhanced stellar wind or bipolar jets. Further
assumptions are as in the previous case, resulting in:

η =
Md

Ma

. (6.4)

• Circumbinary ring;
Finally, it is possible to assume that the matter will leave the binary through the
formation of a non-corotating circumbinary ring, after passing through the second
Lagrangian point L2. The amount of angular momentum lost then depends on the
radius of this ring aring compared to the orbital separation a:

η =

√

aring

a

(Md +Ma)2

MdMa
. (6.5)
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While an absolute minimum for aring is the distance from the center of mass to L2

(which can be shown to vary only very slightly during a mass transfer episode), it was
shown by Soberman et al. [1997] that a more realistic value is 2.3 times the orbital
separation.

Figure 6.1 shows, for the four different AML modes, the angular momentum loss J̇/J
as a function of mass ratio q = Ma/Md. It is clear that the assumption of AML from a
circumbinary ring always leads to the largest AML. The Jeans mode causes the least AML
for systems with low mass ratios q < 1, because the donor is then close to the center of mass
of the system. As the mass ratio increases during mass transfer, the AML increases as well
since the donor recedes from the center of mass. Conversely, the isotropic re-emission mode
causes a large AML for low mass ratio systems, as the gainer is far from the center of mass.
As the mass ratio rises, the gainer closes in on the center of mass and AML decreases. The
orbital AML assumption results in an intermediate case between the two.

The choice of AML mode is critical for both the stability and the orbital evolution of
mass transfer. To illustrate, in the case of the circumbinary ring mode (extracting the most
angular momentum), a given amount of mass loss will lead to much more AML than in
the case of Jeans mode AML. The former mode will thus result in a far greater number of
systems that merge than the latter.

Matter and angular momentum can also be lost through stellar winds. As these are
usually assumed to be spherically symmetric, they will extract the specific orbital angular
momentum of the donor star i.e. Jeans mode, and result in an increase in the orbital
period. If, however, the wind is allowed to interact with the orbit of the binary, the result
is entirely dependent on this interaction.

6.2.1.2 Unstable mass transfer

During unstable mass transfer, the envelope of the donor star engulfs the companion star.
Therefore this phase is often called the common envelope (CE) phase [Paczynski, 1976].
A merger of the companion and the core of the donor star can be avoided, if the gaseous
envelope surrounding them is expelled e.g. by viscous friction that heats the envelope.
Because of the loss of significant amounts of mass and angular momentum the CE-phase
can have a very strong effect on the binary orbit. In particular it plays an essential role
in the formation of short period systems containing at least one compact object. Despite
this, the phenomenon is not yet well understood, see Ivanova et al. [2013] for an overview.

There are several formalisms available to treat the orbital evolution during CE-evolution.
The most popular formalisms are the α-formalism [Tutukov & Yungelson, 1979] and the
γ-formalism [Nelemans et al., 2000]. The first considers the energy budget of the initial
and final configuration, while the latter is based on the angular momentum balance. Both
prescriptions include a parameter after which they are named, which determines the effi-
ciency to remove the envelope. Because such an unstable mass transfer phase occurs on
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a short timescale, it is often assumed that the gainer does not have the time to gain an
appreciable amount of mass during a CE-phase.

The α-parameter describes the efficiency of which orbital energy is consumed to unbind
the common envelope according to:

Egr = αce(Eorb,i −Eorb,f), (6.6)

where Eorb is the orbital energy, Egr is the binding energy of the envelope and αce is the
efficiency of the energy conversion. The subscript i and f represent the parameter before
and after the CE-phase respectively. Several prescriptions for the quantities Eorb,i and Egr

have been proposed [Webbink, 1984; Iben & Livio, 1993; Hurley et al., 2002] resulting in
de facto different α-formalisms. We assume Eorb,i and Egr as given in the α-formalism of
Webbink [1984], such that

Eorb,i =
GMdMa

2ai

, (6.7)

and
Egr =

GMdMd,env

λceR
, (6.8)

where R is the radius of the donor star, Md,env is the envelope mass of the donor and λce

depends on the structure of the donor [de Kool et al., 1987; Dewi & Tauris, 2000; Xu & Li,
2010; Loveridge et al., 2011].

In the case of mass transfer between two giants with loosely bound envelopes, some
codes employ a formalism different from the canonical CE-descriptions. The envelopes are
expelled according to

Egr,d1 + Egr,d2 = α(Eorb,i − Eorb,f), (6.9)

analogous to eq. 6.6, where Egr,d1 and Egr,d2 represents the binding energy of the envelope of
the two donor stars. This mechanism is termed a double common envelope phase [Brown,
1995].

6.3 Binary population synthesis codes

In this paper we compare the results of the simulations of four different BPS codes. These
codes have been developed throughout the years with different scientific aims and philoso-
phies, which has resulted in different numerical treatments and assumptions to describe
binary evolution. An overview of the methods that are inherent to and the typical as-
sumptions in the four BPS codes can be found in Appendix 6.A and 6.B. Below a short
description is given of each code in alphabetical order:

6.3.1 binary_c/nucsyn

Binary_c/nucsyn (binary_c for future reference) is a rapid single star and binary popu-
lation synthesis code with binary evolution based on Hurley et al. [2000, 2002]. Updates
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and relevant additions are continuously made [Izzard et al., 2004, 2006, 2009, Claeys et
al., in prep.] to improve the code and to compare the effects of different prescriptions for
ill-constrained physical processes. The most recent updates (Claeys et al., in prep.) that
are relevant for this paper are a new formulation to determine the mass transfer rate, the
accretion efficiency of WDs and the stability criteria for helium star donors and accreting
WDs. The code uses analytical formulae based on detailed single star tracks at different
metallicities [based on Pols et al., 1998; Karakas et al., 2002], with integration of differ-
ent binary features [based on BSE, Hurley et al., 2002]. In addition, the code includes
nucleosynthesis to follow the chemical evolution of binary systems and their output to the
environment [Izzard et al., 2004, 2006, 2009].

The code is used for different purposes, from the evolution of low-mass stars to high-
mass stars. This includes the study of carbon- or nitrogen-enhanced metal-poor stars
[CEMP/NEMP-stars, Izzard et al., 2009; Pols et al., 2012; Abate et al., 2013], the evolu-
tion of Barium stars [Bonačić Marinović et al., 2006; Izzard et al., 2010], progenitor studies
of SNe Ia (Claeys et al. in prep.), the study of rotation of massive stars [de Mink et al.,
2013] and recently the evolution of triple systems [Hamers et al., 2013]. Although the
code has different purposes, the main strength of the code is the combination of a binary
evolution code with nucleosynthesis which enables the study of not only the binary ef-
fects on populations, but also the chemical evolution of populations and its output to the
environment.

6.3.2 The Brussels code

The Brussels binary evolution population number synthesis code has been under develop-
ment for the better part of two decades, primarily to study the influence of binary star
evolution on the chemical evolution of galaxies. A thorough review of the Brussels PNS
code is given by De Donder & Vanbeveren [2004].

The population code uses actual binary evolution calculations (not analytical formulae)
performed with the Paczyński-based Brussels binary evolution code, developed over more
than three decades at the Astrophysical Institute of the Vrije Universiteit Brussel. An
important feature is that the effects of accretion on the further evolution of the secondary
star are taken into account. The population code interpolates between the results of sev-
eral thousands of actual binary evolution models, calculated under the assumption of the
“snowfall model” by Neo et al. [1977] in the case of direct impact, and assuming accretion
induced full mixing [see Vanbeveren & De Loore, 1994] if accretion occurs through a disk.
The actual evolution models have been published by Vanbeveren et al. [1998]. The research
done with the Brussels code mainly focuses on the chemical enrichment of galaxies caused
by intermediate mass and massive binaries. Therefore the interpolations contained in the
population code do not allow for the detailed evolution of stars with initial masses below
3 M⊙.
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In recent years, the code was mainly used to study the progenitors of Type Ia super-
novae [Mennekens et al., 2010, 2012], the contribution of binaries to the chemical evolution
of globular clusters [Vanbeveren et al., 2012] and the influence of merging massive close
binaries on Type II supernova progenitors [Vanbeveren et al., 2013].

6.3.3 SeBa

SeBa is a fast binary population synthesis code that is originally developed by Portegies
Zwart & Verbunt [1996] with substantial updates from Nelemans et al. [2001c] and Toonen
et al. [2012]. Recent updates include the metallicity dependent single stellar evolution
tracks of Hurley et al. [2000] for non-degenerate stars, updated wind mass loss prescriptions
and improved prescriptions for hydrogen and helium accretion, and the stability of mass
transfer.

The philosophy of SeBa is to not a priori define evolution of the binary, but rather to
determine this at runtime depending on the parameters of the stellar system. When more
sophisticated models become available of processes that influence stellar evolution, these
can be included, and the effect can be studied without altering the formalism of binary
interactions. An example of this is the stability criterion of mass transfer and the mass
accretion efficiency.

SeBa has been used to study a large range of stellar populations: high mass binaries
[Portegies Zwart & Verbunt, 1996], double neutron stars [Portegies Zwart & Yungelson,
1998], gravitational wave sources [Portegies Zwart & Spreeuw, 1996; Nelemans et al., 2001b],
double white dwarfs [Nelemans et al., 2001c], AM CVn systems [Nelemans & van den
Heuvel, 2001], sdB stars [Nelemans, 2010], SNIa progenitors [Toonen et al., 2012; Bours
et al., 2013] and ultracompact X-ray binaries van Haaften et al. [2013].

As part of the software package Starlab, it has been used to simulate the evolution of
dense stellar systems [Portegies Zwart et al., 2001, 2004]. Recently, SeBa is incorporated
in the Astrophysics Multipurpose Software Environment, or AMUSE. This is a compo-
nent library with a homogeneous interface structure, and can be downloaded for free at
amusecode.org [Portegies Zwart et al., 2009].

6.3.4 StarTrack

StarTrack is a Monte Carlo-based single and binary star rapid evolution code. Stars are
evolved at a given metallicity (range: Z = 0.0001 − 0.03) by adopting analytical fitting
formulae from evolutionary tracks of detailed single stellar models [Hurley et al., 2000],
and modified over the years in order to incorporate the most important physics for binary
evolution. The orbital parameters (separation, eccentricity and stellar spins) a, e, ω1 and
ω2 are solved numerically as the system evolves, and re-distribution of angular momen-
tum determines how the orbit behaves. As physical insights regarding various aspects of
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stellar and binary evolution become available in the literature, new input physics can be
implemented into the code, and thus the code is continuously being updated and improved.

The StarTrack code was originally used to predict physical properties of compact objects
such and single and double black holes and neutron stars, as well as gamma ray bursts and
compact object mergers in context of gravitational wave detection with LIGO [Belczynski
et al., 2002b,a; Abbott et al., 2004]. In more recent years, studies with the code have grown
to include compact binaries in globular clusters [Ivanova et al., 2005], X-ray binary popula-
tions [Belczynski et al., 2004; Ruiter et al., 2006], sources of gravitational wave radiation for
ground-based and space-based gravitational wave detectors [Ruiter et al., 2009a, 2010; Bel-
czynski et al., 2010a,c], gamma ray bursts [Belczynski et al., 2007; O’Shaughnessy et al.,
2008; Belczynski et al., 2008b], Type Ia supernovae progenitors [Belczynski et al., 2005;
Ruiter et al., 2009b, 2011, 2013] and core-collapse supernova explosion mechanisms [Bel-
czynski et al., 2012]. The most comprehensive description of the code to date can be found
in Belczynski et al. [2008a], with some updates described in Ruiter et al. [2009b] (SNe Ia),
Belczynski et al. [2010b] (stellar winds), and Dominik et al. [2012] (wind mass-loss rates,
CE).

6.4 Method

To examine the inherent differences between four BPS codes, we compare the results of a
simulation made by these codes in which the assumptions are equalised as far as possible
(see Sect. 6.4.1). We consider two populations of binaries:

• Single WDs with a non-degenerate companion (hydrogen-rich or helium-rich star)
(SWDs)

• Double WD systems (DWDs)

Of both populations we investigate the initial distributions and the distributions at the
moment that the SWD or DWD system forms. At these specific times we distinguish
the different evolutionary paths, including (possibly several) phases of mass transfer. We
establish the similarities between the results of the different BPS codes. If we notice differ-
ences between the results, we analyse these in greater detail by comparing e.g. individual
systems, their evolutionary path, but also the mass transfer rate and/or wind mass loss
rate; or the stability criteria of a group of systems.

We assume the initial primary mass M1,zams is between M1,zams,min = 0.8M⊙ and
M1,zams,max = 10M⊙, an initial mass ratio qzams = M2,zams/M1,zams where the mass ratio
is between qzams,min = 0.1M⊙/M1,zams and qzams,max = 1, and an initial semi-major axis
azams between azams,min = 5R⊙ and azams,max = 104R⊙ (see also Table 6.1). Furthermore
we assume an initial eccentricity ezams of zero. We consider SWDs and DWDs that are
formed within a Hubble time, more specifically 13.7 Gyr. The initial distribution of the
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primary masses follows Kroupa et al. [1993], the initial mass ratio distribution is flat1, and
the initial distribution of the semi-major axis is flat in a logarithmic scale.

Not every BPS research group focuses on the full range of stellar masses. Consequently
in their codes there are no (valid) prescriptions available for all stellar masses. The research
group that uses the Brussels code, mainly focuses on the chemical enrichment of galaxies
and therefore is not interested in the evolution of stars with a mass lower than 3M⊙ (see
Sect. 6.3.2). Consequently, in order to make the comparison with the results of the Brussels
code we only compare with a subset of the SWD and DWD populations. We define this
subset as the ‘intermediate mass range’, while the entire populations is considered as the
‘full mass range’. The ‘intermediate mass range’ is defined in the two populations as follows:

• for the SWD population we only consider WDs originating from initial primary masses
higher than 3M⊙.

• for the DWD population we only consider WDs originating from initial primary and
secondary masses both higher than 3M⊙.

In addition, we refer to the ’low mass range’ or ’low mass primaries’ which encompasses
the systems with an initial primary mass lower than 3M⊙.

BPS codes are ideal to investigate the effect of different assumptions on populations,
since a different assumption can cause a shift in e.g. the mass or separation of the population
under investigation. We do not have to agree on the exact evolution of individual systems.
As long as the shift is small the characteristics of the population do not change. Keeping
this in mind when comparing the results of the different BPS codes we define them to
agree when similar evolutionary paths are recovered at the same regions in the mass and
separation space.

6.4.1 Assumptions for this project

In order to compare the codes we make the most simple assumptions. These are not
necessarily believed to be realistic, but are taken to make the comparison feasible. The
assumptions for this project are discussed below and shown in Table 6.1. The typical
assumptions taken by the authors in the corresponding BPS codes in their previous research
projects are summarised in Table 6.5 in Appendix 6.B. For simplicity and brevity, we do
not study the effect of different assumptions on the characteristics of SWD and DWD
populations in this project.

1Note that the initially imposed constraint on the mass ratio (i.e. qzams,min = 0.1M⊙/M1,zams) affects

the overall shape of the resulting q0-distribution. Even though the probability of drawing a mass ratio

anywhere is equal, this is strictly only true between qzams ≈ 0.1 − 1. Mass ratios lower than approximately

0.1 are drawn less often, since the primary masses cluster around 1M⊙ due to the IMF, and the lower mass

limit of the secondary is assumed to be 0.1M⊙.
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Table 6.1: Equalised initial distribution and range of binary parameters

Parameter Initial distribution

M1,zams (M⊙) KTG93

azams (R⊙) ∝ a−1 (A83)

qzams Flat

Parameter Value

M1,zams,min 0.8 (0.1)(1)

M1,zams,max 10 (100)(1)

azams,min 5

azams,max 1e4 (1e6)(1)

qzams,min 0.1/M1,zams

qzams,max 1

ezams 0

Max time (Gyr) 13.7

Binary fraction (%) 100

β (RLOF) 1

αceλce 1

Physics Assumption

AML (RLOF) Orbit (η = 1)

CE α(2)

Wind accretion No

Tides No

Magn. braking No

Notes:

References in the table: KTG93 = Kroupa et al. [1993], A83 = Abt [1983].

(1) The values outside and inside the brackets represent the values for the simulated and

entire stellar population, respectively.

(2) The prescription is based on Webbink [1984].
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• Mass transfer is assumed to be conservative (β = 1) during stable RLOF towards
all types of objects. We emphasise that this is not a realistic assumption, especially
in the case of a WD accretor. During the CE-phase no material is assumed to be
accreted by the companion star (β = 0).

In the Brussels code a constant accretion efficiency of a WD-accretor cannot be
implemented and therefore for this study mass transfer to all compact objects is
assumed to be unstable and evolve into a common envelope in this code.

• We assume that during mass transfer the angular momentum lost is specific orbital
angular momentum of the binary (with η = 1, see eq. 6.2).

It is not possible to equalise the assumptions for AML during wind mass loss between
the codes (for an overview of the assumptions see Sect. 6.A.5).

• We use the α-prescription of Webbink [1984] to describe the CE-phase (see eq. 6.6
to eq. 6.8). We assume that the parameters αce and λce are equal to one, mainly for
simplicity, but also because the prevalence of this choice in the literature allows for
comparison between this and other studies.

• We assume that matter lost through winds cannot be accreted by the companion
star.

• Due to the diversity of the prescriptions for magnetic braking and tides, we do not
consider these effects and they are turned off for this paper. However, in StarTrack,
spin-orbit coupling is still taken into account, as it is firmly integrated with the binary
evolution equations.

6.4.2 Normalisation

When calculating birthrates of evolutionary channels, the simulation has to be normalised
to an entire stellar population (see Table 6.1). For this work the initial distribution and
ranges of M1,zams, qzams and azams are as discussed in Sect. 6.4 with the exception of the
initial primary masses of a stellar population to vary between 0.1 and 100M⊙, and the
semi-major axis between 5 and 106R⊙. We assume a binary fraction of 100%.

If the star formation rate S in M⊙ yr−1 is independent of time, the birthrate of an
evolutionary channel X is given by:

Birthrate(X) = S
φ(X)

Mtot
, (6.10)

with φ(X) the total number of systems evolving through evolutionary channel X in the
simulation, and Mtot the total mass of all stellar systems in the entire stellar population.
More specifically,
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φ(X) =
∫ 100

0.1

∫ 1

0.1/M1,zams

∫ 1e6

5
xΨdM1,zamsdqda, (6.11)

with x = x(M1,zams, q, a) equals 1 for the binary systems evolving through evolutionary
channel X, and zero otherwise and Ψ is the initial distribution function of M1,zams, qzams

and azams. Note that in this project we assume that the initial distribution for M1,zams,
qzams and azams are independent (see Table 6.1), such that Ψ is separable:

Ψ(M1,zams, qzams, azams) = ψ(M1,zams)ϕ(qzams)χ(azams). (6.12)

The total mass of all stellar systems assuming a 100% binary fraction is:

Mtot =
∫ 100

0.1

∫ 1

0.1/M1,zams

∫ 1e6

5
Mt,zamsΨdM1,zamsdqda, (6.13)

where Mt,zams = M1,zams +M2,zams.
For this project a constant star formation rate of 1M⊙ yr−1 is assumed. This simple

star formation rate is chosen to make the comparison with other codes easier.

6.5 Results

6.5.1 Single white dwarf systems

Systems containing a WD and a non-degenerate companion have typically undergone a one-
directional mass transfer event i.e. one star has lost mass and possibly the other gained
mass. The mass transfer event may consist of one or two episodes, either of which may
have been stable or unstable. The characteristics of the population of SWD systems show
the imprint of the mass transfer episodes. Figure 6.2 and 6.3 show the orbital separation
aswd as a function of primary mass M1,swd at the moment of WD formation for the full and
intermediate mass range respectively. Likewise Fig. 6.4 and 6.5 show the secondary mass
M2,swd as a function of primary mass at WD formation for the full and intermediate mass
range. These figures show that in general the codes find very similar SWD systems.

In more detail, at large separations (aswd & 500R⊙ for the full mass range, and for
the intermediate mass range aswd & 2000R⊙) all codes find systems in which the stars
do not interact. The population of SWDs with WD masses in the low mass range is
very comparable in orbital separation, primary and secondary mass between the codes
binary_c, SeBa and StarTrack. Intermediate mass systems can be divided in two groups,
either in separation and/or in secondary mass. According to all codes, intermediate mass
systems that undergo a CE-phase (for the first mass transfer episode) are compact with
aswd . 200R⊙ and have secondary masses up to 10M⊙. Furthermore, the codes agree
that in the intermediate mass range, systems for which the first phase of mass transfer is
stable are in general more compact than non-interacting systems and less compact then
the systems undergoing a CE-phase. The secondary mass is between 3 and 18M⊙ as it
accretes conservatively during stable mass transfer.
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Table 6.2: Birthrates in yr−1 for different evolutionary channels (described in Sect. 6.5) of single and double white dwarf systems

for the three BPS codes for the full mass range and the intermediate mass range.

Evolutionary channels Full mass range Intermediate mass range
binary_c SeBa StarTrack binary_c Brussels code SeBa StarTrack

SWD systems 0.048 0.052 0.048 5.1e-3 7.8e-3 5.2e-3 4.4e-3
Channel 1 0.026 0.026 0.026 2.2e-3 1.9e-3 2.5e-3 2.3e-3
Channel 2a 6.9e-3 6.5e-3 6.8e-3 1.1e-3 2.6e-3 1.1e-3 1.1e-3
Channel 2b 5.7e-4 5.8e-4 5.0e-4 5.7e-4 - 5.8e-4 4.8e-4
Channel 3a 1.4e-3 4.2e-3 9.8e-4 4.0e-4 1.0e-3 2.9e-4 8.7e-5
Channel 3b 5.7e-4 4.6e-4 1.3e-4 5.7e-4 8.2e-4 4.6e-4 1.3e-4
Channel 4a 0.012 0.012 0.012 1.8e-6 3.6e-6 2.4e-6 1.6e-6
Channel 4b 1.8e-4 8.9e-5 1.8e-4 1.8e-4 1.8e-4 8.9e-5 1.8e-4
Channel 5 2.4e-4 5.6e-4 3.6e-4 9.1e-6 1.2e-3 5.4e-5 2.9e-5

DWD systems 0.012 0.014 0.015 8.4e-4 1.1e-3 8.7e-4 6.6e-4
Channel I 8.4e-3 8.8e-3 8.4e-3 4.9e-4 5.5e-4 5.5e-4 5.1e-4
Channel II 2.0e-3 1.3e-3 4.5e-3 4.5e-5 7.6e-5 3.5e-5 7.8e-5
Channel III 1.3e-3 3.0e-3 9.9e-4 2.5e-4 4.9e-4 1.8e-4 8.1e-7
Channel IV 1.6e-4 5.5e-5 . 4e-7 . 4e-7 - . 4e-7 . 4e-7
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Figure 6.2: Orbital separation versus WD mass for all SWDs in the full mass range at the time of SWD formation. The contours

represent the SWD population from a specific channel: channel 1 (solid line), channel 4a (thin dashed line), channel 4b

(thick dashed line) and channel 5 (dash-dotted line).
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Figure 6.3: Orbital separation versus WD mass for all SWDs in the intermediate mass range at the time of SWD formation. The

contours represent the SWD population from a specific channel: channel 1 (solid line), channel 4a (thin dashed line),

channel 4b (thick dashed line) and channel 5 (dash-dotted line).
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Figure 6.4: Secondary mass versus WD mass for all SWDs in the full mass range at the time of SWD formation. The contours

represent the SWD population from a specific channel: channel 1 (solid line), channel 4a (thin dashed line), channel 4b

(thick dashed line) and channel 5 (dash-dotted line).
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Figure 6.5: Secondary mass versus WD mass for all SWDs in the intermediate mass range at the time of SWD formation. The

contours represent the SWD population from a specific channel: channel 1 (solid line), channel 4a (thin dashed line),

channel 4b (thick dashed line) and channel 5 (dash-dotted line).
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Figure 6.6: Initial orbital separation versus initial primary mass for all SWDs in the full mass range. The contours represent the

SWD population from a specific channel: channel 1 (solid line), channel 4a (thin dashed line), channel 4b (thick dashed

line) and channel 5 (dash-dotted line).
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Figure 6.7: Initial orbital separation versus initial primary mass for all SWDs in the intermediate mass range. The contours represent

the SWD population from a specific channel: channel 1 (solid line), channel 4a (thin dashed line), channel 4b (thick

dashed line) and channel 5 (dash-dotted line).
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Figure 6.8: Initial-final mass relation of single stars that become WDs for the different

groups, dotted line shows the results of binary_c, solid line the results of the

Brussels code, the dashed line the results of SeBa, and the dash-dotted line

the results of StarTrack.

The ZAMS configurations for progenitors of SWDs are shown in Fig. 6.6 and 6.7 with
the separation azams versus primary mass M1,zams. There is a general agreement between
the codes about which progenitor systems lead to a SWD system and which systems do not.
According to all codes, compact progenitor systems (azams . 400R⊙ for the intermediate
mass range, while azams . 30R⊙ for the low mass range) undergo stable mass transfer
for the initial mass transfer episode. Furthermore the codes agree that for most progenitor
systems with orbital separations in the range azams ≈ (0.1−3)·103R⊙ the first phase of mass
transfer is unstable. Systems with orbital separations that lie between the ranges described
above lead to a merging event, thus no SWD system is formed. Progenitor systems with
azams & 700R⊙ for the intermediate mass range (azams & 250R⊙ for the low mass range)
are too wide for the primary star to fill its Roche lobe.

The initial-final mass (MiMf)-relation of single stars (see Fig. 6.8) is very similar between
binary_c, SeBa and StarTrack, but different than the one from the Brussels code due to
different single star prescriptions that are used in the latter code (see Sect. 6.5.1.1 for a
discussion). The effect on the population of SWD progenitors can be seen in Fig. 6.7 in the
maximum mass of the primary stars which is extended from about 8M⊙ in binary_c, SeBa
and StarTrack to about 10M⊙ in the Brussels code. For binary stars the relation between
WD mass and the initial mass is hereafter called the initial-WD mass (MiMwd)-relation
(see Sect. 6.5.1.2 for a discussion). Differences in the MiMwd-relation lead to an increase
of systems at small WD masses . 0.64M⊙ in Fig. 6.3 in the Brussels code compared to the
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Table 6.3: Definitions of abbreviations of stellar types used in the text and figures.

Abbreviation Type of star

MS Main-sequence star
HG Hertzsprung-gap star
GB Star on the first giant branch (red giants)
AGB Star on the asymptotic giant branch
He-MS Star on the equivalent of the main-sequence for

hydrogen-poor helium-burning stars
Ev. He-star Evolved hydrogen-poor helium-burning star
WD White dwarf

other codes. The gap in WD masses between 0.7-0.9M⊙ in the Brussels data in Fig. 6.3 is a
result of a discontinuity in the MiMwd-relation between the WD masses of primaries that
fill their Roche a second time, and those that do not. In the other codes, the primary WD
masses of binaries that evolve through these two evolutionary channels are overlapping.
Differences in the stability criteria of mass transfer can be seen in Fig. 6.3 and 6.5, most
pronouncedly via the greyscales where the StarTrack code shows a decrease of systems that
underwent stable mass transfer (see Sect. 6.5.1.3). Mass transfer is modelled differently in
the codes (see Sect. 6.A) leading to an extension to small separations in the Brussels data
compared to the other codes (see Fig. 6.7), and an increase in systems that underwent
stable mass transfer at azams ≈ 10R⊙ for M1,zams & 4M⊙ in Fig. 6.5 (see Sect. 6.5.1.5).

In the next sections, we make a more detailed comparison between the simulated pop-
ulations of SWDs of the four codes. We distinguish between the most commonly followed
evolutionary paths with birthrates larger than 1.0 · 10−3 yr−1. We describe each evolution-
ary path, the similarities and differences, and investigate the origin of these differences.
Specific examples are given and discussed for the most common paths. Abbreviations of
stellar types are shown in Table 6.3. Paragraphs explaining the evolutionary path, an ex-
ample evolution and the comparison of the simulated populations for each evolutionary
channel are indicated with Evolutionary path, Example and Population, respectively. For
some channels, causes for differences between the populations are discussed separately in
paragraphs that are indicated by Effects. Masses and orbital separations according to each
code are given in vector form [c1, c2, c3, c4] where c1 represents the value according to the
binary_c code, c2 according to the Brussels code, c3 according to SeBa, and c4 according to
StarTrack. The examples are given to illustrate the evolutionary path and relevant physi-
cal processes. However, note that when comparing different BPS codes, achieving similar
results for specific binary populations is more desirable and important than achieving a
perfect match between specific, individual binary systems.
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6.5.1.1 Channel 1: detached evolution

Evolutionary path Most SWD binaries are non-interacting binaries where the stars essen-
tially evolve as single stars. Most binary processes that are discussed in Sect. 6.2 do not
play a role in channel 1.

Example As an example of a system in channel 1, we discuss the evolution of a system
that initially contains a 5M⊙ and 4M⊙ star in an orbit of 104R⊙ (and ezams = 0 by assump-
tion). When the primary star becomes a WD its mass is [1.0, 0.94, 1.0, 1.0]M⊙ in an orbit of
[1.8, 1.8, 1.8, 1.8] · 104R⊙. The differences in the resulting SWD system from different BPS
codes are small and mainly due to different initial-final mass (MiMf)-relations (see Fig. 6.8).
The maximum progenitor mass to form a WD from a single star is [7.6, 10, 7.9, 7.8]M⊙ and
corresponding maximum WD mass of [1.38, 1.34, 1.38, 1.4]M⊙ according to the four codes.
The MiMf-relations of the binary_c code, SeBa and StarTrack are very similar. The simi-
larities are not surprising as these codes are based on the same single stellar tracks and wind
prescriptions of Hurley et al. [2000]. However, small differences arise in the MiMf-relation
as the prescriptions for the stellar wind are not exactly equal. The Brussels code is based
on different models of single stars e.g. different stellar winds and a different overshooting
prescription (see Appendix 6.A). The result is that the core mass of a specific single star
is larger according to the Hurley tracks. In other words, the progenitor of a specific single
WD is more massive in the Brussels code.

Population Despite differences for individual systems, the population of non-interacting
binaries at WD formation is very similar. The previously mentioned differences in the
MiMf-relations are noticeable in the maximum initial primary mass in Fig. 6.6 and 6.7.
The distribution of separations at WD formation (see Fig. 6.2 and 6.3) are very similar
between the codes. For the intermediate mass range, the separations at SWD formation
are & 4.5·103R⊙ for the Brussels code and extend to slightly lower values of & 2.0·103R⊙ for
binary_c, SeBa, and StarTrack. For the full mass range, the latter three codes agree that
the separations can be as low as 5.0·102R⊙. The progenitor systems of channel 1 have similar
separations of & 3.0 ·102 R⊙ for low mass primaries. For intermediate mass stars binary_c,
SeBa and StarTrack find that the initial separation is & 0.7 · 103R⊙ where the Brussels
code finds a slightly higher value of & 1.6 · 103R⊙ (see Fig. 6.6 and 6.7). The minimum
separation (at ZAMS and WD formation) for a given primary mass depends on whether
or not the primary fills its Roche lobe, which in turn depends on the maximum radius for
that star according to the particular single star prescriptions that are used. Even though
the progenitor populations are not 100% equal, the characteristics of the SWD population
and the birthrates (see Table 6.2) in this channel are in excellent agreement.

6.5.1.2 Channel 2: unstable case C

Evolutionary path One of the most common evolutionary paths of interacting binaries is
channel 2, of which an example is shown in Fig. 6.9. In this channel, the primary star
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Figure 6.9: Example of the evolution of a single white dwarf system in channel 2a. Ab-

breviations are as in Table 6.3.
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fills its Roche Lobe when helium is exhausted in its core, so-called case C mass transfer
[Lauterborn, 1970]. As the envelope of the donor star is deeply convective at this stage,
generally mass transfer leads to an unstable situation and a CE-phase develops. While the
orbital separation shrinks severely, the primary loses its hydrogen envelope. By assumption
in this project, the secondary is not affected during the CE-phase. The primary can either
directly become a WD or continue burning helium as an evolved helium star as shown in
the example of Fig. 6.9. If the primary becomes a WD directly, or indirectly but without
further interaction, the evolutionary path is called channel 2a. Evolution according to
channel 2b occurs if the primary fills its Roche lobe for a second time when it is a helium
star. The second phase of mass transfer can be either stable or unstable.

Example As an example of channel 2a, we discuss the evolution of the binary system in
Fig. 6.9. The initial parameters are M1,zams = 3.5M⊙, M2,zams = 3M⊙ and azams = 350R⊙.
The primary star fills the Roche lobe early on the AGB before thermal pulses and super-
winds occur. Wind mass loss prior to the CE-phase is small, [4.4, 0, 4.3, 4.9]·10−2M⊙. After
the CE-phase the orbital separation is reduced to [14, 9.1, 14, 14]R⊙. In this example the pri-
mary continuous burning helium as an evolved helium star of mass [0.78, 0.55, 0.78, 0.78]M⊙.
When the primary exhausts its fuel, it becomes a WD of [0.76, 0.51, 0.77, 0.76]M⊙ in an
orbit of [14, 9.1, 14, 14]R⊙ with a 3M⊙ MS companion. The most important differences,
to be seen between the Brussels code and the other codes, arises from the different single
star prescriptions that are used. This affects the resulting mass of a WD from a specific
primary, and the resulting orbital separation. Note that while the MiMf-relation for sin-
gle stars depends on the single star prescriptions (i.e. core mass growth and winds), the
MiMwd-relation is also affected by the companion mass and separation (which determine
when and which kind of mass transfer event takes place), and the single star prescriptions
for helium stars. In other words, the MiMwd-relation represents how fast the core grows
on one hand, and the envelope is depleted by mass transfer and stellar winds on the other
hand.

Population Despite the differences between individual systems, the different BPS codes
agree in which regions of phase space (M1,swd, M2,swd, aswd) in Fig. 6.10, 6.11, 6.12 and 6.13
the systems from channel 2 lie. The systems of channel 2 evolve towards small separations,
with the majority in the range 0.2 − 150R⊙ at WD formation. In addition, the codes agree
on the masses of both stars at formation of the single WD system. In the low mass range
binary_c, SeBa and StarTrack agree that M1,swd ≈ 0.5−0.7M⊙ and M2,swd ≈ 0.1−2.7M⊙.
In the intermediate mass range the different codes find that M1,swd & 0.64M⊙, however,
the Brussels code finds primary WD masses down to 0.5M⊙ due to differences in MiMwd-
relation. For secondary masses the codes find M2,swd ≈ 0.1 − 7.0M⊙.
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Figure 6.10: Orbital separation versus WD mass for all SWDs in the full mass range at the time of SWD formation. The contours

represent the SWD population from a specific channel: channel 2a (thin line) and channel 2b (thick line).
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Figure 6.12: Secondary mass versus WD mass for all SWDs in the full mass range at the time of SWD formation. The contours

represent the SWD population from a specific channel: channel 2a (thin line) and channel 2b (thick line).
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The binary_c, SeBa, and StarTrack codes agree on the initial separation for low mass
binaries, which is between (0.6 − 12) · 102R⊙ (see Fig. 6.14), M1,zams ≈ 1.0 − 3.0M⊙ and
M2,zams ≈ 0.1 − 3.0M⊙. For intermediate mass binaries in channel 2, there is an agreement
between all codes that the initial primary masses lie between M1,zams ≈ 3 − 8.5M⊙ and
M2,zams ≈ 0.1 − 7.7M⊙. Due to the MiMwd-relation, the maximum initial primary mass
extends to slightly higher values for the Brussels code in comparison with the other codes
(see Fig. 6.15). However, for massive primary progenitors e.g. M1,zams > 9M⊙ in the
Brussels code, the envelope mass of the donor is large and therefore a merger is more
likely to happen in the simulations of the Brussels code compared to those of the other
three codes. The initial orbital separation lies between (0.1 − 2.4) · 103R⊙ (see Fig. 6.15)
according to binary_c, SeBa and StarTrack, however, the range is extended to 3.2·103R⊙ in
the Brussels code due to the single star prescriptions of stellar radii.

Effects Comparing channel 2a and 2b separately, the birthrates of SWDs (see Table 6.2)
in the full mass range are close between the codes binary_c, SeBa, and StarTrack. In the
intermediate mass range for channel 2a, the birthrates of binary_c, SeBa, and StarTrack
are essentially identical, and within a factor of 2.5 lower compared to that of the Brussels
code. The larger difference with the Brussels code are caused because this code assumes a
priori that a white dwarf is formed without a second interaction, thus there is no entry for
the Brussels code in Table 6.2 for channel 2b. The birthrates for channel 2b are very similar
within a factor of about 1.2 between binary_c, SeBa and StarTrack. Comparing the total
birthrate in channel 2 between all codes, the rate of binary_c, SeBa and StarTrack is only
lower by about a factor 1.5 compared to the Brussels code, as some systems merge in the
second interaction in the simulations of the former codes. Other differences in the simulated
populations from this channel are due to the MiMwd-relation as seen in the example, but
also due to differences in the criteria for the stability of mass transfer and the prescriptions
for the wind mass loss (see below).

The effect of the stellar wind in the example above is negligible, but the effect of wind
mass loss becomes more important for systems with more evolved donors. Mass loss from
the primary either in the CE-phase or in foregoing wind mass loss episodes affects the
maximum orbital separation of the SWD systems directly and through angular momentum
loss. In the simulations of the Brussels code, the maximum orbital separations at WD
formation are lower (aswd . 80 R⊙ compared to. 150R⊙ for the main group of systems
in binary_c, SeBa and StarTrack), as winds are not taken into account and more mass
is removed during the CE-phase in this code. More mass loss during a CE-phase leads
to a greater shrinkage of the orbit, where as more wind mass loss with the assumption
of specific angular momentum loss from the donor (Jeans-mode, see eq. 6.3), leads to an
orbital increase.

Another effect arises from the stellar wind in combination with the stability criterion of
mass transfer. For systems with high wind mass losses in which the mass ratio has reversed,
the first phase of mass transfer can become stable according to binary_c, SeBa, and Star-
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Track. Systems in which this happen are not included in channel 2, however, the birthrates
are low ([1.3,−, 6.5, 4.7] · 10−4 yr−1 in the full mass range and [5.4,−, 10, 9.1] · 10−5 yr−1 in
the intermediate mass range). In general, when a AGB star initiates mass transfer, stable
mass transfer is more readily realised in SeBa and StarTrack than in binary_c. Therefore
the maximum separation of SWDs in channel 2 is highest in the binary_c data (up to
650R⊙). However, only about 1% of systems in channel 2 in the binary_c code lie in the
region with a separation larger than 70R⊙ and a WD mass higher than 0.6M⊙.

The stability of mass transfer is another important effect for the population of systems
in channel 2b during the second phase of mass transfer. We only compare the binary_c
code, SeBa, and StarTrack, as the Brussels code does not consider this evolutionary path.
Whether or not the second phase of mass transfer is stable affects the resulting distribution
of orbital separations. This effect is shown in Fig. 6.10 as an extension to lower separations
aswd . 10R⊙ for M1,swd & 0.8M⊙ in the binary_c data due to unstable mass transfer.

There is a difference between StarTrack on one hand, and binary_c and SeBa on the
other hand regarding the survival of systems in channel 2b during the first phase of mass
transfer. Due to a lack of understanding of the CE-phase, generally BPS codes assume for
simplicity that when the stars fit in their consecutive Roche lobes after the CE is removed,
the system survives the CE phase. However, this depends crucially on the evolutionary
state of the stars after the CE. For channel 2b in which the primary continues helium
burning in a shell as a non-degenerate helium star, the response of the primary to a sudden
mass loss in the CE is not well known. The StarTrack code assumes the stripped star
immediately becomes an evolved helium star and corresponding radius, while binary_c
and SeBa assume the stripped star is in transition from an exposed core to an evolved
helium star with a radius that can be a factor of about 1-15 smaller. The uncertainty in
the radii of the stripped star mostly affect systems with M1,zams & 5M⊙ at separations
& 450R⊙ that merge according to StarTrack, and survive according to binary_c and SeBa.

Included in channel 2 are systems that evolve through a double CE-phase2 in which both
stars lose their envelope described in Sect. 6.2 and in eq. 6.9. The double CE-mechanism
is taken into account by the binary_c, SeBa and StarTrack code. However, there is a
difference between StarTrack on one hand, and binary_c and SeBa on the other hand
regarding the binding energy of the envelope of the secondary star. In StarTrack the
binding energy is calculated according to eq. 6.8) with R2 = RRL,2, where as in binary_c
and SeBa the instantaneous radius at the start of the double CE-phase is taken for the
secondary radius. This can have a significant effect on the orbit of the post-double CE-
system, leading to an increase of systems at low separations (approximately 1R⊙) in the
binary_c and SeBa data compared to the StarTrack data.

2Note that systems in which the double CE-phase results directly in a DWD system are not taken into

account for the comparison of SWD systems.
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6.5.1.3 Channel 3: stable case B

Evolutionary path For channel 3, mass transfer starts when a hydrogen shell burning
star fills its Roche lobe in a stable way before core helium-burning starts [Kippenhahn
& Weigert, 1967, case Br]. This can occur when the envelope is radiative or when the
convective zone in the upper layers of the envelope is shallow. In this project we assume
that stable mass transfer proceeds conservatively and so the secondary significantly grows
in mass. Because mass transfer is conservative, the orbit first shrinks and when the mass
ratio has reversed the orbit widens. Mass transfer continues until the primary has lost
(most of) its hydrogen envelope. At this stage the primary can become a helium WD or, if
it is massive enough, ignite helium in its core. In the latter scenario the primary is a He-MS
star. Like for channel 2, there are two sub-channels depending on whether the primary star
fills the Roche lobe for a second time as a helium star. If the primary does not go through
a helium-star phase or does not fill its Roche lobe as a helium star, the system evolves
according to channel 3a. In channel 3b there is a second phase of mass transfer.

Example of channel 3a Figure 6.16a shows an example of the evolution of a binary
system of channel 3a. The initial parameters are M1,zams = 4.8M⊙, M1,zams = 3M⊙ and
azams = 70R⊙. The masses of He-MS and secondary star are very similar in the BPS
codes [0.82, 0.83, 0.82, 0.82]M⊙ and [6.9, 7.0, 7.0, 7.0]M⊙ respectively. The separations at
the moment the helium star forms are [4.2, 4.3, 4.3, 4.7] · 102R⊙ and are similar as well. In
the subsequent evolution, the primary star effectively evolves as a single helium star before
becoming a carbon-oxygen WD and loses [0.038, 0.14, 0.043, 0.038]M⊙ during that time and
the orbit does not change significantly.

Population from channel 3a Regarding channel 3a, not all codes agree on the ranges of
separation and masses (see Fig. 6.21 and 6.22). However, there is an agreement between
binary_c, the Brussels code and SeBa that majority of intermediate mass systems originate
from systems with M1,zams between 3 and 5M⊙ and azams between 10 and 100R⊙. The
SWD population at WD formation is centred around systems with M1,swd ≈ 0.6M⊙ for the
binary_c, Brussels and SeBa codes, and with the majority of separations between about
20−1000R⊙. The SWD systems and their progenitors that are just described are not SWD
progenitors according to StarTrack. According to this code, mass transfer is unstable and
the system merges. The birthrates of binary_c, the Brussels code and SeBa differ within a
factor of about 4 (see Table 6.2). In addition binary_c, SeBa and StarTrack show a good
agreement on the different sub-populations for the full mass range. At WD formation these
codes show a subpopulation between 15 to about 200R⊙ with WD masses of between 0.17
and 0.35M⊙. There is a second subpopulation at about 1R⊙ with most systems having a
WD between 0.4 and 0.8M⊙.
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Figure 6.16: Example of the evolution of a single white dwarf system in channel 3a (left) and channel 3b (right). Abbreviations are

as in Table 6.3.157
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Figure 6.17: Orbital separation versus WD mass for all SWDs in the full mass range at the time of SWD formation. The contours

represent the SWD population from a specific channel: channel 3a (thin line) and channel 3b (thick line).
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Figure 6.19: Secondary mass versus WD mass for all SWDs in the full mass range at the time of SWD formation. The contours

represent the SWD population from a specific channel: channel 3a (thin line) and channel 3b (thick line).
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A third population shows mainly WD masses of more than 0.8M⊙ at separations of
more than 300R⊙, where the population is extended to higher separations and WD masses
in the results of SeBa and StarTrack. The third population is also visible in the progenitor
population in Fig. 6.21 with primary masses of more than 5M⊙ and separations of more
than about 70R⊙. Again this population is more extended to high masses and separations
according to SeBa and StarTrack. The low mass range of the progenitor population shows
predominantly systems in orbits of 5-15R⊙. SeBa and StarTrack agree that there is an
extra group at high orbital separations azams ≈ (1.3 − 4.6) · 102R⊙.

Example of channel 3b An example of the evolution in channel 3b is shown in Fig. 6.16b.
Initially the system has M1 = 7M⊙, M2 = 5M⊙ and a = 65R⊙. After the first phase
of mass transfer the primary masses M1 = [1.4, 1.5, 1.4, 1.4]M⊙, the secondary masses
M2 = [11, 11, 11, 11]M⊙ and separations a = [3.8, 3.3, 3.8, 4.1] · 102R⊙. When the primary
fills its Roche lobe again, it has lost [5.8,−, 6.8, 7.3] ·10−2M⊙ in the wind.The mass transfer
phase is stable and the secondary increases in mass to [11, 11, 11, 11]M⊙. The primary
becomes a WD of [1.1, 1.0, 0.99, 1.0]M⊙ in an orbit of [4.5, 6.5, 5.9, 6.2] · 102R⊙.

Population from channel 3b The binary_c, Brussels and SeBa codes agree well on the
initial systems leading to SWDs through channel 3b. This holds for both the initial mass,
namely between about 5 and 10M⊙ and the initial separation between 0.1 − 3.0 · 102R⊙.
The population of progenitors of channel 3b according to the StarTrack code lies inside
the previously mentioned ranges, however, the parameter space is smaller. In addition
the four codes agree that at WD formation the majority of companions that are formed
through channel 3b are massive, about 6 to 18M⊙ (for StarTrack 8-18M⊙.) The orbits
of these systems are wide around 103R⊙, however, the ranges in separation and WD mass
differs between the codes and will be discussed in the next paragraphs. Binary_c, SeBa and
StarTrack also show a group of lower mass companions. For binary_c and SeBa these lie in
the range 0.8-4.5M⊙ with separations of 0.5-30R⊙ and M1,swd mainly between 0.6M⊙ and
1.0M⊙. The population of StarTrack agrees with these ranges, however, the parameter
space for this population is smaller.

Effects The population of SWDs from channel 3a and 3b are influenced by the MiMwd-
relation. An important contribution to the MiMwd-relation comes from the assumed mass
losses for helium stars and its mechanism, i.e. in a fast spherically symmetric wind or in
planetary nebula (see Appendix 6.A). There is not much known about the mass loss from
helium stars either observationally or theoretically. The differences in the MiMwd-relation
affect for example the distribution of separations in Fig. 6.18. For channel 3b the separation
is . 1400R⊙ for binary_c, SeBa, and StarTrack, but is extended to 6600R⊙ in the Brussels
code. Binaries become wider in the Brussels code, as the WD masses in channel 3 are in
general smaller compared to the other three codes.

There is also a difference in the MiMwd-relation between StarTrack on one hand, and
binary_c and SeBa on the other hand regarding primaries that after losing their hydrogen
envelopes become helium stars. For massive helium stars, binary_c and SeBa find that
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these stars will collapse to neutron stars, where as in StarTrack these stars form WDs.
For channel 3a the difference occurs for the range of helium star masses of 1.6-2.25M⊙.
As a result, systems containing massive helium stars are not considered to become SWD
systems in binary_c and SeBa. These systems are present in the SWD data of StarTrack
at M1,swd & 1.38M⊙ in Fig. 6.4 for channel 3a and 3b. The progenitors have high initial
masses of M1,zams & 8M⊙ and orbital separations of azams ≈ 65 − 220R⊙.

Another effect on the SWD population is the modelling of the mass transfer phases
which is inherent to the BPS codes. The value of the mass transfer rate or the length of the
mass transfer phase, however, do not have a large effect on the population or the evolution
of individual systems from channel 3b in the set-up of the current study. This is because
a priori conservative mass transfer is assumed, and therefore the accretion efficiency is not
affected by the mass transfer rate. The mass transfer timescale only affects the binary
evolution when other evolutionary timescales (such as the wind mass loss timescale or
nuclear evolution timescale) are comparable. For example, while for M1 ≪ M2 the orbit
increases strongly during RLOF, the orbit increases only moderately during wind mass loss
assuming Jeans mode angular momentum loss. The range of separations in Fig. 6.18 is
therefore, besides the MiMwd-relation, also affected by the amount of wind mass and wind
angular momentum leaving the system during RLOF. The binary_c, SeBa, and StarTrack
codes assume wind mass takes with it the specific angular momentum of the donor star
(Jeans mode), where as the Brussels code does not take wind mass loss into account during
stable mass transfer.

Generally, no significant evolution of the donor star takes place during the mass transfer
phase. Therefore with the current set-up, the post-mass transfer masses are determined
by their initial mass and for binary_c, SeBa and StarTrack also the evolutionary moment
the donor star fills its Roche lobe. However, an exception to this occurs for channel 3b
during the second phase of mass transfer. Here the length of the mass transfer phase is
important, as the evolutionary time scale of an evolved helium star is very short (of the
order of few Myr) and the core grows significantly during this period. As a result the
duration of the mass transfer phase becomes important for the resulting WD mass and
separation in binary_c, SeBa and StarTrack (see e.g. the example of channel 3b).

A crucially important assumption for the evolutionary outcome of channel 3 are the
adopted stability criteria. Despite the importance of the stability criteria, the various
implementations have not been compared until this study. We find a clear disagreement
between the codes; stable mass transfer is possible in systems with mass ratios qzams & 0.6

according to StarTrack, in SeBa qzams > 0.35, in binary_c qzams > 0.25 and qzams > 0.2 in
the Brussels code. The effect of the relative large critical mass ratio for StarTrack results
in a low birthrate in particular in the intermediate mass range (see Table 6.2 and Fig. 6.22),
which results in a lack of SWD systems lower than 300R⊙ (see Fig. 6.17) and fewer SWD
systems with M2,swd . 1.0M⊙ (see Fig. 6.19). The effect of the relative low critical mass
ratio for the Brussels code can be seen in Fig. 6.20 as an extension in the Brussels code
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to lower separations aswd . 50. Systems with lower mass companions initially, go through
mass ratio reversal and subsequent expansion of the orbit later in the mass transfer phase.

In the low mass range we find that the stability criteria vary most strongly for donor
stars that are early on the first giant branch when they have shallow convective zones in
the upper layers of the envelope. In general, stable mass transfer from this type of donor
for the same conditions is more readily realised in StarTrack than in binary_c, and it is
even more readily realised in SeBa. Systems with this kind of donor show in Fig. 6.21 at
M1,zams < 3M⊙ a larger range in initial separations for SeBa (5-25R⊙) than for binary_c
and StarTrack (5-18R⊙). There is also an extra population of SWD systems in the SeBa
and StarTrack data with high initial separation azams ≈ (1.3 − 4.6) · 102R⊙ and high initial
mass ratio qzams ≈ M2,zams/M1,zams > 0.8. In these systems the primary fills its Roche lobe
stably on the giant branch after the mass ratio has reversed due to wind mass losses. When
donors with shallow convective zones are excluded, the birthrate in the full mass range in
channel 3a decreases to 1.4 · 10−3 yr−1 for SeBa and 7.3 · 10−4 yr−1 for StarTrack, which is
comparable to the birthrate predicted by binary_c (see Table 6.2).

The long-term behaviour of the orbit can be effected by tides. If energy is dissipated,
angular momentum can be exchanged between the orbit and the spin of the stars. For this
project the binary_c, Brussels and SeBa code assume that the spin angular momentum of
the stars can be neglected compared to the orbital angular momentum3. As such in their
simulations orbital angular momentum is conserved. In the StarTrack code, the orbital
and spin angular momentum combined are conserved, under the assumption that the stars
are and remain in a synchronized orbit. As a consequence after the first phase of mass
transfer in channel 3, the orbits are slightly larger in StarTrack compared to those of the
other codes (see the example system of channel 3a and 3b).

Whether or not a primary fills its Roche lobe for a second time is modelled different in
the Brussels code than in the other three codes. In the Brussels code stars with an initial
mass less than 5M⊙ are assumed to evolve through channel 3a, and stars with a higher
mass evolve through channel 3b. The binary_c and SeBa simulations roughly agree with
this, see Fig. 6.21. However, the boundary between channel 3a and 3b is determined at
run time in binary_c, SeBa, and StarTrack. It is dependent on the evolution of the radii
and wind mass loss of helium stars, the stability criterion and the separation after the
first phase of mass transfer. Therefore differences exist between these codes in the upper
limits for ZAMS masses and separations in channel 3a in Fig. 6.21 and at WD formation
in Fig. 6.19. Binary_c, SeBa, and StarTrack also find that systems that evolve through
channel 3a or 3b overlap in WD mass at WD formation (see Fig. 6.18 and 6.20). In the data
from the Brussels code, the boundary at WD formation is discontinuous in primary mass
causing a gap between 0.7 and 0.9 M⊙ (see Fig. 6.18 and 6.20). The gap in WD mass in
the data from the Brussels code originates as a considerable amount of mass is lost during

3In binary_c it is possible to take into account spin angular momentum into the total angular momentum

of the system.
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the planetary nebula phase of a star that does not initiate a second mass transfer phase.
In the other three codes, the mass loss in winds from helium stars is less strong compared
to the mass loss in the planetary nebula phase of helium stars in the Brussels code.

The evolution of helium stars (their radii, core masses, wind mass losses, and if they
fill their Roche lobes also the stability and mass transfer rates) are important in channel 3.
A difference arises between the Brussels code and the others, because of the way helium
stars are simulated. In binary_c, SeBa, and StarTrack it is possible that after the first
phase of mass transfer, the secondary fills its Roche lobe before the primary moves off
the He-MS and becomes a white dwarf. Subsequently the primary becomes a WD before
the secondary evolves significantly4. This reversal can occur because the evolutionary
timescale of a low-mass helium -star is very long (about 108yr), while that of the secondary
that gained much mass is reduced. As a result, when the first WD is formed, the mass
of the secondary and the orbital separation has decreased substantially. These systems lie
according to binary_c, SeBa and StarTrack at separations . 20R⊙ , primary WD masses
of . 1.0M⊙ and secondary masses of . 4.5M⊙ in Fig. 6.17 and 6.19. The birthrates of the
systems in binary_c, SeBa and StarTrack, are low ([1.1,−, 8.6, 0.4] · 10−4 yr−1 in the full
mass range). In the Brussels code, the evolution of the stars is not followed in time, and
this evolutionary track is not considered. As a result in the range of 0.45-0.7M⊙ for the
WD mass, the range in secondary masses is broader in the Brussels code.

6.5.1.4 Channel 4: unstable case B

Evolutionary path In this path, a hydrogen shell burning star fills its Roche lobe [Kippen-
hahn & Weigert, 1967, case Bc], but the mass transfer is unstable. After the CE-phase
the primary becomes a helium WD or a He-MS. Again, we differentiate two evolutionary
paths within a channel. In channel 4a, the primary becomes a WD directly or the primary
becomes a helium star that will evolve into a WD without any further interaction with the
secondary. If the primary star fills its Roche lobe for a second time, the system evolves
through subchannel 4b. An example of the evolutionary path of channel 4b in shown in
Fig. 6.23.

Example Figure 6.23 shows the evolution of a system of channel 4b, that starts its
evolution with M1,zams = 6M⊙, M1,zams = 3M⊙ and azams = 320R⊙. The primary fills
its Roche lobe as it ascends the first giant branch. After mass transfer ceases the pri-
mary has become a He-MS of mass [1.1, 1.1, 1.1, 1.1]M⊙ in an orbit with a separation of
[7.0, 7.1, 7.0, 7.0]R⊙. As the helium star evolves and increases in radius, it initiates the
second phase of mass transfer. Soon after mass transfer ceases, the primary becomes
a WD with M1,swd = [0.81, 0.91, 0.77, 0.79]M⊙. The secondary is still on the MS with

4Note that it is also possible that the secondary becomes a WD before the primary does [Toonen

et al., 2012, Claeys et al. in prep.]. Because of the evolutionary reversal, these systems are not shown in

Fig. 6.17 to 6.22 nor included in channel 3. The birthrates, however, are low ([1.4, −, 5.6, 0.7] · 10−4 yr−1 in

the full mass range).
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Figure 6.23: Example of the evolution of a single white dwarf system in channel 4b. The

primary fills its Roche lobe a second time. The top and bottom parts of the

figure have different scales due to a common envelope phase, denoted as CE

in the figure. Abbreviations are as in Table 6.3.
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M2,swd = [3.2, 3.2, 3.3, 3.3]M⊙ and the orbital separation is aswd = [10, 9.4, 11, 11]R⊙. The
differences in this example are caused by effects discussed before; the MiMwd-relation
including the mass transfer rates from helium rich donors.

Population The codes agree well on the location of the SWDs at WD formation from
channel 4a and 4b in Fig. 6.2, 6.3, 6.4 and 6.5, their progenitor systems in Fig. 6.6 and 6.7
and the birthrates of the channels (see Table6.2). For channel 4a, which predominantly
contains low mass binaries, there is an excellent agreement between binary_c, SeBa and
StarTrack in the previously mentioned figures as well as in the birthrates (see Table 6.2).
The low mass SWDs at WD formation have WDs of 0.25−0.48M⊙, companions of< 1.8M⊙,
in an orbit of 0.5 − 100R⊙, and progenitor systems with azams ≈ (0.3 − 4.0) · 102R⊙ for
M1,zams ≈ 1 − 2M⊙.

The population of systems that evolve through channel 4b are primarily intermediate
mass binaries of mass M1,zams ≈ 4.5−10M⊙ that become WDs of M1,swd ≈ 0.7−1.3M⊙. The
majority of systems have initial separations of azams ≈ (0.2−1.0)·103R⊙. At WD formation
the range of separations according to binary_c, SeBa and StarTrack is 4 − 1.0 · 102R⊙,
however, for the Brussels code it is extended to 0.9 − 1.4 · 102R⊙.

Effects There is a difference between the Brussels code on one hand and the other
three codes on the other hand, regarding the survival of systems with low initial secondary
masses M2,zams < 3M⊙ in channel 4b. This is predominantly due to the difference in the
single star prescriptions for the radii of stars. The radius of low-mass secondary-stars are
in general larger in binary_c, SeBa and StarTrack than in the Brussels code. Therefore
in the former three codes, the stars are more likely to fill their Roche lobe at the end of
the CE-phase resulting in a merger. In the Brussels data, these systems survive at small
separations (. 10R⊙ at 1M⊙, see Fig. 6.3). Note that the Brussels code was written for
intermediate mass stars (see Sect. 6.3), and in principal the code does not allow for the
detailed evolution of stars with initial masses below 3M⊙.

In addition, the stability of the second phase of mass transfer affects the SWD pop-
ulation of channel 4. If this phase is unstable, the system will evolve to a merger. In
the Brussels code, it is assumed that the second phase of mass transfer is always stable,
however, this is not the case in the three other codes. Differences in the stability criteria
affect the orbital separation of SWD formation for all codes.

6.5.1.5 Channel 5: case A

Evolutionary path In channel 5 mass transfer starts during the core hydrogen burning phase
of the donor [Case A, Kippenhahn & Weigert, 1967].

Population The birthrates in the full mass range differ within a factor 2.5 between
binary_c, SeBa and StarTrack (see Table 6.2). According to these codes, the progenitors
of the primaries in channel 5 are stars of low mass (1-4M⊙) in small orbits (5-13R⊙), see
Fig. 6.6. There is a good agreement that the majority of SWDs from channel 5 at WD
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formation consists of a primary of mass 0.2-0.35M⊙, a secondary of mass 1.8-5.5M⊙ in an
orbit with a separation of 30-240R⊙ (see Fig. 6.2 and 6.4). Binary_c, SeBa and StarTrack
further agree on a subchannel (aswd ≈ 0.4R⊙ and M1,swd ≈ 0.3M⊙ in Fig. 6.2) in which
the secondary is a hydrogen-poor helium-star at WD formation (see also channel 3). The
birthrates of this subchannel are low ([4.5,−, 4.8, 18] · 10−6 yr−1).

The birthrate of channel 5 in the Brussels code is higher by over a factor 20 compared to
binary_c, SeBa and StarTrack (see Table 6.2). For the Brussels code the intermediate mass
primaries have an initial mass M1,zams ≈ 3 − 10M⊙ and WD mass M1,swd ≈ 0.45 − 1.3M⊙,
while the other codes show smaller ranges. For the main group of progenitors, these ranges
are M1,zams ≈ 3 − 4M⊙ and WD mass M1,swd . 0.35M⊙ (see Fig. 6.2 and 6.6). The initial
separation in the Brussels code azams ≈ 5 − 22R⊙, while in binary_c, SeBa and StarTrack
azams ≈ 8 − 13R⊙. The separation at SWD formation aswd in the Brussels code is between
20-350R⊙, while in the other codes the separation is mainly between 100-250R⊙. The range
of secondary masses isM2,swd ≈ 3−18M⊙ in the Brussels code, but onlyM2,swd ≈ 4−6M⊙ in
the other codes. Note that the region indicated by the dash-dotted contours in Fig. 6.2,
contains systems from channel 5 as well as from channel 3, however, this does not change
our conclusion regarding the extended range and birthrates in the Brussels code compared
to the other codes.

Effects The differences between the Brussels code and the other codes is caused by the
fact that the Brussels population code does not follow the mass transfer event and its mass
transfer rate in detail. It considers only the initial and final moment of the mass transfer
phase, therefore any intermediate steps in which the system can be closer are disregarded.
For example, during conservative mass transfer to an initially less massive companion, the
orbital separation first decreases and then increases again after mass ratio reversal. As
the orbital separation decreases, the secondary can fill its Roche lobe leading to a contact
system, especially as it grows in mass and radius due to the accretion. In the binary_c,
SeBa and StarTrack code, it is assumed that the contact phase will lead to a merger or
CE-phase for evolved secondaries. The Brussels code assumes that for shallow contact,
the merger can be avoided. In other words, the codes have different assumptions for the
stability of mass transfer.

6.5.2 Double white dwarfs

In this section we compare and discuss the population of DWDs as predicted by binary_c,
the Brussels code, SeBa and StarTrack. Prior to the formation of a second degenerate
component, DWDs undergo the evolution as described in the previous section (channel 1
to channel 5). Subsequently, they undergo a second intrusive (series of) event(s) at the
time the secondary fills its Roche lobe. As a consequence the processes that influence the
evolution of SWDs influence the DWD population as well. Here we will point out the
evolutionary processes that are specifically important for DWDs.
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Figure 6.24: Orbital separation versus primary WD mass for all DWDs in the full mass range at the time of DWD formation. The

contours represent the DWD population from a specific channel: channel I (dash-dotted line), channel II (solid line),

channel III (dashed line) and channel IV (dotted line).
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Figure 6.25: Orbital separation versus primary WD mass for all DWDs in the intermediate mass range at the time of DWD

formation. The contours represent the DWD population from a specific channel: channel I (dash-dotte solid line),

channel II (solid line) and channel III (dashed line). The contours of the DWD population from channel III according

to StarTrack and channel IV according to all codes are not shown, as the birthrate from this channel is too low.
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Figure 6.26: Secondary WD mass versus primary WD mass for all DWDs in the full mass range at the time of DWD formation.

The contours represent the DWD population from a specific channel: channel I (dash-dotted solid line), channel II

(solid line), channel III (dashed line) and channel IV (dotted line).
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Figure 6.27: Secondary WD mass versus primary WD mass for all DWDs in the intermediate mass range at the time of DWD

formation. The contours represent the DWD population from a specific channel: channel I (dash-dotted solid line),

channel II (solid line) and channel III (dashed line). The contours of the DWD population from channel III according

to StarTrack and channel IV according to all codes are not shown, as the birthrate from this channel is too low.

174



6
.5

R
e

s
u

l
t

s

0 2 4 6 8 10
M1,zams  (M Ø )

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

lo
g
 a

za
m
s  
(R

Ù

)

binary_c

1e-07

1e-06

1e-05

1e-04

1e-03

0 2 4 6 8 10
M1,zams  (M Ú )

SeBa

1e-07

1e-06

1e-05

1e-04

1e-03

0 2 4 6 8 10
M1,zams  (M Û )

StarTrack

1e-07

1e-06

1e-05

1e-04

1e-03

Figure 6.28: Initial orbital separation versus initial primary mass for all DWDs in the full mass range. The contours represent the

DWD population from a specific channel: channel I (dash-dotted solid line), channel II (solid line), channel III (dashed

line) and channel IV (dotted line).
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Figure 6.29: Initial orbital separation versus initial primary mass for all DWDs in the intermediate mass range. The contours

represent the DWD population from a specific channel: channel I (dash-dotted solid line), channel II (solid line) and

channel III (dashed line). The contours of the DWD population from channel III according to StarTrack and channel IV

according to all codes are not shown, as the birthrate from this channel is too low.
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The population of DWDs at DWD formation is shown in Fig. 6.24, 6.25, 6.26, and 6.27
where orbital separation and secondary mass respectively is shown as a function of primary
mass for the full and intermediate mass range. The ZAMS progenitors of these systems are
shown in Fig. 6.28 and 6.29 for the full and intermediate mass range respectively.

In the full mass range the population of DWDs is comparable between binary_c, SeBa
and StarTrack with white dwarf masses of M1,dwd ≈ 0.2−1.4M⊙ and M2,dwd ≈ 0.1−1.4M⊙.
At large separations (0.1-5)·104R⊙ the codes find systems which are formed without any
interaction, see also Fig. 6.24. This figure also shows a population of interacting systems
at lower separations, where the majority has separations of a ≈ 0.1 − 10R⊙. Furthermore
there is a good agreement on which progenitors lead to a DWD system and which do
not. Figure 6.28 shows several subpopulations of DWD progenitors with comparable binary
parameters for binary_c, SeBa and StarTrack; a group of non-interacting systems at adwd &

5 · 102R⊙, a group of systems for which the first phase of mass transfer is stable at adwd .

25R⊙ for low mass primaries and adwd . 2.5 · 102R⊙ for the full mass range, and a group
of systems at intermediate separations that predominantly undergoes a CE-phase for the
first phase of mass transfer.

An effect that plays a role for DWDs, has already been noted for SWDs, namely that
stable mass transfer is more readily realized in binary_c and SeBa compared to StarTrack.
It plays a role for example in Fig. 6.28 in the lack of systems at M1,zams > 3M⊙ and
azams < 2.5×102R⊙ in the StarTrack data compared to binary_c and SeBa, and in Fig. 6.26
in the lack of systems with M2,dwd > M1,dwd. Differences in the interpretations of the double
CE-phase, in which both stars loose their envelopes (eq. 6.8), results in larger separations
at DWD formation and less mergers in StarTrack compared to binary_c and SeBa (see
Fig. 6.25 and Sect. 6.5.2.2). At the same time, the initial separations of systems evolving
through a double CE-phase can be smaller in the StarTrack data compared to binary_c
and SeBa (adwd ≈ 25 − 100R⊙, see Fig. 6.28). The DWD populations will be discussed in
more detail in the following sections.

In the intermediate mass range at DWD formation, two groups of systems can be
distinguished in all simulations (see Fig. 6.25). Similar to the full mass range, there is
one group of non-interacting systems at separations higher than 6 · 103R⊙ and a group
of interacting systems with separations . 20R⊙. However, the distribution of systems in
the latter range, corresponding to different evolutionary paths, varies between the codes.
Most DWD systems have primary and secondary WD masses above 0.6M⊙ in all the codes.
The progenitors in the intermediate mass range show the same division in separation in
three groups as the progenitors in the full mass range. DWD progenitors with separations
azams . 3 · 102R⊙ undergo a stable first phase of mass transfer. The components of DWD
progenitors with azams & 1.5 · 103R⊙ do not interact. At intermediate separations the first
phase of mass transfer is predominantly a CE-phase.

Comparing the Brussels code with binary_c and SeBa (differences with StarTrack have
the same origin as discussed in the previous paragraph), the most important causes for
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differences in the DWD population in the intermediate mass range are the MiMf-relation,
the MiMwd-relation, the modelling of the stable mass transfer phase and the survival of
mass transfer. The effect of the first three causes on the DWD population, is similar to the
effect on the SWD population. Firstly, the differences in the MiMf-relation can be seen in
the progenitor population of non-interacting binaries in Fig. 6.29 as an extension to higher
primary masses in the Brussels data (8-10M⊙, see Sect. 6.5.2.1). Secondly, differences in
the MiMwd-relation can be seen in Fig. 6.25 as an extension to lower primary WD masses
M1,dwd . 0.64M⊙ and the discontinuity in primary WD masses around 0.7-0.9M⊙ (see
Sect. 6.5.2.2 and 6.5.2.3). The MiMwd-relation also effects the orbital separation distri-
bution at DWD formation and results in a higher maximum separation in the Brussels
code compared to binary_c and SeBa. Finally, due to the method of modelling of mass
transfer there is a disagreement between the codes regarding which systems survive mass
transfer, see Fig. 6.29 at adwd . 20R⊙ (see Sect. 6.5.2.3). The survival of mass transfer is
more important for the DWD population than for the SWD population, as the average
orbital separation of DWDs is lower (see Sect. 6.5.2.2 and 6.5.2.3). As the formation of
DWDs involves more phases of mass transfer than for SWDs, the differences in the SWD
population carry through and are larger in the DWD population.

In the next sections, we differentiate four different evolutionary paths of DWDs. This
is based on whether or not mass transfer occurs and if so, if the mass transfer initiated
by the primary and secondary is stable or unstable. For clarity we do not distinguish the
evolutionary path further e.g. by separating channel 3 and 5, nor channel 3a and 3b. Chan-
nel I, II and III represent the most commonly followed evolutionary paths with birthrates
larger than 1.0·10−3 yr−1. Channel IV is included because it stands out in Fig. 6.24 and 6.26,
even though the birthrates in this channel are low (see Table 6.2). In each section we de-
scribe a specific evolutionary path (marked as Evolutionary path), we compare the simu-
lated populations from each code (marked as Population) and investigate where differences
between the populations come from (marked as Population and Effects).

6.5.2.1 Channel I: detached evolution

Evolutionary path Channel I involves non-interacting binaries. An example of a system was
given for channel 1 in Sect. 6.5.1.1: a 5M⊙ and 4M⊙ star in a circular orbit of 104R⊙. When
the first WD is born, the orbit has increased to [1.8, 1.8, 1.8, 1.8] · 104R⊙. When the second
WD is born, the orbit has increased even more to [4.9, 5.0, 4.9, 4.9] · 104R⊙ with primary
and secondary masses of [1.0, 0.94, 1.0, 1.0]M⊙ and [0.87, 0.86, 0.87, 0.87]M⊙ respectively.

Population There is a good agreement between the codes on the separations and masses
of non-interacting DWDs, initially and at DWD formation. In the full mass range, initial
separations are azams ≈ (0.5 − 10) · 103R⊙. The codes binary_c, SeBa, and StarTrack
find non-interacting DWDs in wide orbits of adwd ≈ (0.1 − 5.4) · 104R⊙ and with WD
masses between 0.5-1.4M⊙. In the intermediate mass range, the initial separations are
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azams & 1.5 ·103R⊙ for binary_c, SeBa and StarTrack. Both WD masses are & 0.75M⊙ and
orbits are wide with separations adwd ≈ (0.6−5.4)·104R⊙ for binary_c, SeBa and StarTrack.
For the Brussels code, the separations are slightly higher; initially azams & 2.8 · 103R⊙ and
at dwd formation adwd ≈ (1.3 − 7.2) · 104R⊙. Furthermore for the Brussels code both
WD masses extend to slightly lower values of & 0.65M⊙. Small differences between the
populations are due to different MiMf-relations and different descriptions for single stars
(e.g. stellar radii), as for SWDs from channel 1. The birthrates in channel I are very similar
in the full mass range as well as in the intermediate mass range (see Table 6.2).

6.5.2.2 Channel II: CE + CE

Evolutionary path The classical formation channel for close DWDs involves two CE-phases.
First the primary star evolves into a WD via a phase of unstable mass transfer, i.e. via
the evolutionary path described in Sect. 6.5.1.2 and 6.5.1.4 as channel 2 or 4 respectively.
Subsequently the secondary initiates a CE-phase. It should be noted that for binary_c,
SeBa and StarTrack this channel includes, systems that evolve through one CE-phase in
which both stars lose their (hydrogen) envelope, the so-called double common envelope
phase described in Sect. 6.2 and in eq. 6.9. Note that in the Brussels code, the double CE
phase is not considered.

Population In the full mass range there is a good agreement between the progenitors
according to the binary_c and SeBa code and a fair agreement with the StarTrack code.
These three codes find that primaries of M1,zams ≈ 1 − 8M⊙ contribute to this channel.
For the majority the primaries have initial separations of azams ≈ (0.1 − 2.5) · 103R⊙.
The DWD populations as predicted by binary_c and SeBa are similar, and comparable
with the population of StarTrack. WD masses range from 0.35M⊙ to 1.4M⊙ for primaries
and from 0.19M⊙ to 0.9M⊙ for secondaries for binary_c and SeBa. For StarTrack the
ranges are slightly larger; 0.2-1.4M⊙ for primaries and 0.1-0.8M⊙ for secondaries. The
orbital separation of DWDs from channel II is between a few tenths of solar radii to a
few solar radii, however, the specific ranges of the three codes differ. The birthrates in
channel II are similar between the three codes (see Table 6.2). In the intermediate mass
range the codes agree that primaries and secondaries with initial mass between about
3 to 8M⊙ can contribute to channel II. In the Brussels code the mass range is slightly
extended to higher masses of 10M⊙ for primaries due to the MiMwd-relation. There is
an agreement on the initial separation of the majority of system, although the range of
separations differs between the codes. For binary_c and SeBa azams ≈ (0.7 − 2.5) · 103R⊙,
however, the range for StarTrack is extended to lower values of azams ≈ (0.4−20) ·102R⊙ as
noted above. Comparing with the Brussels code, the range is extended to lower as well
as higher values ((0.3 − 3.2) · 103R⊙). The higher maximum initial separation depends
on the maximum radius in the single star prescriptions as discussed in channel 1. The
difference in the lower minimum initial separation for the Brussels code has been noted
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for the SWDs in channel 2 as well. The Brussels code assumes that the primaries in
these systems become WDs without a second interaction, where as in binary_c, SeBa
and StarTrack these systems merge in the second interaction of the primary star. The
separations of DWDs are centred around 0.5R⊙, however, the distribution of separations
is different between the codes: 0.17-10R⊙ for binary_c, 0.06-1.18R⊙ for the Brussels code,
0.14-3.6R⊙ for SeBa and 0.05-11R⊙ for StarTrack. Primary WD masses are comparable
between the codes, [0.8−1.4, 0.5−1.3, 0.7−1.4, 0.7−1.4]M⊙ where the ranges are the largest
for the Brussels code. The maximum WD mass in the Brussels code is lower compared to
the other codes due to the MiMwd-relation, see channel 1. The secondary WD masses at a
given primary WD mass are lower in binary_c, SeBa and StarTrack (. 0.9M⊙) compared
to the Brussels code (. 1.3M⊙).

Effects Several effects influence the distribution of separations in Fig. 6.25. Even though
the codes agree that the majority of DWDs from channel II have separation around 0.5R⊙,
the spread around this value varies between the codes. In the full mass range the maximum
separation is 8R⊙ in the SeBa data, 22R⊙ in the StarTrack data and 31R⊙ for binary_c.
In the intermediate mass range it is 1R⊙ for the Brussels results, 4R⊙ in the SeBa data,
10R⊙ for binary_c and 11R⊙ in the StarTrack data. The maximum separation is affected
by the MiMwd-relation and winds. As seen in channel 2, the maximum orbital separation
in the Brussels code is lower as winds are not taken into account and more mass is removed
during the CE. The distribution of orbital separation in the Brussels data is also affected
in a different way than in the others codes as this code assumes that AGB donors become
WDs directly without a second phase of interaction (see also channel 2). In binary_c,
SeBa and StarTrack AGB donors can become helium stars, that fill their Roche lobes for
a second time, resulting in lower average masses. This effect can be seen in Fig. 6.27 where
the secondary mass in binary_c, SeBa and StarTrack is . 0.9M⊙ where as it is extended
to . 1.3M⊙ in the Brussels data. Mass loss in combination with the stability criteria, as
also discussed for channel 2 causes high separations in the binary_c data. However, the
relatively high maximum separations found by the StarTrack code is not affected much
by the difference in the MiMwd-relation and winds, but are affected by differences in the
double CE-formalism (see below).

All codes find that initially many DWD systems have high mass ratios, that in binary_c,
SeBa and StarTrack lead to a double CE-phase. As discussed for channel 2, there is
a difference in the formalism of the double-CE phase between StarTrack on one hand,
and binary_c and SeBa on the other hand. As a result the separation after the double
CE-phase is smaller according to the latter two codes, and a merger is more likely to
happen. The birthrate of systems in the full (intermediate) mass range that evolve through
a double CE is 7.2 · 10−4 yr−1 (7.9 · 10−5 yr−1) according to StarTrack, while the birthrate
is 4.6 · 10−5 yr−1 (2.5 · 10−5 yr−1) and 1.1 · 10−4 yr−1 (3.2 · 10−5 yr−1) for binary_c and SeBa
respectively. An example of systems that merge according to binary_c and SeBa, but form
a DWD according to StarTrack are the systems at azams . 120R⊙ in Fig. 6.28 which lie at
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adwd ≈ 0.07−1.2R⊙ for M1,dwd . 0.35M⊙ in Fig. 6.24. An example of systems that survive
according to all codes, however, at smaller separations for binary_c and SeBa compared
to StarTrack, are systems with M1,dwd & 0.7M⊙ and adwd ≈ 4 − 10R⊙ for StarTrack and
adwd . 2R⊙ for binary_c and SeBa.

An effect that plays a role in channel II concerns the survival of a system during the
mass-transfer event. As explained for channel 2, BPS codes compare the radius of the
stripped star (i.e. exposed cores) to the corresponding Roche lobe to determine whether or
not a merger takes place during the CE event. For donor stars that become WDs directly
after mass transfer ceases, i.e. without a hydrogen-poor helium burning phase, the Brussels
and StarTrack code assume a zero-temperature WD where as binary_c and SeBa assume
the exposed core is expanded due to previous nuclear shell burning. The effect of this
is that the radius of the stripped star is a factor of about 5 smaller in the Brussels and
StarTrack code than in binary_c and SeBa. Therefore a merger is less likely to take place.
Therefore the minimum separation in the intermediate mass range is 0.06 and 0.05R⊙ in
the Brussels code and the StarTrack code, respectively. While the minimum separation is
about 0.15R⊙ in binary_c and SeBa.

6.5.2.3 Channel III: stable + CE

Evolutionary path In channel III, the primary initiates stable mass transfer (alike chan-
nel 3 or 5 which are described in Sect. 6.5.1.3 and 6.5.1.5). When the secondary fills its
Roche lobe mass transfer is unstable5.

Population There is an agreement between the codes about the main parameter space
occupied by the DWDs from channel III and their progenitors, however, the codes do not
agree completely. The causes for differences in channel III have been discussed previously
in the context of SWDs (see the discussion on channel 3 and 5), but they lead to more
pronounced differences in the DWD population than in the SWD population.

In the intermediate mass range, the binary_c, Brussels and SeBa code agree on the or-
bital characteristics of the main progenitors. The initial masses are M1,zams ≈ 4−9M⊙ and
the initial separations azams ≈ (0.2 − 2) · 102R⊙. There is also a rough agreement between
these codes on the range of masses of both WDs. For primaries binary_c and SeBa find
M1,dwd & 0.65M⊙ and the Brussels code M1,dwd & 0.45M⊙ due to differences in the MiMwd-
relation. For secondaries these three codes find M2,dwd & 0.7M⊙. The maximum mass of

5Note that there are two variations of this evolutionary path that are not included in this channel and

Fig. 6.24 to 6.29. First, systems in which the secondary becomes a WD before the primary are excluded

in this channel. The birthrates of this evolutionary path are low ([8.6, −, 27, 5.1] · 10−5 yr−1 in the full

mass range. See also the discussion and footnote for channel 3 in Sect. 6.5.1.3 on this evolutionary path.

Secondly, for systems with AGB donors that have suffered severe wind mass loss such that the mass ratio

has reversed, the first phase of mass transfer can become stable as well. However, consequently the orbit

widens to separations comparable to the separations of Channel I such that the secondary will not fill its

Roche lobe. The birthrates of this evolutionary path are low as well ([9.4, −, 6.6, 5.3] · 10−4 yr−1 in the full

mass range.
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the primary and secondary white dwarfs varies between 1.2 and 1.4M⊙.The birthrates are
high (a few times 10−4 yr−1) in this channel according to binary_c, the Brussels code and
SeBa, however, the birthrate is a factor 1000 lower according to StarTrack. In the Star-
Track simulation there are only two systems in channel III in the intermediate mass range,
and therefore we refrain from showing contours for this channel for the StarTrack data in
Fig. 6.25, 6.27 and 6.29. Figure 6.29 shows an increase of progenitor systems at separations
azams . 20R⊙ and primary masses M1,zams ≈ 3 − 5.5M⊙ in the Brussels simulation com-
pared to those from the other codes. The effect carries through into the DWD population
as the increase of systems in the data from the Brussels code with WD primary masses
between 0.45-0.7M⊙. The orbital separation of DWDs in channel III is very similar between
binary_c and SeBa, adwd ≈ 0.1−1.1R⊙, however, for the Brussels code adwd ≈ 0.3−20R⊙.
The existence of wide systems in the Brussels code is not surprising, as this code also finds
the widest SWDs from channel 3 in comparison with binary_c and SeBa. As discussed
previously in Sect. 6.5.1.3, this is related to differences in the MiMwd-relation and angular
momentum loss from winds. The gap at M1,dwd ≈ 0.7−0.9M⊙ in Fig. 6.27 in the data from
the Brussels code, is caused by the boundary between channel 3a and 3b, as in Fig. 6.20
(see also Sect. 6.5.1.3).

Regarding the populations of progenitors for low mass primaries, binary_c, SeBa and
StarTrack agree reasonably well. They both show that most DWDs in channel III have ini-
tial separations of 5-20R⊙. However, the range of initial separations is extended to 25R⊙ in
the population simulated by SeBa. SeBa and StarTrack also show an extra population com-
pared to binary_c (azams ≈ 140 − 270R⊙ and M1,zams . 1.2M⊙). These two differences
are due to differences in the stability of mass transfer for donors with shallow convective
envelopes, as discussed for channel 3. Comparing the population of DWDs itself for low
mass primaries, binary_c, SeBa and StarTrack agree well. The codes show a population of
DWDs with primary massM1,dwd ≈ 0.2−0.44M⊙ at a separation of adwd ≈ 0.1−1.5R⊙, with
secondary masses M2,dwd around 0.6M⊙. The extra population in the SeBa and StarTrack
data lies at adwd ≈ 10 − 50R⊙ and M1,dwd ≈ 0.4 − 0.47M⊙. The three codes show systems
at M2,dwd about 0.3M⊙, where in the binary_c data this group is extended to higher pri-
mary WD masses of M1,dwd ≈ 0.2 − 0.7M⊙ in Fig. 6.26. These systems in binary_c mainly
evolve through a specific evolutionary path in which there is a phase of stable mass transfer
between a He-MS and a WD, a so-called AM CVn-system. The birthrate of these systems
is 5.0 · 10−4 yr−1 according to binary_c and negligible according to the other codes.

Effects The extremely low birthrate of StarTrack in the intermediate range is caused by
a combination of effects discussed previously. Firstly, stable mass transfer is more readily
realised in the other codes compared to StarTrack (see channel 3). Only systems with
qzams & 0.6 undergo stable mass transfer and become SWD systems according to StarTrack.
For about 60% of these systems, the secondary becomes massive enough to collapse to a
neutron star after nuclear burning ceases (in accordance with the other codes). Secondly,
the remaining systems merge when the secondary star fills its Roche lobe. For AGB donors
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this is more likely to happen in the StarTrack data, because of the difference in the radii
of stripped stars compared to binary_c and SeBa (see channel 2b).

The different methods of calculating mass transfer between the Brussels code and the
other codes, cause an increase in systems in the data from the Brussels code, similar to
channel 5. In particular for DWDs, it is important how the secondary responds to mass
gain. The systems that survive in the Brussels code have qzams > 0.85, such that the orbit
widens severely due to the mass transfer. However, according to binary_c and SeBa, when
the secondary accretes a significant amount of mass and is rejuvenated, its evolutionary
timescale is reduced. As the secondary evolves, the system comes in contact and merges.
The Brussels code assumes that the merger can be avoided for phases of shallow contact.

The evolution of and mass transfer rates from evolved helium stars donors (see chan-
nel 3) are important for channel III. It affects the DWD systems with high masses of the
primary progenitor and primary WD, see Fig. 6.27 and 6.29. The range of primary WD
masses is extended to 1.2M⊙ according to SeBa, and 1.3M⊙ according to the Brussels code
and 1.4M⊙ according to binary_c. Contrary to stable mass transfer from hydrogen rich
donors, the core of evolved helium stars can grow significantly during stable mass transfer
phases as the timescale for mass transfer can become comparable to the timescale of wind
mass loss or nuclear evolution. If the mass transfer phase is relatively short, the core of the
donor star does not have time to grow significantly and little mass is lost in the wind. With
the assumption of conservative mass transfer, most of the envelope is then transferred to
the secondary star which then is more likely to become a neutron star instead of a WD.

Differences in the radii of stripped stars causes a relative lack of close systems for the
Brussels code compared to the other codes. For channel II this was discussed in the context
of donor stars that become a WD directly. However, in channel III in the intermediate mass
range many donor stars continue burning helium after the mass transfer event ceases. The
radius of the stripped donor star depends on its mass, and for binary_c, SeBa and StarTrack
also on the evolutionary state of the donor stars (see also channel 2). When the donor star
is stripped of its envelope before the AGB-phase, the core radius is a factor of about 4-5
larger in the Brussels code compared to binary_c, SeBa and StarTrack. Therefore a merger
is more likely to take place in the Brussels code.

6.5.2.4 Channel IV: CE + stable

Evolutionary path In the final evolutionary channel for DWDs, when the primary fills its
Roche lobe, mass transfer proceeds in an unstable manner (according to channel 2 or 4
which are described in Sect. 6.5.1.2 and 6.5.1.4). However, when the secondary fills its
Roche lobe mass transfer mass to the primary is stable. As a result the primary accretes
mass.

Population The systems of channel IV lie in a small and specific region of DWD param-
eter space (see Fig. 6.24 and 6.26). The birthrates are low, 1.6·10−4 yr−1 and 5.5·10−5 yr−1
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for binary_c and SeBa respectively in the full mass range. We do not compare the popu-
lation of this channel with the Brussels code as the progenitors according to binary_c and
SeBa are low mass binaries and the birthrate in the Brussels code is zero per definition
(see also Sect. 6.4.1). We cannot compare the characteristics of the population of binary_c
and SeBa with that of the StarTrack code as in the simulations of the latter code there
are no systems evolving through channel IV indicating a birthrate of < 4 × 10−7 yr−1. The
birthrate is low according to StarTrack as unstable mass transfer is more readily realised
in this code compared to binary_c and SeBa (see also channel 3). The binary_c and SeBa
code agree well on the binary parameters of the population of DWDs at DWD formation
from this channel: separations of 10-30R⊙ and primary WD masses of 1.1-1.4M⊙, and sec-
ondary WD masses of 0.15-0.20M⊙. The progenitors systems in this channel are similar,
M1,zams ≈ 1−3M⊙ and azams ≈ 50−400R⊙. Differences in the population of DWD systems
from this channel, their progenitors and the birthrates occur due to the uncertainty in the
stability of mass transfer and the mass transfer rate (see also the discussion for channel 3).
Note that in the current study we have assumed conservative mass transfer to all accretors,
including WDs. This is not a physical picture, so a warning of caution needs to be given to
trust the parameters of this population, nonetheless the similarities between the binary_c
and SeBa codes are striking.

6.6 Summary of critical assumptions in BPS studies

In the previous section we compared simulations from four different BPS codes and inves-
tigated the causes for the differences. The causes are not due to numerical effects, but are
inherent to the codes and the underlying physical principles of the differences are listed
below and discussed. The implementations of these principles in each code are described
in Appendix 6.A.

• Initial-WD mass-relation;
For single stars or non-interacting stars, the initial-final mass relation for WDs (see
Fig. 6.8) is determined by the trade off between the growth of the core and how much
mass is lost in stellar winds and the planetary nebula phase. The amount of mass a
low or intermediate mass star loses in a stellar wind is small on the MS, but significant
in later stages of its evolution.

The WD mass of primary stars is further affected by the mass transfer event, the
moment and the timescale of the removal of the envelope mass. If the primary star
becomes a hydrogen-poor helium burning star before turning into WD, the MiMwd-
relation is influenced by helium star evolution. Of particular importance are the core
mass growth versus the mass loss from helium stars and a possible second phase of
mass transfer. A related issue, of particular importance for supernova Type Ia rates,
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concerns the composition of WDs; what is the range of initial masses for carbon-
oxygen WDs or other types of WDs?

The amount of mass that is lost in the wind and in the planetary nebula influences
the orbit directly, and indirectly through angular momentum loss. Questions remain
about how much mass is lost in the wind of stars, and how much angular momentum
is lost with the wind.

• The stability of mass transfer;
For which systems does mass transfer occur in a stable manner and for which sys-
tems is it unstable? As binary population synthesis codes do not solve the stellar
structure equations, and cannot model stars that are not in hydrostatic or thermal
equilibrium, BPS codes rely on parametrisations or interpolations to determine the
stability of mass transfer. Theoretical stability criteria for polytropes exist [Hjellming
& Webbink, 1987], but are lacking for most real stars [but see de Mink et al., 2007;
Ge et al., 2010, 2013, for MS stars].

The critical mass ratio for stable mass transfer with hydrogen shell-burning donors
differs between the codes from q & 0.2 in the Brussels code to q & 0.6 in StarTrack. A
difference for low mass stars between binary_c, SeBa and StarTrack arises from the
uncertainty of the mass transfer stability of donors with shallow convective envelopes.
In a recent paper, Woods et al. [2012] show that mass transfer between a hydrogen
shell-burning donor (M1,zams = 1 − 1.3M⊙) and a main-sequence star can be stable
when non-conservative. The effect on the orbit is a modest widening.

• Survival of mass transfer;
For which systems does mass transfer lead to a merger and which system survive the
mass transfer phase, in particular when mass transfer is unstable? As for the stability
of mass transfer, the inability of BPS codes to model stars that are not in hydrostatic
and thermal equilibrium, makes BPS codes rely on additional prescriptions, that are
not (fully) available in literature. Regarding the survival of mass transfer, different
assumptions for the properties (e.g. radii) of stripped stars lead to differences in the
results of the four BPS codes, see e.g. channel II and III. For donor stars in which
the removal of the envelope due to mass transfer leads to an end in nuclear (shell)
burning and a WD is formed directly, it is unclear how much the core is bloated just
after mass transfer ceases compared to a zero-temperature WD [Hurley et al., 2000].
For donor stars that are stripped of their hydrogen envelopes due to mass transfer,
but helium burning continues, it is unclear how fast the transition takes place from
an exposed core to an (evolved) helium star (see channel 2b).

• Stable mass transfer;
Modelling of the stable mass transfer phase in great detail is not possible in BPS codes,
as for the stability of mass transfer. Therefore BPS codes rely on simplified methods
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to simulate stable mass transfer events. In this project, the different approaches to
model the event do not lead to large differences in the synthetic stellar populations,
however, differences do exist most strongly for channel 3b and 5.

The evolution of the mass transfer rate during the mass transfer phase can have a
strong effect on the resulting binary. However, in the current set-up of this project
that assumes conservative mass transfer, the importance is greatly reduced. The
mass transfer rates are only important when the timescale of other effects (e.g. wind
mass loss or nuclear evolution) become comparable to the mass transfer timescale, as
in channel 3b.

An effect of the approach to model stable mass transfer phases is that mergers are
less likely to happen in the Brussels code compared to the other codes. The approach
of binary_c, SeBa and StarTrack is to follow the mass transfer phase in time, with
approximations of the mass transfer rate. In the Brussels code, the mass transfer
phases are not followed in detail. Instead it only considers the initial and final sit-
uation from interpolations of a grid of detailed calculations. Regarding channel 5
mass transfer, it is important to better understand which contact systems lead to a
merger and which not. From observations, many Algol systems are found which have
undergone and survived a phase of shallow contact.

• The evolution of helium stars;
A large fraction of interacting systems go through a phase in which one of the stars
is a helium star, for SWDs roughly 15% in the full mass range and roughly 50%
in the intermediate mass range. Not much is known about these objects about e.g.
the stellar evolution, winds or mass transfer stability. Also the mass transfer rate is
important, in particular for evolved helium stars whose evolutionary and wind loss
timescales can become comparable to the mass transfer timescales. Therefore small
differences in the mass transfer rate can lead to large differences in the resulting WD.
This is especially important for massive WDs, e.g. SNIa rates.

The assumptions that were equalised for this project will lead to a larger diversity in
the simulated populations as different codes make different assumptions (see Appendix 6.B)
and these should be taken into account when interpreting BPS results. The influence
of the parameters that were equalised has not been studied here, not qualitatively nor
quantitatively. The assumptions are:

• The CE-prescription and efficiency;

• Accretion efficiency during stable mass transfer;

• Angular momentum loss;

• Tidal effects;
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• Magnetic braking;

• Wind accretion;

• The initial distribution of primary mass, mass ratio and orbital separation.

Despite the significance of these phenomena to binary evolution and the enormous effort
of the community, all efforts so far have not been successful in understanding them. Sev-
eral prescriptions exist for the first six phenomena and the effect on the evolution of the
binary can be severely different. For example regarding the CE-phase, it is unclear how
efficient orbital energy can be used to expel the envelope and if other sources of energy
can be used, such as recombination, rotational, tidal or magnetic energy [Iben & Livio,
1993; Han et al., 1995; Politano & Weiler, 2007; Webbink, 2008; Zorotovic et al., 2010; De
Marco et al., 2011; Zorotovic et al., 2011a; Davis et al., 2012; Ivanova et al., 2013]. Also,
predictions for the efficiency of mass accretion onto WDs vary strongly and the SNIa rate
is severely affected by this uncertainty [Bours et al., 2013]. Furthermore, the adopted mode
of angular momentum loss has a strong effect on the evolution of the orbit (see Fig. 6.1 and
Sect. 6.2.1.1). It is also not clear how the different prescriptions for tidal evolution affect
the populations. However, in Sect. 6.5.1.3 we found that spin-orbit coupling (assuming
orbits are continuously synchronised), only has a small effect on the final separation of the
SWD systems. The effect of different initial distributions [see e.g. Duquennoy & Mayor,
1991; Kouwenhoven et al., 2007] of binary parameters can be severe with respect to the
importance of a certain evolutionary channel, e.g. birthrates, number density or events per
solar mass of created stars [see e.g. Eggleton et al., 1989; de Kool & Ritter, 1993; Davis
et al., 2010, Claeys et al. in prep.]. Furthermore, the importance of a certain channel is
affected by the boundaries of the distribution through the normalisation of the simulation.
In Appendix 6.B.7 we show that for the typical assumptions of the four codes this effect can
be a factor 0.5-2 on the birthrates. The typical assumptions for each code for all equalised
parameters are described in Appendix 6.B.

6.7 Conclusion

In this paper we studied and compared four binary population synthesis codes. The codes
involved are the binary_c code [Izzard et al., 2004, 2006, 2009, Claeys et al. in prep.], the
Brussels code [De Donder & Vanbeveren, 2004; Mennekens et al., 2010, 2012], SeBa [Porte-
gies Zwart & Verbunt, 1996; Nelemans et al., 2001c; Toonen et al., 2012] and StarTrack
[Belczynski et al., 2002b, 2008a; Ruiter et al., 2009b; Belczynski et al., 2010a]. We focused
on low and intermediate mass binaries that evolve into single white dwarf systems (con-
taining a WD and a non-degenerate companion) and double white dwarf systems. These
populations are interesting for e.g. post-common envelope binaries, cataclysmic variables,
single degenerate as well as double degenerate supernova Type Ia progenitors. For this
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project input assumptions in the BPS codes were equalised as far as the codes permit.
This was done to simplify the complex problem of comparing BPS codes that are based
on many (often different) assumptions. In this manner inherent differences between and
numerical effects within the codes were investigated.

Regarding the single white dwarf population, we identified five evolutionary paths.
There is a general agreement on what initial parameters of M1,zams, M2,zams and azams lead
to SWD binaries through each formation channel.When the SWD system is formed, there
is an agreement on the orbital separation range for those systems having undergone stable
or unstable mass transfer. Furthermore there is a general agreement on the stellar masses
after a phase of stable or unstable mass transfer.

Regarding the double white dwarf population, similar evolutionary paths can be identi-
fied in the various codes. There is an agreement on which primordial binaries lead to DWD
systems through stable and unstable mass transfer respectively, and a rough agreement on
the characteristics (M1,dwd, M2,dwd and adwd) of the DWD population itself. Double white
dwarfs go through more phases of evolution than single degenerate systems. The uncer-
tainty in their evolution builds up through each mass transfer phase. The white dwarfs are
formed with comparable masses, but at different separations.

We found that differences between the simulated populations arise not due to numerical
differences, but due to different inherent assumptions. The most important ones that lead
to differences are the MiMf-relations (of single stars), the MiMwd-relation (of binary stars),
the stability of mass transfer, the mass transfer rate and in particular helium star evolution.
Different assumptions between the codes are made for these topics as theory is poorly
understood and sometimes poorly studied. Therefore we suggest further research into
these topics e.g. with a detailed (binary) stellar evolution code to eliminate the differences
between BPS codes.

In addition some assumptions were equalised for the comparison that affect the results
of the comparison. These are the initial binary distributions, the common envelope pre-
scription and efficiency, the accretion efficiency, angular momentum loss during RLOF,
tidal effects, magnetic braking and wind accretion. We leave the study of their effects on
stellar populations for another paper.

In Sect. 6.3 a short description is given of each code. In Appendix 6.A and 6.B, a
more detailed overview is given of the typical assumptions of each code outside the current
project. These should be taken into account when interpreting results from the BPS codes.
Furthermore, we recommend using these sections as a guideline when deciding which code
or results to use for which project. Finally we would like to encourage other groups involved
in BPS simulations, to do the same test as described in this paper and compare the results
with the figures given in this paper. More detailed figures are available on request.

Concluding, we found that when the input assumptions are equalised as far as possible
within the codes, we find very similar populations and birthrates. Differences are caused
by different assumptions for the physics of binary evolution, not by numerical effects. So
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although the four BPS codes use very different ways to simulate the evolution of these
systems, the codes give similar results and are adequate.
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6.A Backbones of the BPS codes

The structure of BPS codes can vary strongly, which complicates the process of comparing
BPS codes. Some aspects of the code are relatively simple to adapt in order to let assump-
tions of different groups converge, where as other aspects are inherent to the code and are
not straightforward to change. For example, where some codes use results from detailed
single star evolution codes, written down in analytical formulae [e.g. Eggleton et al., 1989;
Hurley et al., 2000] to compute stellar parameters, others use the results of detailed binary
evolution codes – a grid over which one can interpolate – and those results are integrated
into the population code [e.g. De Donder & Vanbeveren, 2004]. The inherent differences
will create differences between the results of the different groups. The main differences are
summarised in Table 6.4 and a more complete overview is given below. For most of the
points the influence on a population it not immediately clear, therefore their effects are
discussed in Sect. 6.6.
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Table 6.4: Numerical treatments in the different codes which are inherent to them. (Further explanation can be found in Sect. 6.A)

binary_c Brussels code SeBa StarTrack

Single star prescriptions HPT00 VB98 HPT00 HPT00

Stability of RLOF qcrit Rconv, qcrit ζ ζ, q
(1)
ddi

Mass transfer rate Rd/R
(2)
RL Rd/R

(2)
RL ζ → M

τ∗

(3)
ζ → M

τ∗

(3)

Wind (AGB) R75, VW93, HPT00 HG97 R75, VW93, HPT00 R75, VW93, HPT00

AML (wind) Donor (HTP02) No Donor Donor

Helium star evolution Yes Not explicit Yes Yes

Population synthesis Grid based Grid based Monte Carlo Monte Carlo

Notes: References in the table: HPT = Hurley et al. [2000], VB98 = Vanbeveren et al. (1998), R75 = Reimers [1975], VW93 = Vassiliadis &

Wood [1993], HG97 = van den Hoek & Groenewegen [1997], HTP02 = Hurley et al. [2002].

(1) Mass ratio threshold for delayed dynamical instability [Hjellming & Webbink, 1987], dependent on evolutionary state of the donor.

(2) RRL is the Roche radius of the donor star.

(3) τ∗ = Characteristic timescale of mass transfer. Can be nuclear, Kelvin-Helmholtz, timescale of magnetic braking or of gravitational wave

radiation.
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6.A.1 Single star prescriptions

The single star prescriptions, either given by analytical formulae or included in a grid of
binary systems over which can be interpolated, determine which mass the WD will have
when the star loses its envelope. Furthermore they determine the radii during the evolution
of the star and therefore the moment at which the star fills its Roche lobe.

• binary_c, SeBa, StarTrack: the codes use analytical fitting formulae [Hurley et al.,
2000] from detailed single star evolution tracks. These tracks are based on an over-
shooting constant δov = 0.12 [based on Pols et al., 1998]. In binary_c different AGB
models can be used, based on detailed models of Karakas et al. [2002] for thermally
pulsating AGB stars (TP-AGB). However, these are not used for this work. Prior to
the work of Toonen et al. [2012], the single star prescriptions in SeBa were based on
Eggleton et al. [1989].

• Brussels code: intermediate mass single star prescriptions are taken from Schaller
et al. [1992]. These tracks include convective overshooting by means of the following
prescription: the overshooting distance dover is directly proportional to the pressure
scale height Hp according to dover = 0.2Hp. This corresponds to a slightly lower degree
of overshooting than in the codes that use the overshooting constant δov = 0.12 in
the stability criteria, the latter corresponding to a dover/Hp between 0.22 and 0.4
depending on mass [see Hurley et al., 2000]. Stellar parameters which do not depend
on whether the star is part of an interacting binary system are taken directly from
this reference. Other stellar parameters, such as the remnant mass after RLOF, are
taken from the detailed binary evolution code.

6.A.2 Stability of mass transfer

At the moment that one of the stars fills its Roche lobe mass transfer can proceed in a
stable manner or the system can evolve into a CE-phase (see Sect. 6.2.1). In the simulation
of the evolution of a binary system the entire stellar structure is not explicitly followed in
detail, and consequently, ‘stability checks’ must be built-in to BPS codes to determine if
RLOF will lead to a CE-phase.

• binary_c: for every type of donor star and type of accretor star a critical mass ratio
(qcrit) is given. The mass ratio of the system during mass transfer is compared with
the critical mass ratio for stable mass transfer and determines if mass transfer will
proceed in a stable manner or not. An overview can be found in Claeys et al. (in
prep.). Note that in that paper two possibilities are described for the stability of
Roche lobe overflowing helium stars to non-degenerate accretors. For this project the
criterion as described in Hurley et al. [2002] is used.
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• Brussels code: the boundary between stable and unstable RLOF is determined by
whether the outer layers of the donor star are radiative or deeply convective respec-
tively. For each stellar mass, the minimum stellar radius Rconv is given for which
the envelope is convective. If the orbital period of the system under investigation
is smaller than the theoretical orbital period at the time when RRL = Rconv, mass
transfer will proceed in a stable way.

If the mass ratio between the two stars is extreme (q = Ma/Md < 0.2 = qcrit), an
instability [Darwin, 1879] can take place in close binary systems through tidal inter-
actions. The more massive star will be unable to extract sufficient angular momen-
tum from the orbit to remain in synchronized rotation, resulting in a mass transfer
episode that quickly becomes dynamically unstable. Tidal interaction will cause the
secondary to spiral into the donor’s outer layers, a process that is treated identically
to the common envelope evolution (hence with β = 0).

• SeBa: the stability and rate of mass transfer are dependent on the reaction to mass
change of the stellar radii and the corresponding Roche lobes. The change in the
Roche radius RRL due to loss and transfer of mass M is given by

ζRL ≡ d lnRRL

d lnM
, (6.14)

the adiabatic (i.e. immediate) response of the donor star’s radius R is given by

ζad ≡ d lnR

d lnM
. (6.15)

For every Roche lobe filling system, ζRL and ζad are compared at every timestep.
If ζRL < ζad we assume mass transfer proceeds in a stable manner [e.g. Webbink,
1985; Pols & Marinus, 1994]. When ζRL > ζad, mass transfer is dynamically unstable
leading to a CE-phase.

The value of ζRL is calculated numerically by transferring a test mass of 10−5M⊙.
The advantage of this is that, because ζRL = ζRL(Md,Ma, a) and so ζRL is depen-
dent on the mass accretion efficiency of the secondary, the (de)stabilising effect [see
Soberman et al., 1997] of non-conservative stable mass transfer is taken into account
automatically. Appropriate recipes of ζad are implemented in the code for every type
of donor star. An overview can be found in Toonen et al. [2012], appendix A3 therein.

Furthermore, the orbital angular momentum is compared with the stellar spin angular
momenta, to check whether a Darwin instability is encountered [Darwin, 1879].

• StarTrack: When a non-degenerate star fills its Roche lobe, ζad and ζRL are calculated,
similar to the case of SeBa. The value of ζad is determined by removing mass from the
star over a 1-year timestep [Belczynski et al., 2008a]. The value of ζRL is determined
by transferring a small amount (1%) of the star’s mass toward the companion. In
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cases where the mass loss is so rapid such that the star loses thermal equilibrium, a
‘diagnostic diagram’ is used to predict the stability of mass transfer [see description
in Belczynski et al., 2008a, sect. 5.2]. The diagnostic diagram is a numerical tool
that was first calibrated using detailed stellar evolution calculations of massive stars,
and is currently being updated to include a range of stellar models for low- and
intermediate-mass stars.

In addition, there is also a check for a possible delayed dynamical instability. This
occurs for stars with Md/Ma > qddi, with qddi based on Hjellming & Webbink [1987],
or when a Darwin instability is encountered, or when the trapping radius of the
accretion stream [King & Begelman, 1999] exceeds the Roche radius of the accreting
star [see Ivanova et al., 2003; Belczynski et al., 2008a, sect. 5.4]. This latter point
however, is not considered for this work.

6.A.3 Stable mass transfer

To take into account various driving mechanism of stable RLOF, such as thermal readjust-
ment or nuclear evolution of the donor, approximate prescriptions are used to determine
the mass transfer rate. Note that mass transfer rate refers to the mass lost by the donor,
which will always be equal to or greater than the mass accretion rate, which refers to the
mass gained by the companion.

• binary_c: the mass transfer rate is calculated as a function of the ratio of the stellar
radius and the Roche radius [based on Whyte & Eggleton, 1980]. A function is
generated which follows the radius more closely during mass transfer on a thermal
timescale and more loosely when the star is in thermally equilibrium. A smooth
transition is build-in between the two. The formulation can be found in Claeys et
al. (in prep.). That paper also shows that the resulting mass transfer phases are
comparable to that of the detailed binary stellar evolution code STARS [based on
Eggleton, 1971] in the duration of the mass transfer phases and the mass transfer rates
for a set of models. This method indirectly considers mass transfer on the nuclear
and thermal timescale, but also on the timescale of gravitational wave radiation or
magnetic braking are considered.

• Brussels code: the mass transfer rates are not explicitly calculated in the population
code. It considers merely the initial and final masses. These are interpolated from the
results of the detailed binary evolution code. The latter calculates the mass transfer
rate during stable RLOF iteratively, by investigating how much mass needs to be lost
during the current timestep for the donor star to remain confined by its Roche lobe
(within the order of a few percent).

• SeBa: ζRL is compared with appropriate values of ζeq to determine if mass transfer
is driven by the thermal readjustment or the nuclear evolution of the donor star. ζeq
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represents the response of the donor star’s radius R as is adjusts to the new thermal
equilibrium:

ζeq =

(

d ln R

d ln M

)

th

. (6.16)

Appropriate recipes of ζeq are implemented for every type of donor star. Mass trans-
fer is driven by the nuclear evolution of the donor star if ζRL < min(ζad, ζeq). In that
case we assume mass transfer proceeds on the nuclear timescale of the donor star [e.g.
Webbink, 1985; Pols & Marinus, 1994]. If ζeq < ζRL < ζad, RLOF is dynamically sta-
ble and driven by thermal readjustment of the donor, so that mass transfer proceeds
on the thermal timescale of the donor star.

In addition, stable mass transfer can be driven by angular momentum loss from
magnetic braking or gravitational wave emission. When the timescale of angular
momentum loss is shorter than the mass loss timescale determined above, we assume
mass transfer is driven by angular momentum loss. For more detail see Appendix
A.3 of Toonen et al. [2012].

• StarTrack: For non-degenerate donors ζRL and ζad are calculated, along with the
thermal timescale τKH [based on Kalogera & Webbink, 1996]. Additionally, the equi-
librium mass transfer timescale τeq is calculated as a combination of RLOF both
driven by angular momentum loss and the nuclear evolution of the star and/or the
changes due to magnetic braking and gravitational wave radiation [see Belczynski
et al., 2008a]. If τeq > τKH the mass losing star is in thermal equilibrium and mass
transfer proceeds on Ṁeq = M/τeq. If τeq ≤ τKH mass transfer proceeds on a thermal
timescale, given by ṀKH = M/τKH. If Ṁeq becomes positive the star falls out of equi-
librium and the stability of mass transfer is determined by the diagnostic diagram

[see Belczynski et al., 2008a]. In the case of WD donors, the mass transfer rate is
always driven by gravitational radiation.

6.A.4 Wind mass loss

The driving mechanisms of the wind and the explicit rate at which this material is lost are
not yet completely understood. This results in different prescriptions to describe the rate
of wind mass loss and the amount that can be lost [e.g. Wachter et al., 2002]. We only
discuss the wind-prescriptions that are relevant for low and intermediate mass stars.

• binary_c, SeBa, StarTrack: for stars up to the early AGB the prescription of Reimers
[1975] is adopted (with η = 0.5). To describe the wind mass loss of stars on the
TP-AGB a prescription based on Vassiliadis & Wood [1993] is implemented. Both
prescriptions are defined in Hurley et al. [2000]. In binary_c and StarTrack different
prescriptions for the wind mass loss are available that used by different users of the
respective codes.
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6.A Backbones of the BPS codes

• Brussels code: For intermediate mass interacting binaries, the initial-final mass re-
lation of WDs is determined by assuming the wind prescription of van den Hoek &
Groenewegen [1997]. However, it should be noted that in the BPS code a star in an
interacting binary does not have wind mass loss. For the most massive stars, wind
mass loss is as is described in Vanbeveren et al. [1998].

6.A.5 Angular momentum loss from winds

Section 6.2.1.1 describes the importance of angular momentum loss (AML) and the effect
on the orbit. Not only mass lost during RLOF, but also wind carries angular momentum,
which is lost when it leaves the system. The same prescriptions as described in Sect. 6.2.1.1
can be applied to AML when material is lost through a wind and different prescriptions
are used in the BPS codes.

• binary_c: different prescriptions of angular momentum loss through a stellar wind
are available in binary_c. In this study as in Claeys et al. (in prep.), wind angular
momentum loss is as described in Hurley et al. [2002]. When no material is accreted
by the companion star, the wind takes specific angular momentum of the donor.

• Brussels code: Mass lost by a stellar wind in non-interacting systems is lost through
the Jeans mode. Interacting systems do not have wind mass loss prior to interaction.

• SeBa, StarTrack: the material lost by a wind that is not accreted by the companion
is lost from the system with specific angular momentum from the donor.

6.A.6 Evolution of helium stars

A helium star is formed after a hydrogen-rich star with a helium core loses its hydrogen-rich
envelope. When the core is not degenerate at that time, the evolution of the star continuous
as a helium-burning star. Uncertainties in the evolution of helium stars encompasses the
growth of this star, the wind mass loss and mass transfer phase, such as the stability and
rate.

• binary_c, SeBa, StarTrack: the evolutionary tracks and wind prescription are based
on Hurley et al. [2000]. The stability of mass transfer and the rate are described in
previous sections.

• Brussels code: helium star evolution is not explicitly included in the code. It is
assumed that the donor star always loses its entire H-rich envelope in one episode and
becomes a white dwarf afterwards, except in the case where a donor fills its Roche lobe
for a second time as a helium star. In this case mass transfer is followed as described in
Sect. 6.A.3, however, time-dependent evolutionary aspects of the helium star are not
followed. This simplification is made because the intermediate step is not believed to
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Chapter 6 : PopCORN

have a large influence on the eventual masses and separation. However, this implicitly
means that the most massive star will always become a white dwarf first, which is
not necessarily the case when helium star evolution is explicitly followed. For stars
that lose mass during the planetary nebula phase, no resulting angular momentum
loss is taken into account.

6.A.7 Generating the initial stellar population

The initial population can be chosen by a Monte Carlo method, or the choice can be made
grid-based. Nevertheless, if the method is well performed both methods should give the
same results for a high enough resolution.

• binary_c: NM1,zams
×NM2,zams

×Nazams
binaries are simulated, with M1,zams, M2,zams,

azams chosen in logarithmic space. A probability is calculated for every system deter-
mined by the defined initial distributions.

• Brussels code: the code works with a three-dimensional grid of initial parameters:
primary mass M1,zams, mass ratio qzams and orbital period Pzams. According to the
initial mass function, initial mass-ratio distribution and initial orbital period (or
separation) distribution, each grid point is assigned a certain weight. Every system
corresponding to such a grid point is then taken through its evolution.

• SeBa, StarTrack: initial parameters M1,zams, M2,zams, azams and the initial eccentricity
ezams are chosen randomly on a Monte-Carlo based-approach where the probability
functions are given by the initial distributions. With this method, the resolution is
highest in those regions of parameter space where most systems lie.

6.B Typical variable assumptions in BPS codes

Some aspects of the codes that are not straightforward to change have been discussed in
the previous section. However, other aspects of the codes are relatively simple to adapt.
These aspects are often contained in relatively isolated and parametrised functions. For
this project we equalised these aspects in the codes as far as possible. However, we do not
believe that all the assumptions made for this project are realistic. Previous publications
of results from these BPS codes are based on different assumptions. Although we do not
compare the effect of the different assumptions on stellar populations in this work, it is
good to realise which assumptions are generally used. Therefore the usual assumptions
made by the authors in their corresponding BPS code are summarised in Table 6.5 and are
discussed in more detail below. Typical assumptions may vary between different users of
the BPS codes.
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Table 6.5: Equalised assumptions for this research and the usual assumptions of the authors in the corresponding BPS codes.

binary_c Brussels code SeBa StarTrack This research

β (RLOF) Variable Conditional(1) Variable Conditional(1) 1

AML (RLOF) Isotropic re-emission Ring(2) (η = 1.5 (Md+Ma)2

MdMa
) Orbit(2) (η = 2.5) Orbit(2) (η = 1) Orbit (η = 1)

CE(3) α (v2) α (v1) γα (T12) α (v1) α (v1)

αceλce/γ Variable(4) 1 2/1.75 1 1

Wind accretion B-H(5) No B-H(5) No(6) No

Tides Z77, H81, HTP02 Z77 PZV96 Z77, H81, HTP02, C07 No

Magn. braking RVJ83 No RVJ83 IT03 No

Notes: References in the table: T12 = Toonen et al. [2012], Z77 = Zahn [1977], H81 = Hut [1981], HTP02 = Hurley et al. [2002], PZV96 =

Portegies Zwart & Verbunt [1996], B08 = Belczynski et al. [2008a], C07 = Claret [2007], RVJ83 = Rappaport et al. [1983], IT03 = Ivanova &

Taam [2003].

(1) Constant for non-degenerate accretors, variable for accretion onto a WD.

(2) Except during accretion onto a compact object, AML = istropic re-emission.

(3) v1 = prescription Webbink [1984], v2 = prescription Hurley et al. [2002].

(4) Based on detailed stellar structure models [for the description see Izzard, 2004, Claeys et al. in prep.].

(5) B-H = Prescription based on Bondi & Hoyle [1944].

(6) Wind accretion is taken into account for neutron star and black hole accretors assuming B-H-accretion(5).
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6.B.1 Accretion efficiency

In this project mass transfer is assumed to be conservative to all types of stars. However, in
general, the accretion efficiency depends on the type of accreting star and the mass transfer
rate.

• binary_c, SeBa: in the case of non-degenerate accretors with radiative envelopes,
the accretion efficiency mainly depends on the mass transfer rate and the thermal
timescale of the accreting star. In the case of non-degenerate objects with convective
envelopes, mass is transferred conservatively. In the case of a degenerate accretors,
the accretion efficiency depends on the mass of the degenerate object and the mass
transfer rate.

• Brussels code: the accretion efficiency onto a non-degenerate object is taken to be
constant. If the mass ratio is below 0.2, mass transfer is unstable and the accretion
efficiency is assumed to be zero (see Sect. 6.A.2). To ensure continuity, between mass
ratios 0.2 and 0.4 a linear interpolation is used for the accretion efficiency, between
0 and β (usually 1). Note that for popcorn this transition was not implemented and
the accretion efficiency is one between 0.2 and 0.4. In case of a degenerate accreting
object, the regions in the (companion mass, orbital period)-parameter space from
Hachisu et al. [2008] are used to determine in which cases the white dwarf can stably
accrete up to 1.4 M⊙. In all other cases, mass transfer towards white dwarfs is
assumed to become unstable, and is treated as a common envelope phase.

• StarTrack: the accretion efficiency onto a non-degenerate object is taken to be con-
stant. In the case of a degenerate accreting object, the accretion efficiency depends
on the mass of the accreting object and the mass transfer rate [see Belczynski et al.,
2008a, sect. 5 therein].

6.B.2 Angular momentum loss during RLOF

In BPS codes a wide range of prescriptions are used to describe angular momentum loss
when material is lost in a phase of stable RLOF. See Sect. 6.2.1.1 for the different prescrip-
tions of angular momentum loss and a discussion of the importance of the effect on the
orbit.

• binary_c: in this work and the standard model in Claeys et al. (in prep.) the material
not accreted during the stable RLOF phase is lost as isotropic re-emission.

• Brussels code: the material is lost through the second Lagrangian point such that
angular momentum is lost from a circumbinary ring with aring = 2.3.

• SeBa: when the accretor is a non-degenerate star, the material lost carries 2.5 times
the specific orbital angular momentum of the binary [Portegies Zwart, 1995; Nelemans
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et al., 2001c]. In the case of a degenerate accretor, the material lost carries specific
orbital angular momentum of the accreting star.

• StarTrack: when the accretor is a non-degenerate star, the material lost carries one
time the specific orbital angular momentum. In the case of a degenerate accretor,
the material lost carries specific orbital angular momentum of the accreting star.

6.B.3 Common envelope evolution

The evolution of a CE-phase is highly uncertain. For this reason, various BPS codes employ
different CE-prescriptions (see Sect. 6.2.1.2) and CE-efficiencies (such as αce) and both
aspects are often varied within a BPS study for comparison. Here, we briefly describe the
CE-parametrisations that are implemented most often by the authors in the four different
codes.

• binary_c: to describe CE-evolution the prescription based on Hurley et al. [2002] is
used. In the standard model of Claeys et al. (in prep.) αce is one, while λce depends
on the type of star, its mass and luminosity [see Izzard, 2004, Claeys et al. in prep.].
However, in the BPS code also the γ-prescription can be used.

• Brussels code, StarTrack: For standard calculations, the prescription based on Web-
bink [1984] is used, where αce and λce are both one. In both codes different values for
αce and λce can be implemented, as well as the γ-prescription [for further informa-
tion about the version of the γ-prescription implemented in StarTrack see Belczynski
et al., 2008a; Ruiter et al., 2011].

• SeBa: the standard model for simulating CE-evolution in SeBa is the γ-prescription,
unless the binary contains a compact object or the CE is triggered by a Darwin
instability [Darwin, 1879] for which the α-formalism based on Webbink [1984] is used.
The γ-formalism is introduced by Nelemans et al. [2000] in order to better reproduce
the mass ratio distribution of observed double white dwarfs. The mass loss reduces
the angular momentum of the system according to:

Ji − Jf

Ji
= γ

Md,env

Md +Ma
, (6.17)

where Ji and Jf are the angular momenta of the pre- and post-mass transfer binary
respectively. The motivation for this formalism is the large amount of angular mo-
mentum available in binaries with similar mass objects that possibly can be used to
expel the envelope. In SeBa γ is taken to be equal to 1.5, and αce × λce is equal to
two.
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6.B.4 Wind accretion

Material that is lost in the form of a stellar wind can be partly accreted by the companion
star. The amount depends on properties of the wind (e.g. the velocity), the accreting
star and the binary system (e.g. the separation). However, the exact amount accreted is
ill-constrained.

• binary_c, SeBa: the accretion efficiency of wind material is determined by the Bondi-
Hoyle prescription [Bondi & Hoyle, 1944]. In binary_c the accretion efficiency based
on the wind Roche-lobe overflow model can be used [Mohamed & Podsiadlowski,
2007, 2012; Abate et al., 2013], however, is not used for this work.

• Brussels code: no material lost in the form of a stellar wind is accreted by the
companion star.

• StarTrack: material lost through a wind is in general not accreted by the companion
star, except when the companion star is a neutron star or a black hole.

6.B.5 Tides

The general picture of tidal effects is clear, however, uncertainties remain due to missing
knowledge about for example some dissipative processes.

• binary_c: tidal evolution is implemented as described by Hurley et al. [2002], which
is based on Hut [1981]; Zahn [1977].

• Brussels code: tidal evolution is a described by Zahn [1977].

• SeBa: tidal evolution is implemented as described by Portegies Zwart & Verbunt
[1996].

• StarTrack: tidal evolution is implemented as described by Claret [2007], as well as
Hurley et al. [2002], which is based on Hut [1981]; Zahn [1977].

6.B.6 Magnetic braking

Magnetic braking is important for low mass stars with convective envelopes. Nevertheless,
this process is not fully understood and different prescriptions co-exist.

• binary_c, SeBa: both codes use the prescription of Rappaport et al. [1983].

• Brussels code: the code is not used for the evolution of stellar objects with a mass
lower than 3M⊙, therefore magnetic braking is not considered.

• StarTrack: the prescription of Ivanova & Taam [2003] is used in standard calculations.
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Table 6.6: Effect on the normalisation of different boundaries for the initial distribution

of binary parameters. The initial distributions are as in Table 6.1. The nor-

malisation factor is defined as the ratio of the number of systems for the given

boundary conditions and the total number of systems using the typical bound-

ary conditions (as given in the top line). The normalisation factor is used to

convert the number of systems in the simulation to physical quantities such as

birthrates, number density, events per solar mass of created stars.

Normalisation factor min M max M min a max a min q max q

M⊙ M⊙ R⊙ R⊙

1 0.1 100 5 1e6 0.1M⊙/M1,zams 1

1.0 0.1 80 5 1e6 0.1M⊙/M1,zams 1

1.0 0.1 150 5 1e6 0.1M⊙/M1,zams 1

0.6 0.1 100 5 1e4 0.1M⊙/M1,zams 1

1.7 0.1 100 5 1e6 0.01/M1,zams 1

1.4 0.08 100 5 1e6 0.08/M1,zams 1

6.B.7 Initial population

The choice for an initial distribution and the respective boundaries can severely affect the
importance of a certain evolutionary channel through the normalisation of the simulation.
Table 6.6 shows the effect of different boundary conditions considered in the standard sim-
ulations of the respective BPS codes compared to the boundary conditions assumed in this
study. It shows that different boundary conditions affect the birthrates by a factor of about
0.5 to 2. The assumptions made by the authors with their respective codes are summarised
in Table 6.7. Different aspects which need extra clarification are discussed below. Note that
other users of the BPS codes under study here, other than the authors, may use different
distribution functions and/or ranges.

• binary_c: the initial eccentricity is zero Hurley et al. [2002]. The minimum initial
separation is varied between 5R⊙ or the minimum separation at which a binary system
with a certain mass is initially detached. The minimum and maximum masses and
separations are based on the work of Kouwenhoven et al. [2007].

• Brussels code: the initial eccentricity is zero. A minimum and maximum initial
orbital period of one day and 3650 days is assumed. In order to compare with the
other codes, a conversion of orbital period to separations is given in Table 6.7.

• SeBa, StarTrack: a distribution for the initial eccentricities is assumed (see Table 6.7).
The initial semi-major axis is chosen between 106R⊙ and the minimum initial sepa-
ration is the minimum separation at which a binary system with a certain mass is
initially detached.
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Table 6.7: Equalised initial distribution and range of binary parameters and the usual distributions and ranges of the authors for

the corresponding BPS codes.

What? binary_c Brussels code SeBa StarTrack This research

f(M1,zams) KTG93 KTG93 KTG93 KTG93 KTG93

M1,zams,min (M⊙) 0.1 0.1 0.1 0.08 0.1

M1,zams,max (M⊙) 80 120 100 150 100

f(azams) ∝ a−1 ∝ a−1 ∝ a−1 ∝ a−1 ∝ a−1 (A83)

azams,min (R⊙) max(5, (Ra + Rb)/(1 − e0)) 2 − 12(1)(P = 1d) (Ra + Rb)/(1 − e0) 2(Ra + Rb)/(1 − e0) 5

azams,max (R⊙) 5e6 5.8e2 − 2.2e3(1)(P = 3650d) 1e6 1e6 1e6

f(qzams) Flat Flat Flat Flat Flat

qzams,min 0.01M⊙/M1,zams 0.1M⊙/M1,zams 0 0.08M⊙/M1,zams 0.1M⊙/M1,zams

qzams,max 1 1 1 1 1

f(ezams) - - H75 H75 -

ezams,min - - 0 0 -

ezams,max - - 1 1 -

Max time (Gyr) 13.7 15 13.5 15 13.7

Binary fraction (%) 100 100 50-100 50 100

Notes: f(ξ) is the distribution of parameter ξ. ’-’ Indicates that no distribution of initial eccentricities is considered, instead ezams = 0

a priori. Otherwise the distribution of initial eccentricities is f(ezams) with ezams between ezams,min and ezams,max.

References in the table: KTG93 = Kroupa et al. [1993], A83 = Abt [1983], H75 = Heggie [1975]

(1) Separations given for the binary masses under investigation.
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Summary

This thesis presents several studies on the formation and evolution of compact binaries with
white dwarf (WD) components. Although the evolution of low-mass single stars is fairly
well understood, many questions remain about the processes involved in binary interactions.
This thesis focuses on common-envelope evolution and the efficiency of mass accretion onto
WDs. We study several populations of binary stars; detached binaries with a WD and a
main-sequence star component, WDs accreting from non-degenerate companions, detached
double white dwarf binaries, and merging double white dwarfs systems.

A method that is often applied in this thesis, is the modelling of the formation and
evolution of binary populations with a binary population synthesis (BPS) code. BPS is
a very useful method to study the macroscopic characteristics of a population of binaries
and the processes that govern the evolution of a specific binary population. As part of this
thesis, the BPS code SeBa [Portegies Zwart & Verbunt, 1996; Nelemans et al., 2001c] was
thoroughly updated (see chapter 5 and 2).

Chapter 2: Common-envelope evolution

Crucially important for the formation of close binary systems with degenerate components
is the common-envelope phase. However, despite of its importance, the phenomenon is not
understood well. The uncertainty in common-envelope evolution is one of the major uncer-
tainties in the predictions of binary population synthesis studies (see also chapter 3 and 5).
In the second chapter of this thesis we study common-envelope evolution itself, by analysing
the formation of post-common envelope binaries (PCEBs). PCEBs consisting of a WD and
a main-sequence star in a detached binary. PCEBs are ideal to study common-envelope
evolution as the evolution of the binary including its stellar components are relatively
simple.

Using the BPS code SeBa, we simulated a population of PCEBs, with the novelty that
we assume a realistic model of the Galaxy that takes into account the observational selection
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effects that are inherent to the PCEB sample. We find that for the main evolutionary path
of PCEBs the CE-efficiency must be low, at which energy can be used to expel the envelope
in the CE-phase. The main formation channel consists of a CE-phase caused by a red giant
that fills its Roche lobe due to a dynamical instability. Other channels in which CE-phase
is initiated by a star on the asymptotic giant branch or by a tidal instability can not be
constrained with the current observations of PCEBs.

From previous BPS-studies and evolutionary reconstruction studies, a picture of CE-
evolution is emerging that varies among types of binary systems (e.g. for different mass
ratios and different types of stars evolved in the CE-phase). The first phase of mass
transfer in progenitor systems of double white dwarfs (DWDs) leads to a modest widening
of the orbit [Nelemans et al., 2000, 2001c]. These progenitors are thought to be of fairly
equal mass. CE-evolution in binaries with low mass ratios and non-degenerate components
leads to a strong contraction of the orbit [Chapter 2, Zorotovic et al., 2010]. However,
CE-evolution in systems with low mass ratios and a WD component leads to a much less
strong reduction of the orbital separation [such as in the second phase of mass transfer in
the progenitors of DWD systems Nelemans et al., 2000].

Chapter 3: Mass retention efficiency of accreting white

dwarfs

The third chapter of this thesis concern the supernova Type Ia (SNIa) progenitors from
the single-degenerate (SD) channel, a WD accreting from a non-degenerate companion.
According to various binary population synthesis studies, the theoretical rates of the single-
degenerate channel are lower than those of the double-degenerate channel and the observed
rates. However, the theoretical rates vary over four orders of magnitude [Nelemans et al.,
2013].

We find that the efficiency of mass retention of an accreting WD is crucially important
for the SD SNIa progenitor systems. However, it is poorly understood because of processes
such as novae. Furthermore the assumptions for the mass retention efficiency vary strongly
amongst different binary population synthesis codes [Ruiter et al., 2009b; Mennekens et al.,
2010; Wang et al., 2010; Yungelson, 2010; Claeys et al., 2011]. We implemented different
prescriptions for the mass retention efficiencies [Nomoto et al., 2007; Ruiter et al., 2009b;
Yungelson, 2010] in SeBa and found that the SNIa rate is affected by a factor 3-4 up to
more than a factor 100. In comparison the uncertainty in the common-envelope evolution
affects the SD SNIa rate by a factor of about 0.7-3 [Chapter 3, Wang et al., 2010; Ruiter
et al., 2009b; Mennekens et al., 2010; Claeys et al., 2011] and up to an order of magnitude
for extreme changes in the CE-efficiency α (Claeys et al. in prep.). Furthermore, our SNIa
models recover the trend in the predicted rates of different BPS studies. However, they do
not fully explain the large disagreements between them. Other BPS assumptions play a
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role as well, such as the stability of mass transfer and the evolution of the mass transfer
rates.

Chapter 4: Mass transfer variability towards accreting

white dwarfs

In the previous chapter we discussed the effect of the uncertainty in the WD retention
efficiency on the predictions for the SD SNIa rate. In chapter 4 we study another possible
source of uncertainty for the growth of WDs; mass transfer cycles. The canonical retention
efficiencies are calculated under the assumption of a constant mass transfer rate, however,
it is possible that accreting WD systems are influenced by effects that cause the mass
transfer rate to fluctuate on various timescales.

We show that if long-term mass transfer variability is present in accreting WD systems,
the regimes that allow for WD growth are enhanced. Long-term variability can be induced
by irradiation of the donor star by the accreting WD or by cyclic variations of the Roche
lobe from mass loss episodes [Knigge et al., 2011] for example. We find that there are both
theoretical and observational support for long-term mass transfer variability in accreting
WD binaries.

Mass transfer variability and subsequent enhanced retention efficiencies is likely to im-
pact the properties of accreting WD binaries, such as cataclysmic variables and SNIa pro-
genitors in the single-degenerate channel. WDs in cataclysmic variables are on average
more massive than single WDs, however, an understanding of this phenomenon is lacking.
Regarding SNIa progenitors, we included the effects of mass transfer variability in our BPS
model, and found that the parameter space of WDs that evolve to SNIa events significantly
widens. The effect, however, on the SNIa rate is modest, e.g. a factor of about 2-3 on the
integrated rate. When mass transfer variability is included in our model, the synthetic
SNIa rate is comparable with the lower limit of the observed rates [Maoz & Mannucci,
2012b; Perrett & et al., 2012; Maoz et al., 2012; Graur & Maoz, 2013]. Concluding, the
theoretical SD SNIa rate is fairly uncertain, because the effective mass retention efficiency
is strongly dependent on the details of the accretion process such as the mass transfer rate,
and overall not understood well (see also chapter 3).

Chapter 5: Double white dwarf binaries as supernovae

Type Ia progenitors

The fifth chapter of this thesis concerns the progenitors of supernovae Type Ia events from
DWD mergers. Our goal is to predict the SNIa rate from the double-degenerate channel
with a binary population synthesis approach. The difficulty is that the number of observed
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SNIa progenitors is too small to constrain our simulations. Fortunately, the population of
observed DWDs (of all flavours and masses) can be used instead, because this population
is closely related to the SNIa progenitors. In agreement with Nelemans et al. [2000] and
Nelemans et al. [2001c], we find that our model using the α-CE prescription is not consistent
with the observed DWD population, where as our model using the γ-CE prescription is.

Regarding SNIa progenitors, however, the difference between the models is modest. The
time-integrated rate of SNIa event decreases by a factor of about 1.5 when assuming the
γ-CE prescription instead of the α-prescription. The shapes of the delay-time distributions
of both models match well with observations, however, the normalization is a factor of
about 7-12 lower than the observed SNIa rates. The observed rates come from a variety of
methods [for a review see Maoz & Mannucci, 2012a] in galaxy clusters.

After publication of chapter 5, new measurements from volumetric surveys were pub-
lished [Perrett & et al., 2012; Maoz et al., 2012; Graur & Maoz, 2013]. These studies found
SNIa rates that are a factor 1.5-5 lower than the previous studies. This diminishes the
problem of too low SNIa rates predicted by our work. At this moment it is unclear if there
is an enhancement of SNeIa in cluster galaxies or if the different observed integrated rates
are due to systematic effects [see also Maoz et al., 2012].

Chapter 6: Binary population synthesis

The last chapter of this thesis describes the PopCORN project, which stand for population
synthesis of compact objects research network. For this project we have collaborated with
three other BPS research groups to compare the corresponding BPS codes. The goal is to
investigate whether differences in the simulated populations are due to numerical effects, or
whether they can be explained by differences in the input physics. The comparison focuses
on the evolution of low- and intermediate-mass binaries containing one or more WDs.
We show that when input assumptions are equalized, the simulated populations are very
similar. The main differences between the results arise from deviating input assumptions
for physical processes in binary evolution. The most important assumptions are the initial-
final mass relation for WDs, the stability of mass transfer, survival of mass transfer, stable
mass transfer and helium star evolution. Processes that were equalised between the code
for this project and therefore not studied are a.o. the prescription for common-envelope
evolution, accretion efficiency, angular momentum loss, magnetic braking and the initial
distributions of primary mass, mass ratio and orbital separation. The processes on these two
lists must be taken into account when interpreting BPS results, but should also motivate
the astrophysics community to conduct further research into these topics.

It remains to conduct a BPS code comparison for the progenitors of systems in the single-
degenerate channel to understand better the differences in the predicted SNIa rates (see
also chapter 3) as well as for binary systems with massive components (e.g. the progenitors
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of X-ray binaries) for which other processes are relevant such as rotation and stellar winds.

Conclusion

The PopCORN project (chapter 6) has brought forward two important results. Within
the equalised assumptions of the project, differences in the predictions of macroscopic
characteristics of a population are not caused by numerical effects or a lack of accuracy
in the codes. However, the project has also pointed out (once again) the importance of
the assumptions for binary processes that are not understood fully or not understood at
all. In order to improve the results from BPS modelling, a better understanding of these
assumptions is necessary and it is very important to take into account the uncertainty in
the assumptions when making and interpreting BPS models.

The simplicity of the evolution of PCEBs makes the population of PCEBs ideal to study
common-envelope evolution. By taking into account the observational selection effects, a
direct comparison with observations could be made for the first time (see chapter 2). On
the other hand the evolution of DWDs is more complicated. It can involve stable and un-
stable mass transfer and multiple phases of mass transfer (see chapter 5). In particular the
evolution of DWD mergers as SNIa progenitors is hard to model, because this population
is biased to the most massive WD progenitors whose evolution often involves a second, ad-
ditional phase of mass transfer. This phase is initiated by a star when it is hydrogen-poor
and helium-burning. Besides assumptions for binary evolution, other assumptions should
be taken into account in the interpretation of results as well. An example is that often in
BPS studies, a constant star formation rate is assumed for the Milky Way for simplicity.
However, for SNIa progenitors from the double-degenerate channel, the synthetic rate is
very sensitive to the recent star formation rate because the average delay time is short.
Therefore, the rate can be overestimated significantly if a constant star formation rate for
the full history of Milky Way is assumed (see chapter 5).

So far, BPS studies have been hampered by the low number of observed binaries of
a specific population. However, over recent years a vast improvement has been made in
this respect, in particular for DWDs and binaries containing hydrogen-poor helium burning
stars (i.e. hot subdwarfs). The ELM survey [Brown et al., 2010] focuses on discovering
and characterizing the population of extremely low-mass (ELM) WDs in the Milky Way
and has found over 50 DWDs with ELM components [Brown et al., 2013]. Another survey
that makes use of the Sloan Digital Sky Survey [York et al., 2000] is the SWARMS survey
[Badenes et al., 2009; Mullally et al., 2009] which aims to find massive, close DWDs as
possible progenitors of SNIa events. Furthermore, the ESO Supernova Ia Progenitor Survey
(SPY) has increased the number of DWDs [Napiwotzki et al., 2001; Nelemans et al., 2005],
as well as the number of subdwarfs [Lisker et al., 2005; Stroeer et al., 2007]. Regarding
subdwarfs, their observed number has increased further by a.o. MUCHFUSS [Geier et al.,
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2011] which aims at finding hot subdwarfs with compact companions like massive WDs,
neutron stars or black holes.

Large samples, but most importantly homogeneous samples, are fundamental for testing
and constraining the BPS models. An example of this is the population of DWDs, with
which common-envelope evolution can be studied. The observed mass ratio distribution of
DWDs lead Nelemans et al. [2000] to propose the γ-prescription, however, the γ-prescription
does not reproduce the visible population of PCEBs well. Woods et al. [2012] suggested
that DWDs can be created by stable mass transfer between a red giant and a main-sequence
star. It is not clear yet if this channel is wide enough to create a significant amount of
DWDs. However, if this is the case, we can study the effect of stable, non-conservative mass
transfer and the corresponding mass and angular momentum loss. Regarding the ELM WD
binaries, these have not been studied yet in a binary population synthesis approach, and
at the moment it is not clear if BPS results are in contradiction with the large amount of
observed ELM binaries.

Traditionally BPS studies have focused on predicting and comparing population sizes
(e.g. space densities, merger rates) and population characteristics (e.g. distribution of
periods, masses, mass ratios) of a specific population. However, due to the increase in
the observed number of binaries of multiple populations, BPS studies can start conducting
comparisons between populations (e.g. relative population sizes). For example, comparing
the populations of subdwarf binaries, DWDs and PCEBs can lead to a more complete
picture of common-envelope evolution across binary types (see also chapter 2).

In conclusion, because of the advent of large scale surveys such as the Sloan Digital
Sky Survey or in the future Gaia [de Bruijne, 2012], it is an excellent moment to conduct
BPS studies. The surveys are providing us with an unprecedented number of binaries,
and most importantly homogeneously selected binaries that can help us to improve our
understanding of binary evolution.
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Als je ’s avonds omhoog kijkt naar de hemel, kun je ze zien: sterren. Daar heb je wel
een beetje geluk voor nodig, want het weer moet meezitten. Met nog meer geluk kun je
ook de maan zien of een paar planeten. In ons zonnestelsel is er een ster, de zon, en acht
planeten die om de zon heen draaien. De meeste sterren brengen hun leven echter niet in
hun eentje door, maar ze hebben andere sterren als nabije buren. Stersystemen bestaan
vaak uit twee sterren zoals bij een dubbelster, maar systemen met meerdere sterren zijn
ook bekend [Duchêne & Kraus, 2013]. In dit proefschrift bestuderen we de evolutie van
dubbelstersystemen.

Introductie

Het leven van een ster...

Sterren komen voor in veel verschillende soorten en maten. De zon is een tamelijk standaard
ster met een massa van 1.98 · 1030kg. Dit wordt ook wel een zonsmassa genoemd: 1M⊙.
Er bestaan sterren met een massa van 10% van de zon (0.1M⊙) tot meer dan 100 keer
de massa van de zon (>100M⊙). De simpelste beschrijving voor een ster is een bol van
gas dat in evenwicht is. De zwaartekracht duwt de materie van de ster naar het midden
van de ster, terwijl de gasdruk de materie naar buiten duwt de ruimte in. Als gevolg van
dit evenwicht, heeft de ster een hoge dichtheid en hoge temperatuur. De temperatuur
wordt gehandhaafd door de productie van energie binnenin de ster. De belangrijkste bron
van energie in een ster is kernenergie. Bij het fuseren van twee atoomkernen wordt een
zwaardere kern gevormd, maar er komt daarnaast ook een grote hoeveelheid energie vrij.
Energieverlies aan het oppervlakte van een ster is wat wij zien als het licht van sterren.

Als sterren ouder worden, verandert de evenwichtspositie langzaam (maar in sommige
fasen snel). Op de lange termijn wordt de evolutie van een ster gedreven door verschillende
fasen van kernfusie. Aanvankelijk bestaan sterren voornamelijk uit waterstof. In de kern
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wordt waterstof gefuseerd tot helium, en om de kern zit een omhulsel van waterstof. Deze
sterren worden hoofdreekssterren (main-sequence, MS) genoemd. Als de brandstof in de
kern op is, krimpt de kern. Als de dichtheid en temperatuur in de kern voldoende groot
worden, dan zal helium gefuseerd worden tot koolstof en zuurstof. In elk mogelijk later
stadium worden steeds zwaardere elementen geproduceerd. De structuur van een ster lijkt
op die van een ui (of Shrek); een kern met lagen materie daarom heen. Hoe dieper de laag
in de ster ligt, hoe meer zwaardere elementen in de laag te vinden zijn. De meeste sterren
eindigen hun leven wanneer kernfusie niet meer kan optreden. Deze objecten krimpen en
koelen dan verder, totdat er nieuw evenwicht is gevonden. Bij dit evenwicht neemt een
kwantummechanische druk (’ontaarding’) de rol van de gasdruk over. Het object is nu
ongeveer 50 tot 100 keer kleiner dan bij zijn geboorte. Deze uitgebrande sterren worden
witte dwergen genoemd.

Figuur 1: Dubbelstersysteem bestaande uit een ster (rechts) die massa overdraagt naar

een witte dwerg (links). De stroom van materie vormt een schijf om de witte

dwerg. Er heeft zonet een nova-explosie plaats gevonden op de witte dwerg.

Hierdoor wordt materie van het oppervlak van de witte dwerg afgeblazen, en

dit kun je nog zien als de bol om de witte dwerg. (credits: David A. Hardy,

www.astroart.org)

.. met zijn tweeën

Als twee sterren deel uit maken van een dubbelstersysteem, draaien ze een baan om elkaar
heen. Als de sterren dicht genoeg bij elkaar staan, vindt er interactie plaats tussen de
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sterren. Hierdoor verandert de evolutie van het systeem en de twee sterren. Een voorbeeld
van een interactie is massa-overdracht (zie figuur 1). Hierbij stroomt er materie van een ster
(de donor) naar de andere ster (de begeleider). Als gevolg van de massa-overdracht kan het
systeem samensmelten; je houdt dan een enkele ster over. Maar als het dubbelstersysteem
blijft bestaan, is de donor vaak zijn omhulsel verloren. Hierdoor wordt de evolutie van de
donor beëindigd (een witte dwerg wordt gevormd) of op z’n minst aanzienlijk verkort (er
is minder brandstof). De begeleider kan alle materie accreteren die wordt overgedragen,
of alleen een gedeelte ervan, of zelfs helemaal geen materie. In de laatste twee gevallen
verliest het dubbelstersysteem materie.

Alhoewel de evolutie van enkele sterren zoals de zon redelijk goed begrepen wordt, zijn
er nog veel vragen over processen in dubbelsterevolutie. Dit proefschrift richt zich op twee
belangrijke processen die, afhankelijk van je humeur, niet volledig of volledig niet begrepen
worden. Deze twee processen zijn accretie op witte dwergen en instabiele massa-overdracht.

• Accretie op witte dwergen;
Accretie op witte dwergen is een ingewikkeld proces. Het hoeft niet zo te zijn dat
de geaccreteerde materie ook daadwerkelijk op de witte dwerg zal blijven liggen.
In eerste instantie wordt de geacreteerde materie snel verspreid over het oppervlak
van de witte dwerg. Afhankelijk van de snelheid van de massa-overdracht, kan er
kernfusie optreden in de geaccreteerde laag [Nomoto, 1982; Nomoto et al., 2007;
Shen & Bildsten, 2007], zowel op een stabiele [Whelan & Iben, 1973; Nomoto, 1982]
als instabiele manier [Schatzman, 1950; Starrfield et al., 1974]. Bij lage snelheden
hoopt de materie zich op op het oppervlak. Wanneer kernfusie begint, verspreidt
de verbranding zich vliegensvlug door de laag. Zulke uitbarstingen worden novae
genoemd, wat ’nieuwe sterren’ betekent (zie figuur 1). Tijdens zo’n uitbarsting wordt
een gedeelte of zelfs alle geaccreteerde materie door de witte dwerg uitgestoten en
het is zelfs mogelijk dat oppervlaktemateriaal van de witte dwerg verloren wordt
[Prialnik, 1986; Prialnik & Kovetz, 1995; Townsley & Bildsten, 2004; Yaron et al.,
2005]. Bij hoge snelheden van de massa-overdracht vindt er continue kernfusie plaats
op het oppervlak van de witte dwerg. Dit soort dubbelsterren zendt röntgenstraling
uit. Bij nog hogere snelheden vormt de materie een omhulsel rondom de witte dwerg.
Een wind kan vervolgens een gedeelte van het omhulsel van de witte dwerg afstoten.

Samenvattend, een witte dwerg kan alleen groeien in massa wanneer de accretie
plaatsvindt binnen een relatief klein bereik van massaoverdachtssnelheden. Boven-
dien brengt accretie op witte dwergen verschillende fascinerende taferelen teweeg,
zoals röntgenstraling en nova-uitbarstingen.

• Massa-overdracht;
Als de massa-overdracht op een stabiele manier verloopt [Webbink, 1985; Hjellming
& Webbink, 1987; Pols & Marinus, 1994; Soberman et al., 1997], dan blijft de donor
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(qua druk) in evenwicht. De interne structuur van de ster wordt aangepast aan een
de nieuwe massa en bijbehorende nieuwe druk, dichtheid en temperatuur. De baan
van de twee sterren verandert ten gevolge van de herschikking (of het verlies) van
massa en draaimoment. Vaak zijn de banen wijder na de massa-overdracht.

Bij instabiele massa-overdracht neemt de snelheid van de massa-overdracht snel toe als
een op hol geslagen paard. Het omhulsel van de donor zal ook de begeleider omhullen,
zodat het dubbelstersysteem een gezamenlijk omhulsel heeft [common-envelope, CE
Paczynski, 1976; Webbink, 1984]. In hun baan om elkaar gaan de begeleider en
de kern van de donor nu door een dichte mist van materie. Hierdoor ondervinden
ze veel wrijving, waardoor ze snelheid verliezen en hun baan steeds kleiner wordt.
Instabiele massa-overdracht leidt dan ook vaak tot een samensmelting van de twee
sterren. Echter als door de wrijving het gezamenlijke omhulsel voldoende energie
wint om aan het systeem te ontsnappen, kan een samensmelting worden voorkomen.
Wat overblijft is een compacte dubbelster. Instabiele massa-overdracht speelt een
essentiële rol in de vorming van vele soorten compacte dubbelsterren en daarmee ook
in dit proefschrift.

Figuur 2: Sterrenstelsel NGC 4526 en supernova 1994D. Supernova 1994D was een su-

pernova van type Ia, die plaatsvond aan de rand van het sterrenstelsel. De

supernova is ongeveer even helder als het centrum van het sterrenstelsel. Deze

foto is gemaakt door de Hubble Space Telescope. (credits: NASA/ESA, The

Hubble Key Project Team en The High-Z Supernova Search Team)
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Supernovae van type Ia

Supernovae spelen een essentiële rol in dit proefschrift. Het zijn een van de meest energieke
en explosieve gebeurtenissen in het heelal. Voor een korte tijd is een enkele supernova
intens helder. Ze zijn dan helderder dan sterrenstelsels zoals onze Melkweg, die bestaan
uit honderden miljarden sterren (zie figuur 2). De helderheid van supernovae maakt het
mogelijk om supernovae waar te nemen op grote afstand van de Aarde.

Een specifiek soort supernova, type Ia, heeft een bijzondere eigenschap. De helderheid
van een supernova van type Ia verandert in de tijd op een specifieke manier [Phillips, 1993].
Hierdoor kunnen we schatten hoe ver weg een supernova staat. Als een supernova verder
weg staat, lijkt de supernova minder helder. Het bepalen van afstanden in het heelal is
lastig, en daarom spelen supernovae van type Ia een belangrijke rol in de extragalactische
sterrenkunde. Het meest belangrijke resultaat (in ieder geval in mijn ogen) is dat het
heelal versneld uitdijt [bv Riess et al., 1998; Perlmutter et al., 1999]. Supernovae van type
Ia spelen ook een belangrijke rol in galactische sterrenkunde, vanwege het uitstoten van
zware elementen zoals ijzer.

Ondanks het grote belang van supernovae van type Ia, worden ze theoretisch nog slecht
begrepen. Over het algemeen wordt aangenomen dat een supernova van type Ia een explo-
derende witte dwerg is. Wanneer kernfusie plaatsvindt in een witte dwerg, komt er in een
korte tijd zoveel energie vrij, dat de witte dwerg binnen de kortste keren explodeert. De
details van het ontbrandingsmechanisme worden nog slecht begrepen en meerdere evolu-
tiepaden zijn voorgesteld om de fusie aan de gang te brengen. De klassieke evolutiepaden
(zie figuur 3) hebben te maken met de maximale massa van een witte dwerg. Dit heet de
Chandrasekhar massa en is ongeveer 1,4 keer de massa van de zon. Als de witte dwerg
massiever wordt, raakt de ster uit evenwicht; de zwaartekracht wint dan van de ontaar-
dingsdruk.

In het eerste klassieke evolutiepad [single degenerate model, SD, Whelan & Iben, 1973]
accreteert een koolstof-zuurstof witte dwerg materie van de andere ster in het dubbelster-
systeem. Als de massa van de witte dwerg ∼ 1, 4M⊙ bereikt, wordt aangenomen dat een
supernova van type Ia plaatsvindt. In het tweede klassieke evolutiepad [double degenerate
model, DD, Webbink, 1984; Iben & Tutukov, 1984] smelten twee witte dwergen, bestaande
uit koolstof en zuurstof, samen. Als de gezamenlijke massa van de witte dwerg groter is
dan ∼ 1, 4M⊙, vindt wederom de supernova-explosie plaats.

Dit proefschrift

In dit proefschrift worden verschillende studies gepresenteerd over de vorming en evolutie
van compacte dubbelsterren. Waarnemingen van een bepaalde groep van dubbelsterren
geven ons informatie over de eigenschappen van deze dubbelsterpopulatie, zoals de ver-
deling van de periode van hun baan of de massaverhouding van de twee sterren. Deze
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Figuur 3: De twee klassieke evolutiekanalen voor supernovae van type Ia. Boven geeft

het scenario weer waarin een witte dwerg materie accreteert van een ster, en

onder het scenario waarin twee witte dwergen samensmelten. (credits: Bad

Astronomy/Discovery).

eigenschappen worden bepaald door de processen die de dubbelsterpopulatie ondergaan is.
Door de eigenschappen te bestuderen, kunnen we processen bestuderen die (nog) niet in
detail gesimuleerd of waargenomen kunnen worden.

We maken daarvoor gebruik van het software pakket SeBa6. SeBa is een computer-
programma dat de evolutie van dubbelsterren van geboorte tot aan sterfte kan simule-
ren. Vanwege de snelheid van SeBa, is SeBa uitermate geschikt om de eigenschappen
van populaties van stersystemen te bestuderen. Computerprogramma’s zoals SeBa worden
dubbelsterpopulatie-synthese codes (binary population synthesis, BPS) genoemd.

In dit proefschrift richten we ons op twee processen in het bijzonder: instabiele massa-
overdracht en accretie op witte dwergen. Deze processen zijn van belang in dubbelsterren
waarvan een of twee van de componenten witte dwergen zijn. De soorten dubbelsterren die
we bestuderen in dit proefschrift zijn:

6De naam SeBa is afgeleid van een Egyptisch woord voor ’onderwijzen’, ’de poort naar kennis’ of

’(dubbel)ster’ [Portegies Zwart, 2000]. De exacte betekenis ligt aan de spelling van de hiërogliefen.

224



Samenvatting

• dubbelsterren met een witte dwerg en een hoofdreeksster, die een fase van instabiele
massa-overdracht zijn ondergaan (post-common-envelope binaries, PCEBs);

• dubbelsterren met een witte dwerg en een begeleidende ster, waarbij de begeleider
massa overdraagt naar de witte dwerg totdat een supernova van type Ia plaatsvindt;

• dubbelsterren met twee witte dwergen die zodanig samensmelten dat een supernova
van type Ia plaatsvindt.

Hoofdstuk 2: Instabiele massa-overdracht

Instabiele massa-overdracht is een van de meest belangrijke processen in dubbelsterevolu-
tie. Veel dubbelsterren die we waarnemen hebben tenminste een zo’n fase gehad in hun
evolutie. Tegelijkertijd is instabiele massa-overdracht een van de minst begrepen processen
in dubbelsterevolutie. In welke systemen leidt instabiele massa-overdracht to een samen-
smelting en welke systemen overleven als dubbelster? Hoe verandert de baan van een
dubbelster als gevolg van instabiele massa-overdracht? Krimpt de baan sterk? Dit heeft
een gevolg op de verdere evolutie van het systeem. De onzekerheid in het verloop van insta-
biele massa-overdracht veroorzaakt een van de grootste onzekerheden in de voorspellingen
van dubbelsterpopulatie-synthese codes (zie ook hoofdstuk 3 en 5).

In het eerste hoofdstuk bestuderen we het proces van instabiele massa-overdracht door
de vorming van PCEBs te bestuderen. PCEBs zijn dubbelsterren die bestaan uit een
witte dwerg en een hoofdreeksster en die in hun vorming door een fase van instabiele
massa-overdracht zijn gegaan. Deze systemen zijn ideaal om instabiele massa-overdracht
te bestuderen omdat de evolutie van de systemen relatief eenvoudig is.

Met behulp van SeBa hebben we een populatie van PCEBs gesimuleerd. Het ver-
nieuwende aan dit model is dat voor het eerst een realistisch model voor de Melkweg is
aangenomen. Bovendien houden we rekening met observationele selectie-effecten. Het pro-
bleem is dat een hoofdreeksster vaak veel helderder is dan een witte dwerg, zodat de meeste
PCEBs niet als zodanig waargenomen zouden worden, maar als een enkele hoofdreeksster.

Wij vinden dat de instabiele massa-overdrachtsfase voor de meeste PCEBs moet leiden
tot een sterke krimp van de baan, in tegenstelling tot eerdere studies over de vorming van
dubbele witte dwergen [Nelemans et al., 2000, 2001c]. De waargenomen dubbele witte
dwergen zijn door twee fases van instabiele massa-overdracht gegaan. De laatste keer
krimpt de baan, maar veel minder sterk van bij PCEBs. De eerste keer kan de baan zelfs
een beetje uitzetten. Hieruit moeten we opmaken dat de standaard, uniforme beschrijving
van instabiele massa-overdracht voor meerdere typen dubbelsterren niet werkt.
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Hoofdstuk 3: Hoe efficiënt kan een witte dwerg groeien door

accretie?

Er zijn twee klassieke evolutiepaden voor een supernova van type Ia (zie figuur 3). In het
ene pad accreteert een witte dwerg van een begeleidende ster, en in het andere pad smelten
twee dubbele witte dwergen samen (zie ook de introductie). Voor beide evolutiepaden
is de vraag, kun je wel echt een supernova van type Ia vormen via deze weg, en zo ja
hoeveel supernovae dan? BPS studies voorspellen dat het aantal supernovae van het eerste
evolutiepad lager ligt dan die van het andere evolutiepad. De voorspellingen voor het eerste
evolutiepad liggen echter ver uit elkaar, maximaal ongeveer een factor 1000 [Nelemans et al.,
2013].

Wij vinden dat theoretisch voorspellingen voor het aantal supernovae type Ia cruciaal
afhangen van hoe efficiënt een witte dwerg kan accreteren. Accretie naar witte dwergen
is een ingewikkeld proces, vanwege nova-uitbarstingen en kernfusie van het geaccreteerde
materiaal. De aannames voor de accretie-efficiëntie verschillen dan ook sterk tussen BPS
codes [Ruiter et al., 2009b; Mennekens et al., 2010; Wang et al., 2010; Yungelson, 2010;
Claeys et al., 2011]. Om te onderzoeken hoe sterk het effect is van de verschillende effici-
ënties op het aantal supernovae, hebben we drie verschillende efficiënties [Nomoto et al.,
2007; Ruiter et al., 2009b; Yungelson, 2010] geïmplementeerd in SeBa. Afhankelijk van
de aangenomen efficiënties, verschilt het totale aantal supernovae met een factor 3 tot 4,
of zelfs meer dan een factor 100. De onzekerheid in de instabiele massa-overdrachtsfase
leidt slechts tot een onzekerheid in het aantal supernovae van een factor 0,7 tot 3, en tot
maximaal een factor 10 voor extreme veranderingen [Wang et al., 2010; Ruiter et al., 2009b;
Mennekens et al., 2010; Claeys et al., 2011, dit proefschrift, Claeys et al. in prep]. De trend
in onze modellen komt overeen met de trend in de voorspellingen van andere codes. Van de
andere kant kunnen de modellen de verschillen in de voorspellingen niet volledig verklaren.
Dat betekent dat naast de accretie-efficiëntie ook andere processen een rol spelen, zoals
bijvoorbeeld de stabiliteit van massa-overdracht. Ons onderzoek heeft aangetoond dat de
efficiëntie van accretie naar witte dwergen van fundamenteel belang is voor het begrijpen
van de bijdrage van dit evolutiepad aan het totale aantal supernovae van type Ia.

Hoofdstuk 4: Variabiliteit van de snelheid van massa-overdracht

naar witte dwergen

In het vorige hoofdstuk hebben we laten zien dat de efficiëntie van accretie naar witte
dwergen vrij onzeker is, en dat deze onzekerheid doorwerkt in de onzekerheid op het aantal
supernovae van type Ia. In dit hoofdstuk bespreken we nog een andere bron van onzekerheid
voor de groei van witte dwergen. De klassieke accretie-efficiënties gaan namelijk uit van een
constante snelheid van de massa-overdracht, maar het is mogelijk dat de snelheid schommelt
op verschillende tijdschalen.
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We laten zien dat als de schommeling plaatsvindt op een lange tijdschaal, de witte
dwerg efficiënter kan groeien in massa. Het bereik van snelheden van de massa-overdracht
waarin een witte dwerg efficiënt kan groeien is groter in het nieuwe model. Dit beïnvloedt
verschillende soorten dubbelsterren, maar natuurlijk ook de systemen die tot een supernova
van type Ia kunnen leiden in het eerste klassieke evolutiepad. In het nieuwe model is
het evolutiepad veel wijder, maar er komen relatief maar weinig dubbelsterren terecht op
dit pad. Als rekening gehouden wordt met de variabiliteit in de snelheid van de massa-
overdracht, neemt het totale aantal supernovae van type Ia toe met een factor 2 tot 3.
Kort samengevat, omdat de accretie-efficiëntie sterk afhankelijk is van de details van de
massa-overdracht en over het algemeen niet goed begrepen wordt, is het theoretische aantal
supernovae van type Ia van dit evolutiepad tamelijk onzeker.

Hoofdstuk 5: Supernovae van type Ia veroorzaakt door samen-

smeltende dubbele witte dwergen

Het doel van dit hoofdstuk was om een voorspelling te maken voor het aantal supernovae
van type Ia per jaar van samensmeltende dubbele witte dwergen. Is dit klassieke evolu-
tiepad een belangrijke manier om supernovae van type Ia te vormen? Om nauwkeurige
voorspellingen te kunnen doen, is het belangrijk dat onze modellen overeenkomen met de
waargenomen populatie van dubbele witte dwergen die op het punt staan samen te smelten.
Voorspellen we de juiste massa’s en periodes voor deze dubbelsterren? Het probleem is dat
er nog geen systemen waargenomen zijn waarvan we verwachten dat bij het samensmelten
een supernova ontstaat.

In hoofdstuk 5 hebben wij onderzocht of onze modellen overeenkomen met de gehele
waargenomen populatie van dubbele witte dwergen. Alhoewel deze systemen geen super-
novae van type Ia zullen vormen, is hun evolutie wel heel vergelijkbaar met die systemen die
wel deel uit maken van het klassieke evolutiepad. In overeenstemming met Nelemans et al.
[2000] en Nelemans et al. [2001c], vinden we dat de standaard manier om een instabiele
massa-overdracht te simuleren, een populatie geeft die niet in overeenstemming is met de
waargenomen dubbele witte dwergen. De alternatieve beschrijving voor instabiele massa-
overdracht van Nelemans et al. [2000] geeft een populatie die wel in overeenstemming is
met de waargenomen populatie.

De verschillen tussen het aantal supernovae van type Ia per jaar voor de twee beschrij-
vingen zijn gering. Het totale aantal supernovae van type Ia is 1,5 keer lager wanneer de
alternatieve beschrijving aangenomen wordt. Aan de andere kant, de consensus op het mo-
ment van publicatie van hoofdstuk 5 was dat het waargenomen aantal supernovae hoger lag,
ongeveer tien keer zo hoog [voor een overzicht zie Maoz & Mannucci, 2012a]. Hieruit zou
je de conclusie trekken, dat het klassieke evolutiepad van samensmeltende witte dwergen
niet het dominante evolutiepad voor supernovae van type Ia is. Echter, na de publicatie
zijn nieuwe waarnemingen gepubliceerd. Deze artikelen vinden een aantal supernovae dat
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1,5 tot 5 keer [Perrett & et al., 2012; Maoz et al., 2012; Graur & Maoz, 2013] lager ligt
dan bij de oude waarnemingen. Op dit moment is het onduidelijke of dit verschil in de
waarnemingen wordt veroorzaakt door verschillen tussen types van sterrenstelsels, of door
een systematisch effect in de analyse.

Hoofdstuk 6: Het simuleren van dubbelsterpopulaties

In het laatste hoofdstuk van mijn proefschrift wordt het PopCORN project beschreven.
PopCORN staat voor ’population synthesis of compact objects research network’, ofwel
’onderzoeksverband voor het simuleren van populaties met compacte sterren’. Voor dit
project hebben we samengewerkt met drie andere onderzoeksgroepen die BPS studies ver-
richten met hun eigen BPS codes. We hebben gekeken naar dubbelsterren met een of twee
witte dwergen. Het doel was om de codes te vergelijken en de verschillen in de voorspel-
lingen van de onderzoeksgroepen te begrijpen. Worden deze verschillen veroorzaakt door
verschillen in de aannames in de fysica van dubbelsterevolutie, of door numerieke effecten
(doen de codes hun berekeningen wel precies genoeg?)?

Als eerste stap hebben we met vier BPS codes dezelfde dubbelsterpopulaties gesimu-
leerd en vergeleken met elkaar. Voor deze simulaties hebben we de initiële aannames zoveel
mogelijk gelijk gesteld. Wij vonden dat de gesimuleerde populaties erg vergelijkbaar zijn.
De belangrijkste verschillen tussen de gesimuleerde populaties worden veroorzaakt door
afwijkende aannames voor bepaalde processen in dubbelsterevolutie die nog niet goed be-
grepen worden. Een voorbeeld hiervan is de stabiliteit van massa-overdracht. Een volgende
stap voor het project zou zijn om te onderzoeken of en wat voor effect de gelijkgestelde
initiële aannames hebben op dubbelsterpopulaties. Het is belangrijk om rekening te houden
met de aannames van beide groepen bij het interpreteren van de resultaten en voorspellin-
gen van BPS studies. Wij hopen ook de sterrenkundige gemeenschap te motiveren om de
processen achter deze aannames verder te bestuderen.
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