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1.

General Introduction

1.1 Introduction

Materials such as slurries, pastes, gels, clay suspensions, foams, emulsions and
granular media are widespread in our everyday life. These substances share com-
mon properties that defy the classical definitions of solids and liquids. These
complex fluids behave like solids when left to themselves, but will flow like a liq-
uid when we exert a sufficiently large stress on them, as occurs for instance in
toothpaste. In recent years, the paradigm of soft glassy material has been used
to describe such diverse range of materials exhibiting strong local disorder and
slow mesoscopic rearrangements.

This is in contrast to the textbook description of glassy systems which is often
limited to that of simple molecular glasses, such as vitreous silica or polymeric
glasses. Conventionally, glasses are defined as mechanically solid-like materials
without any long-range order characteristic of crystalline structures: the most
prominent feature of them being their enormous viscosity (1013 Pa.s). Over the
last decade or so, however, it has become increasingly evident that the much
broader concept of soft glassy material provides an interesting bridge between
complex fluids and glasses. In this view, all systems with a relaxation time
longer than or comparable to experimental timescales can be considered as glassy
[1, 2]. This has recently prompted many researchers to investigate glassy behav-
ior of this large variety of substances, characterized by relaxation times longer
than typical experimental time scales of observation. Another common feature
of glassy systems is aging, meaning that the system’s properties depend on the
time elapsed since the quench into a glassy state, notably the relaxation time of
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2 Chapter 1. General Introduction

the system grows in time. Understanding the nature of the glassy state and its
non-equilibrium behavior (aging) remains one of the outstanding challenges in
condensed-matter physics. As was pointed out by the Nobel prize winner Philip
Anderson in 1995: ”The glass transition remains the deepest and most important
unsolved problem in solid-state physics”.

Despite various experimental and theoretical studies of glasses and non-equilibrium
systems in general, a unified statistical physical description of such non-equilibrium
systems is still missing. One of the most interesting recent developments along
these lines is the proposal to generalize the fluctuation dissipation theorem to
non-equilibrium situations [3]. The fluctuation dissipation theorem relates the
response of a system to a weak external perturbation to the relaxation of the
spontaneous fluctuations in equilibrium [4]. The response function is proportional
to the power spectral density of thermal fluctuations with a prefactor given by
the temperature. This suggests a generalization for systems out of equilibrium, in
which the (non-equilibrium) fluctuations are related to the response via a time-
scale-dependent effective temperature. In this thesis, we measure the effective
temperature of a few soft glassy materials: colloidal glasses and gels.

Significant progress in understanding the physics of glasses has been achieved
through the use of colloids to model atoms or molecules. Like atomic glasses,
colloidal systems may undergo a glass transition. However, instead of lowering
the temperature to form a glass, the particle volume fraction is increased. The key
advantage is that time and length scales in colloidal systems are much more readily
accessible experimentally than in atomic and molecular glasses. The colloidal
system that we focus on in this thesis is a synthetic clay called Laponite. It is
a white powder that is easily dispersed in water. When dissolved in water, it
evolves from an initially liquid-like state to a solid-like state which looks like a
transparent gel. We aim here to get a better understanding of the non-equilibrium
behavior of this soft glassy material.

The nature of non-ergodic states of Laponite suspensions has been the subject
of discussion: both colloidal gel and colloidal glass formation have been invoked
and are thought to be mutually exclusive. In this thesis, we provide experimental
criteria for distinguishing gels and glasses and show that gel and glassy states of
Laponite both exist and are well-defined in the limit of low and high concentra-
tions.

Furthermore, Laponite has various applications in industry, for instance it is
used in cosmetic products, hair gel and toothpaste. Therefore, understanding
its flow properties is of crucial importance both during processing as well as for
applications. Part of our study is devoted to the studies of flow properties of
Laponite suspensions. From a more fundamental point of view, it is interesting
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to be able to have ’glassy’ and ’gel’ states of the same material and compare their
mechanical properties.

1.2 Phenomenology of glasses

Traditionally glasses are obtained by supercooling a liquid below its glass tran-
sition temperature so rapidly that the particles can not find their equilibrium
configuration: the crystal. Therefore, the liquid falls out of equilibrium. The
slow degrees of freedom no longer relax on the experimental time scale and the
relaxation time of the supercooled liquid and the viscosity grow several orders
of magnitude over a relatively small temperature interval. The temperature at
which the relaxation time of the liquid becomes longer than the observation time
is called the glass transition temperature Tg. Experimentally Tg is defined as the
temperature at which viscosity reaches 1013 Pa.s or the relaxation time larger
than 100 s. The determination of Tg depends however on the experimental proce-
dure such as the cooling rate. Another equivalent definition is that Tg marks the
transition from ergodic to non-ergodic behavior, i.e. the temperature at which
the density-density correlation does not decay to zero on the experimental time
scale. In equilibrium, the system’s configurations in phase space are distributed
with a probability given by the Boltzmann-Gibbs distribution. A system is said
to be ergodic if the configurations that the system can explore do not depend
on the initial condition, i.e. the whole phase space can be visited according to
the Boltzmann-Gibbs distribution at that temperature. As a consequence, the
ensemble-average of a measured quantity is equal to its time-average. To the
contrary, non-ergodicity means that after a given (long) time (denoted as waiting
time tw), only a limited region of the phase space, close to the initial configuration
has been accessed during the evolution of the system. As a result the system is
trapped in a metastable state. In such a situation, the time and ensemble average
are not necessarily equivalent. In general the ergodicity-breaking in glasses is said
to be weak. This means that the system does not fall into a unique metastable
state with an extremely long life-time. To the contrary, in a finite time the glass
is able to access part of the phase space and escape from the metastable state in
which it was initially vitrified to find itself in another metastable state.

The fact that the system spends a large amount of time exploring local minima
of the free energy and does not relax towards the stable state corresponding to
the global minimum of free energy leads to aging effects, as will be explained in
the following.
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Figure 1.1: Phenomenological pictures of viscosity and diffusion coefficients a)Diffusion
is proportional to the chance to jump from site to site. b) The viscosity coefficient is
related to the lifetime at each site [i.e, (1/(chance to jump)].

1.2.1 Qualitative relation between viscosity and diffusion

A glass can be viewed as a material in which a slowing down of diffusive motion
of the particles by many orders of magnitude with respect to the liquid state
has occurred. The slowing down is most conveniently expressed in terms of the
relaxation time τ which is proportional to the inverse of the diffusion coefficient
τ ∼ 1/D. τ characterizes the time scale on which the slowest measurable processes
( e.g. changes in particle positions) relax to equilibrium.

The slowing down of motion is concomitant with an enormous increase of
viscosity, so that the material can not flow on experimental time scales anymore.
To a certain approximation, the viscosity is connected with the relaxation time τ
by the mechanical Maxwell equation η ≈ Ggτ . Here Gg is the glass modulus of
the order 1011 Pa [5]. Consequently, the viscosity is inversely proportional to the
diffusion coefficient η ∼ 1/D.

A phenomenological view based on a cage-diffusion picture provides an intu-
itive way of relating the two transport coefficients (diffusion and viscosity) in a
liquid [6].

In this phenomenological model, each particle in a liquid can be thought of
as trapped in a cage, i.e. a potential well created by the constraints imposed by
neighboring particles. For a particle to move, the cage has to be broken open,
creating an empty space (vacancy) in which the particle can move. Classically,
there is an energy barrier associated with such a rearrangement. This is illustrated
very schematically in Fig. 1.1a: A certain activation energy E is needed to escape
from the cage. Thus the chance to jump from one site to another is proportional
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to exp(−E/kT ) and this must be proportional to the diffusion constant, so that

D = D0 exp(−E/kT ) (1.1)

where D0 is a constant.
The shear viscosity is related to the time an atom remains at a given site, since

in dense liquid it is governed by the rate at which shear can take place between
two layers of atoms. This is illustrated in Fig. 1.1b. The viscosity is proportional
to the reciprocal of the chance for a jump from site to site, or to exp(E/kT ), i.e
the inverse of the diffusion coefficient.

η = η0 exp(E/kT ) (1.2)

where η0 is a material constant.
A system following this type of behavior is said to show ”Arrhenius behavior”.

A large number of materials show Arrhenius behavior for temperatures above Tg.
Such substances show small jumps in their specific heat across the glass transition.
They are known as strong glass forming liquids. Examples of these materials are
SiO2 (window glass) and GeO2.

On the other hand, there are materials that show large deviations from the
Arrhenius law and the viscosity changes with T are described by the so called
Vogel-Fulcher-Tammann law [7, 8, 9]:

η = η0 exp(
AT0

T − T0
) (1.3)

These materials are referred to as fragile glass formers and the constant A char-
acterizes the degree of fragility of the material. They usually present a big jump
in heat capacity at Tg. Some examples of fragile glass formers are o-Terphenyl,
toluene, chlorobenzene and polymers. The proportionality of relaxation time and
viscosity fails near the glass transition, as there have been for instance reports of
violations of the Stokes-Einstein relation in structural glasses [10, 11].

1.2.2 Aging

Properties of non-equilibrium systems such as glasses may evolve in time as the
system slowly evolves towards its equilibrium configuration, although never reach-
ing it. As a result the observables of the system such as the correlation and
response functions not only depend on the delay time, as is the case for a time-
translation invariant system, but also on the waiting time or sample age tw defined
as the time elapsed since the sample is quenched into the non-equilibrium state.
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In ”hard” condensed matter systems, the quench is realized by means of a temper-
ature quench. In soft glassy materials such as colloidal systems and foams, this
can be achieved by increasing the volume fraction of, for instance, particles or
bubbles. Examples of correlations that can be measured are density fluctuations
measured by dynamic light scattering in soft glassy materials or magnetization
correlations in spin glasses. Examples of typically measurable response functions
are the mechanical response from rheological measurements and the magnetic re-
sponse in spin glasses. Usually, a two step decay of the form below is observed in
the correlation and the response functions of glassy systems [12, 13, 14]:

C(t, tw) � C∞(t − tw) + Cag(t, tw) (1.4)
R(t, tw) � R∞(t − tw) + Rag(t, tw) (1.5)

where C∞(t − tw) and R∞(t − tw) describe the fast decay of the correlation and
the response which are time-translational invariant and do not depend on the age
of the sample. Cag(t, tw) and Rag(t, tw) are the slow, aging parts which depend on
the age of the sample and can evolve quite dramatically during aging. Depending
on the system, the aging parts behave quite differently. For instance for spin
glasses a behavior of the form Rag(t, tw) ∼ f(t/tw) has been observed (see [15]
and references therein). Some dipolar glasses, close to a ferroelectric transition,
however show a very different behavior of the form Rag(t, tw) ∼ At/tµw in which
0 < µ < 1 [16, 12].

An appealing approach for understanding the complex dynamics of glassy
systems such as a non-exponential two step decay is to consider the influence
of a system’s free-energy landscape on its relaxation processes. The dynamics
of the system is viewed as the motion of the ”state point” (described by the
coordinates of all the particles) in the 6N dimensional configuration space. The
free energy of the system as a function of particle coordinates and momenta defines
a complicated 6N-dimensional surface or landscape. We may partition this phase
space into basins such that the local minimization of the free energy maps any
point in a basin to the same minimum. The properties of the system at a given
state are then dictated by the basins sampled and their mutual accessibility.

The complicated free energy landscape, with many local minima of the free
energy [17, 18] provides a natural framework for understanding aging. The in-
terpretation of the time evolution of the system is that at early times after the
quench to the glassy state, the system is able to access at least part of the phase
space, and can get out of local minima by thermal activation. However, as time
goes on, the system finds deeper and deeper minima, that are more difficult to
escape from, and consequently the relaxation of the system is slower. Because
of this, the system cannot reach thermodynamic equilibrium: it is non-ergodic.
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During this aging, the viscosity increases and the diffusion coefficient of the par-
ticles decreases. This suggests that the trapping of particles in cages, formed by
the constraints that neighboring particles impose, in real space is equivalent to
arrest of the state-point in a local minimum of the free energy.

In theory and simulations, it is usually the potential energy landscape which
is calculated. The free-energy landscape is difficult to access, since it is hard to
compute the entropic contributions [19]. An example of a theoretical model based
on energy landscape, which predicts aging successfully is the trap model originally
developed in the context of spin glasses [17] by Bouchaud. This model illustrates
the basic mechanism behind aging. In the trap model, non-interacting particles
evolve through a hopping mechanism in an energy landscape with wells of depth
E. Trap model was further generalized by Sollich et. al. to obtain the mechanical
response and the aging of soft glassy materials [20].

1.2.3 Dynamical heterogeneity

Another fundamental feature of slow dynamics that is of great current interest
in supercooled fluids and glasses is dynamical heterogeneity [21, 22, 23, 24]. Dy-
namical heterogeneity means that there exist mesoscopic regions in the sample
that transiently relax with a very different dynamics from the average one. Dy-
namical heterogeneities can in principle be both spatial and temporal. Spatial
heterogeneity means that at a given time different regions relax with different
rates. Temporal heterogeneity suggest sudden rearrangements occurring some-
where in the sample which lead to large fluctuations in the time series of some
global measured quantity.

The existence of dynamical heterogeneities in supercooled liquids and glasses
has been suggested on the basis of experiments performed using different tech-
niques [21, 22, 23, 25]. Experimentally, soft materials provide a unique oppor-
tunity to study temporal and spatial heterogeneity in supercooled fluids and
glasses in great detail, because the relevant length and time scales are more
easily accessible than for hard condensed matter systems. Typical experiments
that can detect heterogeneity in soft matter are performed using time-resolved
confocal microscopy [26] or for instance the recently introduced ”time-resolved
light-scattering technique” that allows temporal heterogeneities to be measured
[27].

In confocal microscopy one reconstructs the trajectory of each particle in a
three dimensional colloidal suspension made of several thousand particles. Using
this technique Kegel and van Blaaderen [28] showed that supercooled liquids and
glasses of hard spheres show regions of fast moving particles in a sea of more
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slowly moving particles. The dynamical heterogeneities are manifested as a non-
Gaussian distribution of particle displacements, i.e. the self-part of the van Hove
correlation functions Gs(x, τ)

Gs(x, τ) =
1
N

〈
N∑

i=1

δ[x + xi(0) − xi(τ)]〉 (1.6)

where x is the distance from a given particle center. The lowest order deviation
of Gs(x, τ) from a Gaussian distribution is quantified by

α2(τ) =
< x4(τ) >

3 < x2(τ) >2
− 1 (1.7)

Furthermore, they showed that Gs(x, τ) could reasonably well described by a sum
of two Gaussians: a wide one for the most mobile fraction of the particles, and a
narrow one for the slowest fraction.

The time-resolved light-scattering technique [27] has been developed with the
aim of testing large temporal fluctuations in the two-time correlations of intensity
I(t), i.e. C(t + τ, t) =< I(t + τ)I(t) >. Using a multi-speckle collector, C(t +
τ, t) is calculated as an average over speckles of the intensity-intensity two-time
correlations. Temporal fluctuations in colloidal suspensions have been studied
in this way. In order to investigate the temporal heterogeneity of the dynamics,
it is useful to plot C(t + τ, t) as a function of time t for a fixed lag time τ .
For temporally homogeneous dynamics, one expects C(t + τ, t) to be constant
(except for small fluctuations due to measurement noise). To the contrary, a
large drop of C(t + τ, t) at time t would be indicative of a sudden rearrangement
event occurring between t and t + τ and leading to a significant change of the
sample configuration. Large drops of C(t + τ, t) have been indeed observed in
time-resolved light-scattering measurements on a variety of systems, including
colloidal fractal gels and concentrated surfactant phases [27, 29].

The presence of dynamical heterogeneity can explain some of the other com-
mon features such as non-exponential relaxations and translational-rotational de-
coupling observed in glassy dynamics. Practically all disordered systems exhibit
a distribution of relaxation times. Often enough, this distribution of time con-
stants is observed in terms of a non-exponential normalized autocorrelation func-
tions of for instance density which are well described by a Kohlrausch-Williams-
Watts (KWW) function which is the stretched exponential function exp(−(t/τ)β).
Both numerical simulations and experiments suggest that the origin of the non-
exponential relaxation in super-cooled liquids are the so called dynamical hetero-
geneities, i.e. a superposition of different relaxation processes [21, 22, 23].
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The coefficients of rotational and self-diffusion in the viscous regime of glass-
formers are accessible via NMR measurements [11, 30, 31]. Interestingly, these
studies have shown that the temperature dependence of translational diffusion
Dt(T ) differs from that of rotational diffusion Dr(T ) for temperatures T < 1.2Tg,
while Dt(T ) and Dr(T ) display the same behavior at elevated temperatures, T >
1.2Tg. In the lower temperature regime, Dt(T ) displays a weaker temperature
dependence relative to Dr(T ) and, accordingly, translational diffusion is enhanced
over rotation when compared with the higher temperature situation. Within
this picture of spatially distributed timescales τ , one can argue that the average
timescale of rotational motion is governed by the slower contributions within the
(spatial) distribution of relaxation times, Dr(T ) ∝< τ >−1, while the faster
times are more relevant in determining the average translation time with Dt(T )
being approximated by < τ−1 >[32]. As a consequence of this explanation, the
extent of translational enhancement is expected to correlate with the width of
the relaxation time distribution and should disappear as the correlation function
approaches a single exponential upon increasing temperature [33].

1.3 Fluctuation-dissipation relations

In equilibrium, the connection between the random fluctuations in a system and
the response to an external perturbation is provided by the fluctuation-dissipation
theorem (FDT). In statistical physics, the fluctuation dissipation theorem states
that in thermodynamic equilibrium the response of a system to a small exter-
nal perturbation is the same as its response to a spontaneous fluctuation. In
other words, the physics governing the response of a system that is taken out of
equilibrium (e.g. dragging a sphere through a liquid) can be described entirely
in terms of its fluctuations about the equilibrium state (”out-of-equilibrium” in
the above sentence should be understood as close to equilibrium or stationary
states). This is the fundamental observation behind the fluctuation-dissipation
theorem and the somewhat earlier Regression Hypothesis made by Onsager [34].
The fluctuation-dissipation theorem was proved in general by Callen and Welton
in 1952 [35], although special cases of it were understood much earlier [34]. A
comprehensive review article about FDT and its applications in thermally equili-
brated systems has been written by Kubo [4]. Here, I first briefly review the FDT
at the level which is used in this thesis. Second, I will discuss the extensions of
the fluctuation-dissipation relation to strongly non-equilibrium systems like aging
systems as proposed by Cugliandolo et. al. [3].
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1.3.1 Fluctuation-dissipation theorem in equilibrium

Consider a system which is disturbed by an external field f(t) which is weak
relative to the particle interaction potential so that rates of relaxation are not
affected by the applied field. Let B be some macroscopic thermodynamic vari-
able conjugate to the perturbing field and A be another macroscopic observ-
able whose relaxation we are interested in. Then the change in the Hamilto-
nian of the system is ∆H = −fB. The perturbation leads to a change of
< ∆A(t) >=

∫
dt′RAB(t, t′)f(t′) in the observable A. Therefore, the mutual

response of the observable B to the external force f results as

RAB(t, t′) =
< δA(t) >

δf(t′)
|f=0 (1.8)

Within the linear response theory, the response function is related to the cor-
relation function of observables A and B defined as CAB(t, t′) =< A(t)B(t′) >
− < A(t) >< B(t′) >. Therefore, the FDT relates the response to the correla-
tion function in equilibrium with a prefactor that is inversely proportional to the
system’s temperature.

RAB(t, t′) =
1

kBT

∂CAB(t, t′)
∂t′

(1.9)

Note that in equilibrium, as a result of time translational invariance, both the two-
time correlation and response function only depend on s = t − t′, i. e. C(t, t′) =
C(t − t′) and R(t, t′) = R(t − t′).

Equivalently the FDT can be Fourier transformed and represented in the fre-
quency domain. Note that due to causality R(s) is only defined for positive times.
Therefore the Fourier transforms of the response and the correlation function are
one-sided:

α(ω) = α′(ω) + iα′′(ω) =
∫ ∞

0

dsR(s) exp(iωs) (1.10)

C̃(ω) = �
∫ ∞

0

dsC(s) exp(iωs) =
1
2
S(ω)

where here S(ω) =
∫ ∞
−∞ C(s) exp(iωs)ds is the power spectrum of the correlation

function. Consequently the FDT in Fourier space would read

α′(ω) = − ω

kBT
C̃(ω) = − ω

2kBT
S(ω). (1.11)
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Kramers-Kronig relations

Due to causality the response function R(t) vanishes for t < 0. This means
that the Laplace transform of response function α(z), which is a function of the
complex variable z, is actually analytic in the upper half plane (�z > 0). Thus,
we can apply the Cauchy theorem for complex functions. Through this identity,
we can connect the real part of the response function to its imaginary part and
vice versa, leading to the Kramers-Kronig relations.

α′(ω) =
2
π

P

∫ ∞

0

ω′α′′(ω′)
ω′2 − ω2

dω′ (1.12)

α′′(ω) =
2
π

P

∫ ∞

0

ω′α′(ω′)
ω′2 − ω2

dω′

The Kramers-Kronig relations express the fact that the functions α′ and α′′ are
not independent of each other. Indeed, one can completely recover one from the
other via such a transformation knowing the full frequency behavior. This has
practical consequences for the microrheology techniques which we are using in
this thesis, as will be explained in the next chapter.

Explicit examples of the FDT

Einstein relation
As an explicit example, we first look at the Brownian motion of a particle in a
viscous fluid, which has a direct application in the microrheology technique used
in this thesis. The equation of motion of particle in the surrounding liquid is

mẍ(t) +
∫

ξ(t − t′)ẋ(t′)dt′ = Fext + ζ(t) (1.13)

Here ξ is the friction coefficient of the drag force exerted on the Brownian particle
by the surrounding fluid, and ζ is the stochastic random force imparted to the
particle through the thermal motion of molecules of the surrounding fluid.

The linear response α = α′−iα′′ of a sphere embedded in an isotropic medium
and subjected to an applied oscillatory force f(ω) is

x(ω) = αxx(ω)f(ω) (1.14)

where x(ω) is the resulting displacement of the particle. Therefore, in this case
the FDT takes the form

α′′
xx(ω) =

ω

2kBT
< |x2(ω)| > (1.15)
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which is known as the Einstein relation in frequency space.
Similarly, we can write a FDT relation for the velocity of a Brownian particle

and its mobility µ(ω).

v(ω) = αvx(ω)f(ω) = µ(ω)f(ω) (1.16)

Multiplying both sides of Eq. (1.14) by iω, we find that µ(ω) = iωαxx(ω). Know-
ing that < |v2(ω)| >= ω2 < |x2(ω)| >, we arrive at the following relation between
the velocity correlation and mobility:

µ′(ω) =
1

2kBT
< |v2(ω)| > (1.17)

For a purely viscous liquid, we have α(ω) = −iα′′ and µ(ω) = µ′ = 1/ξ = ωα′′.
If we take f(ω) = ζ(ω) in Eq. (1.16), we can obtain the relation between the

power spectrum of the random force and the drag coefficient ξ(ω) = 1/µ(ω). From
Eq. (1.16), we have < |v2(ω)| >=< |µ2(ω)| >< |ζ2(ω)| >, replacing this in the
FDT relation Eq. (1.17), we get

< |ζ2(ω)| >= 2kBT
µ′(ω)

< |µ2(ω)| >
= 2kBTξ′(ω) (1.18)

This relation shows that the drag force that a particle experiences in the fluid
at a microscopic level is due to the randomly fluctuating forces acting on the par-
ticle at finite temperature. These random forces are at the origin of macroscopic
dissipation.

Nyquist theorem
Another important example of the FDT with important applications is simple
electrical circuits is Nyquist theorem. There, an electric current satisfies an equa-
tion similar to that of a particle in a dissipative medium:

(R + iLω)I(ω) = Vext(ω) + ζ(ω) (1.19)

where L is the inductance, I is the current. Vext represents a (constant or slowly
varying) external applied field, R is the resistance, and ζ is the fluctuating voltage
related to dissipation. Taking the ensemble average of this equation yields the
familiar law relating the voltage, current, and resistance Vext = IZ, in which
Z = R + ıLω is the impedance. The impedance Z here is analogous to the drag
coefficient ξ of a Brownian particle, and a similar analysis to what was done above
leads to the FDT for the fluctuations of the noise voltage

Z ′(ω) =
1

2kBT
< |ζ2(ω)| > (1.20)
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This general relationship between voltage fluctuations and the impedance in a
circuit is known as the Nyquist theorem. It is another special case of the FDT.

1.3.2 Fluctuation-dissipation relation in non-equilibrium

In practice, non-equilibrium behavior is observed in two typical situations. The
first one is the case of an aging glassy material, whose relaxation time grows with
time. The second practical way of creating a non-equilibrium situation is to drive
the system by applying some external field or force, which feeds energy into it on
large scales. In the latter case the system often reaches a stationary state and
recovers time-translational invariance, while glassy systems are non-stationary
and the time-translational invariance is broken.

Systems that are either driven by an external force or that are glassy are not
thermally equilibrated because they show very slow relaxation processes. There-
fore one can not define a temperature for such systems in the usual sense and
the principles and theories of equilibrium statistical mechanics do not necessarily
hold for them.

In aging systems time-translational invariance is broken. Therefore, the ob-
servables A are dependent on the waiting-time (tw). The validity of the fluctuation-
dissipation relations (FDR) Eq. (1.9) in non-equilibrium systems can not be taken
for granted. Indeed there have been reports of violation of the FDR in theoretical
models of [3, 36, 37, 38] and experiments on glasses [39, 40, 41].

Given two observables depending on the waiting time A(tw) and B(tw), their
correlation function and response functions are defined in a similar manner as
in equilibrium, but now due to the breaking of time translational invariance the
correlation function can not be written as a function of the time difference.

CAB(t, tw) =< A(t)B(tw) > − < A(t) >< B(tw) > (1.21)

RAB(t, tw) =
< δA(t) >

δf(tw)
|f=0; t > tw

Then the generalization of FDR would read

RAB(t, tw) =
X(t, tw)

kBTbath(t, tw)
∂CAB(t, tw)

∂tw
(1.22)

Values of X different from unity mark a violation of FDR . These violations can
persist even in the limit of long waiting times, indicating strongly non-equilibrium
behavior even though one-time quantities such as entropy and average energy may
evolve infinitesimally slowly.
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Cugliandolo et. al. [3] suggested an extension of the FDR to non-equilibrium
systems in which the deviations from the FDR are quantified by a time-scale-
dependent effective temperature, i.e. Teff(t, tw) = T/X(t, tw). This effective tem-
perature will depend on the age of glass as well. They suggested that this temper-
ature has properties of conventional temperature for systems that are thermally
in equilibrium, i.e.

• the effective temperature associated with a time scale is the one measured
in a system by a thermometer in contact with the system, whose reaction
time is equal to that time scale.

• it determines the direction of heat flow within that time scale

• it acts as a criterion for thermalization

Plotting the integrated response function χ(t, tw) versus the correlation func-
tion gives us the FD plot. The slope of this curve determines the effective tem-
perature of the system. Therefore deviations from a straight line in the FD plot
characterize the non-equilibrium nature of the system. The slope at short times
gives the bath temperature, while at long times it gives an effective temperature
deviating from the bath temperature.

Figure 1.2: The integrated response function χ(t, tw) vs the autocorrelation function
C(t, tw) for a spin glass model at T < Tg. The full curves correspond to different total
times t, equal, from bottom to top, to 12.5, 25, 37.5, 50, and 75, respectively (tw < t/4
throughout!). The dots represent the analytical solution for tw −→ ∞. Neither χ(t, tw)
nor C(t, tw) achieve stationarity. This figure is taken from ref. [3].
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In systems with slow dynamics, such as spin glasses and colloidal glasses, for
short delay times τ = t − tw 	 tw, the correlation function in general first shows
a fast decay from C0 to some plateau value. This part is time translationally
invariant. Consequently, at these time scales the system thermalizes with the
bath and one obtains Teff(t, tw) = Tbath. Therefore the slope of the FD plot
is proportional to 1/Tbath at large values of the correlation functions. On the
other hand in the limit of long times t, tw → ∞ and (t − tw ∼ tw). This is
the time regime for which a non-linear relation between integrated response and
correlation function is predicted by some models and deviations from the FDR
can be expected [3]. Fig. 1.2 shows an example of such FD plots calculated for a
spin glass model taken from reference [3].

Furthermore, Cugliandolo et. al. suggested that by coupling a non-equilibrium
system to a harmonic oscillator of frequency ω, the oscillator would measure the
effective temperature at that frequency corresponding to the time scale t − tw ∼
ω−1 [3]. Therefore, it is useful to write the non-equilibrium FDR in frequency
space.

α(ω, tw) = α′(ω, tw) + α′′(ω, tw) =
∫ ∞

tw

dtR(t, tw) exp(iωt) (1.23)

C̃(ω, tw) = �
∫ ∞

tw

dtC(t, tw) exp(iωt) =
1
2
S(ω, tw)

Consequently, the FDR in the frequency domain takes the form

α′′(ω, tw) =
ω

2kBTeff(ω, tw)
S(ω, tw) (1.24)

In this thesis, we are going to investigate the validity of the FDR in the form
of the Einstein relation for colloidal glasses and gels.

1.4 Colloidal systems

Colloidal dispersions offer a powerful testing ground for fundamental issues in
statistical physics, with attention now turning to non-equilibrium phenomena
such as the glass transition [42, 43]. In addition, the presence of two components,
i.e. a solvent and colloids results in the emergence of new disordered states of
matter such as gels which are absent in molecular systems.

Colloidal gels and glasses are two types of ”jammed” states of soft condensed
matter with static elasticity. They are similar in the sense that both are non-
ergodic disordered states and show aging. The difference between gels and glasses



16 Chapter 1. General Introduction

is rather clear in their ideal limits. The elasticity of a gel stems from percolated
infinite network, while that of a glass stems from caging effects. In addition a
gel is inhomogeneous over the characteristic length scale of the network, and has
a hierarchic structural organization, while a glass is essentially homogeneous for
interparticle distances a few times larger than the particle radius.

Colloidal glasses of hard spheres and fractal colloidal gels are the two limiting
cases of disordered solid-like states which are relatively well understood. Colloidal
glasses form at high volume fractions of hard spheres, with their solid-like prop-
erties originating from permanent trapping of particles within cages formed by
neighboring particles [44, 42]. In contrast, at very low volume fractions, the pres-
ence of strong attractions between colloidal particles can lead to the formation of
fractal clusters which ultimately form a space-filling network. At volume fractions
between these two extremes, particles can still form non-ergodic disordered states
whose nature depends on both the interaction strength and the colloid volume
fraction. For example the presence of short-range attractions with high enough
strengths at moderate volume fractions of hard sphere has lead to the appearance
of a new type of non-equilibrium state: attractive glass [45, 46, 47]. The vitri-
fication in a repulsive glass is induced by increasing the pressure and caused by
steric hinderance of hard cores at high densities. While in an attractive glass it
is induced by increasing the attraction strength and caused by bond formation
between the particles. At this moment, a theoretical picture which unifies these
limits by connecting the high density repulsive glass to the low density space-
spanning network remains to be constructed.

We consider here suspensions of charged colloidal clay particles, Laponite.
When a small amount of Laponite powder (weight fractions of less than a few
percent) is dissolved in water, the suspension spontaneously evolves from an ini-
tially ergodic liquid-like state to a non-ergodic soft solid-like state. The isotropic
non-ergodic state has recently attracted considerable attention [48, 49, 50, 51, 52,
53, 14]. It has been proposed to be a colloidal glass, but is also very often called a
colloidal gel. Therefore, the nature of the non-ergodic state of this material is am-
biguous. In this thesis, we provide experimental evidence for the existence both
types of non-ergodic states, i.e. gel and glass. Below, we give a brief summary of
our current knowledge about the non-equilibrium phase diagram of hard spheres
and Laponite suspensions.

1.4.1 Hard spheres

In hard sphere colloids, it is the volume fraction instead of the temperature that
plays the role of the control parameter. Upon the increase of the volume fraction
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Figure 1.3: The equilibrium and non-equilibrium phase diagram of hard spheres. The
figure is taken from Pusey and Van Megen [44].

of hard spheres, the system shows a full range of phase behavior from fluid →
crystal → glass [44, 42]. In the range of volume fractions 0.49 < φ < 0.545
fluid and crystal coexist. For volume fractions φ > 0.545 the crystalline solid is
the stable phase of the system. The glass phase can, however, form at volume
fractions between 0.58 and 0.64.

In hard spheres, the dramatic slowing down of the dynamics when approach-
ing φg is due to the ’cage effect’: the motion of any given particle is increasingly
hindered by its neighbors as the particles are packed more tightly. The glass tran-
sition is therefore driven by the repulsive (excluded volume) interaction between
the spheres, and the arrested phase thus formed is termed repulsive glass. Recent
theoretical [54, 55, 56] and experimental [45, 46, 47] work has shown that the
addition of short-ranged low energy attractive interactions can lead, surprisingly,
to the melting of such a repulsive glass. This can be understood in the framework
of the cage effect: particle bonding due to attractions results in the increase of
the available free volume, thus loosening and eventually opening the cage. If the
strength of the attraction is increased further a new arrested phase is formed,
because the bonds are sufficiently long-lived to effectively confine the particles.
This arrested phase is referred to as an attractive glass, although the term gel
is also found in the literature. For a short general introduction to the topic of
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Figure 1.4: The structure of Laponite particles from Laporte company.

attractive versus repulsive glass, see [57]. A brief and clear review of the exper-
imental work on this topic is given in [58], while reference [59] discusses recent
theoretical advances.

1.4.2 Laponite

Laponite (a synthetic hectorite manufactured by Laporte Ind. Ltd, see Fig. 1.4)
is a synthetic layered silicate with specific density of 2.5 g/cm3. To a good ap-
proximation Laponite particles can be considered as rigid disks of R ≈ 15 nm
and H ≈1 nm. Each particle is a mono-crystalline disk built up by three layers,
two outer tetrahedral silicate layers and a central one consisting of octahedrally
surrounded magnesia. Part of the magnesium in the central layer is replaced by
Lithium.

Laponite comes as a white powder, and each powder particle is composed of
several stacks of Laponite particles. When Laponite is dispersed in deionized
water or in any polar liquid, the polar molecules penetrate between the interleaf
regions (i.e. within the stacks), dissolving the interleaf cations and separating the
platelet surfaces by hydration and electrostatic forces. Thus, in the final structure
the particle surface has a negative charge on the order a few thousand electron
charges (in water) [60], while the edges of the crystal may, depending on the pH,
have small localized positive charges generated by absorption of hydroxyl groups
where the crystal structure terminates [61]. This positive charge is much smaller
than the negative charge at the faces and is estimated to be at most about 50e.
Laponite dispersions are thus consisting of a collection of negatively charged disks
and counterions, which are mainly positive sodium ions and solvent molecules.

Because of its purity and very small size, Laponite clay forms colorless and
transparent suspensions which are particularly suitable for light scattering studies.
In addition, Laponite suspensions form non-ergodic states at volume fractions as
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Figure 1.5: Phase behavior of Laponite suspensions as suggested in reference [62]. In
this figure, I is the ionic strength with the unit (Mol/Liter) and C shows the Laponite
concentration in weight percent. Region 4 is related to a macroscopic flocculation regime.
The line, separating region 1 and 3, is related to the liquid/solid-like transition observed
at high ionic strength. Open circles: liquid suspensions; full squares: solid-like suspen-
sions. The full line is the prediction of the liquid-solid transition using a renormalization
of the solid particle size with the Debye screening length [63].

low as 10−3.
Laponite has an additional special feature which makes it more interesting

from the viewpoint of non-equilibrium statistical physics. In this system, in ad-
dition to the density, time can act as a natural parameter to study the transition
from an ergodic to a non-ergodic state. Since its particles are anisotropic, it also
gives the possibility of studying the dynamics of the orientational degree of free-
dom. Furthermore, it can model a variety of natural clays omnipresent in our
everyday life. In industry, it has various applications, for instance it is used as a
thickener in cosmetic products.

Despite various studies on the non-equilibrium behavior of Laponite suspen-
sions, [64, 48, 49, 65, 66, 67, 68, 53] a unified picture of the aging dynamics of
Laponite suspensions and the nature of non-ergodic states is still missing. The
phase diagram in Fig. 1.5 has been proposed based on experimental studies of
Mourchid and Levitz et. al. [64] and Bonn et. al. [63] who proposed the existence
of low volume fraction repulsive Wigner glass due to the strong electrostatic re-
pulsions. As can be seen, at very low concentrations the suspensions are liquid
(region 1). For weight fractions C > 1 wt%, and at ionic strengths lower than 10−4

M (region 2) a low volume fraction Wigner colloidal glass is formed. In region 3,
corresponding to high concentrations of Laponite and moderate ionic strengths,
solid-like structures are formed whose nature (being gel or glass) has been the
subject of controversy. At very high salt concentrations I > 10 mM, flocculation
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occurs (region 4). It should be noted that further experiments [52, 67, 69] show
that the above phase diagram needs revision.

In this thesis, we take advantage of light scattering, rheology and microrheol-
ogy to get a deeper insight into the non-equilibrium phase diagram of Laponite
suspensions. We see that the above phase diagram needs to be modified accord-
ing to our data, and we find evidence for a new non-ergodic state, the ”attractive
glass” in Laponite.

1.5 Outline of this thesis

This thesis is organized as follows:
In chapter 2 we review the experimental techniques and data analysis methods

used in this thesis. The techniques which are used are light scattering, rheology
and microrheology

Chapter 3 is devoted to the light scattering study of the aging dynamics of
translational diffusion of Laponite particles over a wide range of concentration
and salt content.

Our results suggest that there are at least two metastable minima in the free
energy corresponding to gel and glass states, and that different pathways towards
these non-equilibrium states exist. Furthermore, we provide experimental criteria
for the distinction between gels and glasses. Finally, we present a generalized
phase diagram based on our data.

Chapter 4 focuses on the study of the rotational dynamics of colloidal gels and
glasses of Laponite during their evolution to a non-ergodic state. Our remark-
able observation is that the slowing down of the rotational diffusion occurs at a
faster rate than the translational motion. In addition, we find that aging of the
rotational degree of freedom in gels and glasses of Laponite is distinctly different.
Therefore the evolution of short and long time rotational diffusion supplies us
with a further criterion to distinguish gels and glasses.

In Chapter 5, we investigate the validity of the fluctuation-dissipation relation
in the form of the Einstein relation in hard sphere glasses and colloidal glasses
and gels of Laponite at different stages of aging. We do not find any deviations
from the FDR at any stage of aging in any of these systems in the frequency range
0.1-10000 Hz, contrary to previous reports [70, 41, 71].

In Chapter 6, we study the evolution of the viscoelastic properties of Laponite
glasses and gels over a wide range of frequencies. Combination of one- and two-
particle microrheology provides us with a strong tool for detecting spatial het-
erogeneities. Our measurements show that glasses are homogenous on length
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scales larger than 0.5 micron. On the other hand, gels have a heterogenous struc-
ture with local shear moduli varying from one position in the sample to another.
Therefore, these measurements again confirm our previous results of a distinc-
tion between gels and glasses based on light scattering studies and provide an
additional criterion for discerning colloidal gels and glasses. In addition, our data
show that despite the characteristic difference in structure of Laponite gels and
glasses, the frequency behavior of their local shear moduli are similar. We find
that for all Laponite samples the frequency-dependent complex shear modulus
shows a transition from a single power law at early stages of aging to a sum of
two power laws at later stages.





2.

Experimental Techniques

Experimental methods used in this thesis to probe the properties of colloidal
suspensions are light scattering, rheology and microrheology. Below we describe
in detail the physical basis of each of the techniques used and the information
obtained by them.

2.1 Light scattering

Scattering is a general physical process in which some form of radiation, such
as light, sound, or moving particles, starts to deviate from its usually straight
trajectory by one or more localized non-uniformities in the medium through which
it passes [72, 73, 74].

The types of non-uniformities that can cause scattering, known as scatterers
or scattering centers, are too numerous to list. Some examples of them include
particles, bubbles, droplets, density fluctuations in fluids, defects in crystalline
solids, surface roughness, cells in organisms, and textile fibers in clothing.

In descriptions of scattering, we commonly distinguish between two general
types of scattering, elastic and inelastic [72, 74]. Elastic scattering involves no
(or a very small) loss or gain of energy by the radiation. Inelastic scattering
does involve some change in the energy of the radiation. In this case scattering
is accompanied by some absorption of light. Both scattering and absorption
remove energy from a beam of light traversing the medium. The sum of energies
attenuated by absorption and scattering processes is called extinction.

We will restrict ourselves here to elastic scattering. When radiation is only
scattered by one localized scattering center, this is called single scattering. When

23
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the radiation is scattered many times from different scattering centers we have
multiple scattering.

Light scattering is one of the two major physical processes that contribute
to the visible appearance of most objects, the other being absorption. Surfaces
described as white owe their appearance almost completely to the scattering of
light by the surface of the object. The absence of surface scattering leads to a
shiny or glossy appearance. Light scattering can also give color to some objects,
usually shades of blue as with the sky, the human iris, and the feathers of some
birds.

Rayleigh scattering [72, 75] is the limiting case in which electromagnetic radia-
tion (including light) is scattered by a small spherical volume of variant refractive
index such as a particle, bubble, droplet, or density fluctuation. Scattering in this
regime was first modelled successfully by Lord Rayleigh. In order for Rayleigh’s
model to apply, the sphere must be much smaller in diameter than the wavelength
λ of the scattered wave, i.e. (D/λ 	 1). The upper limit is taken to be about
1/10 the wavelength. In this size regime, the exact shape of the scattering center
is usually not very significant and can often be treated as a sphere of equivalent
volume. The degree of scattering varies as a function of the ratio of the parti-
cle diameter to the wavelength of the radiation, along with many other factors
including polarization, angle, and coherence.

The problem of electromagnetic scattering by spheres of arbitrary size was first
solved by Gustav Mie and is therefore known as Mie scattering that is usually used
for large particles, D/λ � 1 [73]. In Mie scattering, the shape of the scattering
center becomes important. Although the theory is general, in practice it is only
applicable for spheres, and with some modifications it can be used for spheroids
and ellipsoids. Closed-form solutions for scattering by certain other simple shapes
exist, but no general closed-form solution is known for arbitrary shapes.

At values of the ratio of particle diameter to the wavelength of more than
about 10 (D/λ > 10), the laws of geometric optics are mostly sufficient to describe
the interaction of light with the particle, and at this point the interaction is not
usually described as scattering [76].

There are two classes of research problems in scattering. One category which
involves predicting how various systems will scatter radiation. The other widely
studied but more difficult challenge is the ”inverse scattering problem,” in which
the goal is to observe scattered radiation and use that observation to determine
properties of either the scatterers or their interactions. An electromagnetic field
impinging on a sample is scattered from inhomogeneities such as a dispersion of
colloids in which the colloidal particles undergo random Brownian motion. The
electric field amplitudes scattered by these different regions of sample interfere
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Figure 2.1: a) Schematic time-dependent speckle pattern produced from light scattered
by particles undergoing Brownian motion. b) a real image of speckle pattern in light
scattering experiments

and create a distribution of dark and bright regions in the far field: a speckle
pattern (See Fig. 2.1). In fact the inverse scattering is the problem of inverting
the observed speckle pattern to the real space picture. The inverse is not usually
unique because several different types of scattering centers can usually give rise
to the same pattern of scattered radiation, so the problem can not be solved
in the general case. Fortunately, there are ways to extract some useful, albeit
incomplete, information about the scatterer.

In this thesis we deal with inverse scattering problem of light from a soft glassy
material (Laponite suspensions). Our aim is to obtain spatial and temporal cor-
relations of the scatterers undergoing Brownian motion in a colloidal suspension.
When illuminated with laser light, the colloids undergoing Brownian motion act
as moving scattering centers. The total light scattered by an assembly of colloids
produces a time and direction dependent pattern of constructive and destructive
interference arising from the phase differences between elementary waves scattered
from each of them. Looking at the time-averaged pattern formed by this assem-
bly, we obtain structural information about the particles themselves and about
the suspension as a whole which can then be related to thermodynamic proper-
ties. Studying this pattern is the purpose of Static Light Scattering (SLS) [77].
Studying the temporal correlation of the total scattered light at a given direction
is the purpose of Dynamic Light Scattering (DLS) which gives us information
about the dynamics of the colloids.

We first focus on the scattering pattern from a single particle and in the
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Figure 2.2: Scattering from a small dielectric sphere.

following a collection of particles (SLS). Later we will describe the DLS method
in detail that is mainly used to study the dynamics of the aging colloidal gels and
glasses in this thesis.

2.1.1 Single particle light scattering

Rayleigh approximation

The scattering of electromagnetic waves by systems whose dimensions are small
compared to the wavelength can be described by Rayleigh scattering [75, 73,
72]. In such cases it is convenient to think of the incident radiation fields as
inducing electric and magnetic multipoles that oscillate with the same frequency
in definite phase relationship with the incident wave and radiate energy in all
directions. If the wavelength of the radiation, λ, is long compared to the size of
the scatterer R, i.e. kR << 1, only the lowest multipoles, usually electric and
magnetic dipoles are important. Consider a plane mono-chromatic wave in an
environment with refractive index n1 and electric and magnetic permittivities ε1

and µ1 to be incident on a scatterer with refractive index n2 and electric and
magnetic permittivities ε2 and µ2 (see Fig. 2.2). If the incident direction is
defined by unit vector n̂1 and the incident polarization vector is ε̂1, the incident
electric and magnetic fields are

Ei = ε̂1E0 exp(ikn̂1.x1 − iωt) (2.1)
Hi = n̂1 × Ei/Z1

where the wave vector k = ω/c1 and Z1 =
√

µ1/ε1. These fields induce oscillating
electric, p exp(−iωt), and magnetic, m exp(−iωt), dipole moments in the small
scatterer due to the difference between the refractive index of the scatterer and
the surrounding medium. These dipoles, therefore radiate energy in all directions.
In the far field at a distance r from the scatterer k|x2−x1| = kr � 1 the scattered
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fields are (see Ref. [72] Sec. (9.2))

Es =
1

4πε1
k2 exp(ik(r2 − n̂2.x1) − iωt)

r
[(n̂2 × p) × n̂2 − n̂2 × m/c](2.2)

Hs = n̂2 × Es/Z1

where n̂2 is a unit vector in the direction of observation and r2 = |x2|.
As an example, let us look at the scattering from a small dielectric sphere of

radius R with µ2 = µ1 and a uniform isotropic dielectric constant ε2(ω). Then
there is no induced magnetic moment and the induced electric dipole moment in
the presence of uniform electric field is (see Ref. [72] Sec.(4.5))

pind ≡ γEi = 4πε1(
ε2/ε1 − 1
ε2/ε1 + 2

)R3Ei (2.3)

where we have introduced γ as the electric polarizability. Detectors such as pho-
tomultipliers or photodiodes respond to the intensity rather than the electric field
of incident light. The instantaneous intensity that is defined as the rate of passage
of energy through unit area perpendicular to the direction of propagation with
certain polarization ε̂ averaged over the oscillation period, is given by

Ii =
1

2Z1
|ε̂1∗.Ei|2 (2.4)

Is =
1

2Z1
|ε̂2∗.Es|2

Therefore the ratio of scattered intensity in direction n̂2 to the incident intensity
is

Is

Ii
=

k4R6

r2
(
ε2/ε1 − 1
ε2/ε1 + 2

)2|ε̂2∗.ε̂1|2 =
ω4γ2

(4πε1)2c2
1r

2
|ε̂2∗.ε̂1|2 (2.5)

The fourth power dependence on ω was predicted by Lord Rayleigh on the basis
of dimensional arguments. Note that the factor |ε̂2∗.ε̂1|2 for the case that the
polarization of incident and scattered light are in the scattering plane gives us
a factor of cos2 θ ( θ is the angle between the unit vectors n̂1 and n̂2 ). While
in the case that both polarizations are perpendicular to the scattering plane it is
equal to 1. Therefore, there is no angular dependence for scattered intensity in
the Rayleigh regime when polarization is perpendicular to scattering plane.

Scattering experiments are usually defined in terms of the Rayleigh ratio that
is defined as r2 Is

IiVs
in which Vs is the scattering volume. This ratio is indepen-

dent of the apparatus constants and is solely determined by the properties of the
scattering system.
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Figure 2.3: A schematic representation of scattering of light by a dielectric sphere
of dielectric constant ε2 refractive index n2 in a medium with dielectric constant ε1

refractive index n1. xl and xj are the coordinates of two positions in the sample.

Rayleigh-Gans-Debye approximation

In the Rayleigh approximation the particles are considered as point dipoles. Fur-
ther extension to dielectric objects of arbitrary size (not too large) can be achieved
[75, 73] under the following conditions:

1. only a small fraction of the incident light is scattered and no multiple scat-
tering occurs.

2. the incident light is not refracted at the interface between the surrounding
medium and the particle, i.e.

|n2 − n1| 	 1 . (2.6)

3. the phase difference between the light traversing through a particle and the
light passing through the surrounding medium is small, i.e.

2π|n2 − n1| L

λ0
	 1 ; (2.7)

where L is the largest dimension of the particle λ0 is the wavelength of light
in vacuum.

The particle can be considered as being composed of infinitesimally small
volume elements each of them acting as a point scatterer. Fig. 2.3 shows a
macromolecule with a scattering segment at position xj relative to the center
of mass. Collimated incident light with the wave vector ki = 2πn1

λ n̂i passes
through the different positions of the sample. The phase difference between the
scattered light in the direction n̂2 from two different points in the sample is equal
to 2πn1

λ [n̂i.(xj − xl)− n̂s.(xj − xl)] which can be rephrased as (ki − ks).(xj − xl).
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The scattered wave vector is defined as ks = 2πn1
λ n̂s. The difference between the

incident wave vector and scattered wave vector is usually called the scattering
wave vector denoted as q = ki − ks with the magnitude |q| = 4π

λ sin(θ/2) =
2k sin(θ/2), where k = 2π/λ = |ki| = |ks|

Taking the origin at xl, to every position at xj we can associate a phase factor
as q.xj. Accordingly, the electric field of the light scattered by the jth volume
element can be written as

Ej = bj exp(iq.xj)E0 exp(−iωt)ε̂s (2.8)

where ε̂s is the polarization of the scattered light which would be the same as the
polarization of incident light for the case the polarizability is isotropic and thus a
scalar. From here, we assume an isotropic polarizability and that the polarization
vectors of scattered and incident light are the same ε̂i = ε̂s. Therefore we skip
the vector sign for the electric field. The amplitude bj can be derived from Eq.
(2.2) assuming the local polarization pj = γjE0

bj =
1

4πε1
k2 exp(ikr)

r
γj , (2.9)

Here r is the distance of the center of mass of the particle from the detector.
In the simple case of an isotropic material the polarizability can be estimated
as γj = (εj − ε1)δVs, with Vs being the scattering volume. Therefore, the total
scattered field is the sum of the electric fields scattered from different volume
elements.

Es = E0 exp(−iωt)
∑

j

bj exp(iq.xj)ε̂s. (2.10)

which can be written as an integration

Es = E0 exp(−iωt)
1
4π

k2 exp(ikr)
r

∫
Vp

dx(ε2(x) − ε1)/ε1 exp(iq.x)ε̂s. (2.11)

This can be expressed in terms of refractive indices (n =
√

ε
ε0

) when ε1 and ε2

are not too different [75].

Es = E0 exp(−iωt)
1
2π

k2 exp(ikr)
r

∫
Vp

dx(n2(x) − n1)/n1 exp(iq.x)ε̂s (2.12)
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Mie scattering

For a spherical particle of arbitrary size, the angular distribution of scattered light
intensity is given by the Mie theory [73, 78]. The solution is obtained by solving
the problem of a plane electromagnetic wave incident on a uniform uncharged
sphere of arbitrary radius and refractive index. The basic idea is to expand the
incident plane wave of a fixed polarization, Eq. (2.1) in a Fourier series using the
appropriate vectorial basis functions that satisfy Maxwell’s equations in spherical
coordinates. We then apply the suitable boundary conditions at the surface of
the sphere to deduce the Fourier expansions of the scattered fields inside and
outside the sphere. It can be shown that the proper basis functions are the vector
spherical harmonics M and N of the form

Meml =
−m

sin θ
sin(mφ)Pm

l (cos θ)zn(kr)θ̂ − cos(mφ)
dPm

l (cos θ)
dθ

zn(kr)φ̂ (2.13)

Moml =
m

sin θ
cos(mφ)Pm

l (cos θ)zn(kr)θ̂ − sin(mφ)
dPm

l (cos θ)
dθ

zn(kr)φ̂ (2.14)

Neml =
zn(kr)

kr
cos(mφ)n(n + 1)Pm

l (cos θ)r̂ (2.15)

+ cos(mφ)
dPm

l (cos θ)
dθ

1
kr

d

d(kr)
[kr zn(kr)]θ̂

− m sin(mφ)
Pm

l (cos θ)
sin θ

1
kr

d

d(kr)
[kr zn(kr)]φ̂

Noml =
zn(kr)

kr
sin(mφ)n(n + 1)Pm

l (cos θ)r̂ (2.16)

+ sin(mφ)
dPm

l (cos θ)
dθ

1
kr

d

d(kr)
[kr zn(kr)]θ̂

+ m cos(mφ)
Pm

l (cos θ)
sin θ

1
kr

d

d(kr)
[kr zn(kr)]φ̂

where zn = {jl, yl} are the spherical Bessel functions of the first and second kind
of order l and Pm

l are the Legendre polynomials of the first kind of degree l and
order m. The subscripts o and e denote the sine and cosine functions (odd and
even) for the θ dependence.
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Now, we express the incoming plane wave in this basis, assuming that the
electric field is polarized in the x direction and is propagating in the z direction.

Ei = x̂1E0 exp(ikr cos θ) (2.17)

x̂1 = sin θ cos φ r̂ + cos θ cos φ θ̂ − sinφ φ̂

From now on, we omit the trivial time dependence of the electric field exp(−iωt).
Using the orthogonality of the basis functions and rejecting harmonics involv-

ing yn (since they diverge at the origin), the infinite vector spherical harmonic
expansion of the plane wave is given by:

Ei = E0

∞∑
l=1

il
2l + 1
l(l + 1)

(M(1)
01l − iN(1)

r1l) (2.18)

where the superscript (1) denotes a radial dependence given by the spherical
Bessel of the first kind. The expression for H follows from taking the curl of E.

We should solve the Maxwell equations for the field inside the sphere and the
scattered field, given the incident field above (Eq. 2.18). In order to do this we
must impose the boundary conditions on the fields at the surface of the sphere:

(Ei + Es − Ea) × r̂ = (Hi + Hs − Ha) × r̂ = 0 (2.19)

where Ei is the incident field, Es is the scattered field and Ea is the electric field
inside the sphere, with magnetic fields similarly defined.

To determine the coefficients, we should expand the internal and scattered
fields in our basis. Here, we are interested in solutions of the fields outside the
sphere. The resulting scattered fields outside the sphere are:

Es = E0

∞∑
l=1

il
2l + 1
l(l + 1)

(ialN
(3)
e1l − blM

(3)
o1l) (2.20)

Hs =
k

ωµ1

∞∑
l=1

il
2l + 1
l(l + 1)

(iblN
(3)
o1l + alN

(3)
e1l)

where the superscript (3) indicates the radial dependence given by the the first
(outgoing wave) Hankel function defined as

h1
l (kr) = jl(kr) + iyl(kr) −→kr�l2 (−i)l exp(ikr)

ikr
(2.21)
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and the coefficients are:

al =
µ1n

2jl(nx)[xjl(x)]′ − µ2jl(x)[nxjl(nx)]′

µ1n2jl(nx)[xh
(1)
l (x)]′ − µ2h

(1)
l (x)[nxjl(nx)]′

(2.22)

bl =
µ2jl(nx)[xjl(x)]′ − µ1jl(x)[nxjl(nx)]′

µ2jl(nx)[xh
(1)
l (x)]′ − µ1h

(1)
l (x)[nxjl(nx)]′

where the prime indicates a derivative and x = kR the size parameter and n =
n2/n1 is the relative refractive index.

Now that we have the expressions for the scattered field at any point in space,
we can determine the coefficients to any desired accuracy by summing the well-
known expressions for the Bessel functions to as many terms as necessary. The
coefficients can, in turn, be multiplied by the basis functions and summed to
any desired degree of accuracy in order to get the scattered field at any point in
space. In practice, the detector is usually positioned at a large distance from the
scattering cell, (r � L where L is the largest dimension of the scatterer), so we
are interested in the dependence of the field at fixed r . If we set φ = π/2 and
let θ vary, we get the angular dependence of the scattered field for incoming light
polarized perpendicular to the scattering plane.

2.1.2 Static Light Scattering (SLS)

Form factor

In experiments the scattered intensity of light is measured rather than the electric
field is measured. Now consider a dilute suspension of colloidal particles inside
a solvent with dielectric properties that obey the conditions (1-3) of Sec. 2.1.1
corresponding to the Rayleigh-Gans-Debye regime. By measuring the scattered
intensity from an ensemble of colloidal particles, we can obtain the information
about the size and shape of the particles.

The Form Factor, F (q), of the particles is defined as the scattered intensity
observed at wave vector q normalized to the scattered intensity at zero wave
vector [75].

F (q) ≡ 〈 |Es(q).ε̂s|2
|Es(q = 0).ε̂s|2 〉angle = 〈

∫
Vp

dx(n2(x) − n1)/n1 exp(iq.x)∫
Vp

dx(n2(x) − n1)/n1
〉angle (2.23)

In the forward direction, there is no phase difference between waves scattered
from different volume elements within the sample; therefore, in the limit q → 0,
F (q) → 1.
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It would be interesting at this point to apply the above formalism to find the
q-dependence of the scattered intensity for uniform spheres and disks. This yields
the following form factors for spheres of radius R as:

F (q) =
[

3
sin(qR) − qR cos(qR)

(qR)3

]2

(2.24)

In general, a platelet such as a Laponite particle can be modelled as a cylinder of
radius R and thickness L. For randomly oriented monodisperse cylinders we have

F (q) =
∫ π/2

0

[
2J1(qR sin α)

qR sin α

sin(1
2qL cos α)

1
2qL cos α)

]2

sin αdα (2.25)

where J1(x) is the first order Bessel function and the integration is over the
orientation of the cylinders α. For more details see [77] and references therein.
In the limit of disks with infinitesimal thickness and radius R, the form factor
reduces to:

F (q) =
2

q2R2

[
1 − 1

qR
J1(2qR)

]
(2.26)

A nice summary of form factors for different geometries also can be found in [77].
Effect of polydispersity

In the presence of particle size polydispersity with a size distribution P (R), the
total intensity Ipoly(q) becomes a weighted average of intensities dI(q;R) of light
scattered by P (R)dR monodisperse particles of radius R in the range R and
R + dR. The definition of the form factor modifies to [75]:

F poly(q) ≡ 〈 |Epoly
s (q)|2

|Epoly
s (q = 0)|2 〉angle (2.27)

= 〈
∫ Rmax

0
dRP (R)

∫
VR

dx(n2(x) − n1)/n1 exp(iq.x)∫ Rmax

0
dRP (R)

∫
VR

dx(n2(x) − n1)/n1

〉angle

Structure factor

Now that we know about the q-dependence of scattered light from a single particle,
let us see how the scattered intensity will be affected by a collection of interacting
particles undergoing Brownian motion. In this case the total scattered field can
be written as the sum of integrals ranging over the volumes Vp, p = 1, 2, ..., N ,
occupied by the N colloidal particles in the scattering volume:
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Es = E0 exp(−iωt)
1
2π

k2 exp(ikr)
r

N∑
p=1

∫
Vp

dx (n2(x) − n1)/n1 exp(iq.x)ε̂s (2.28)

The integration range Vp is the volume that is occupied by the pth particle. For
non-spherical particles this depends on the orientation of the particles. Vp also
depends on the position of the pth particle for any geometrical shape. Let xp

denote a fixed point inside the pth particle, which is referred to as its position
coordinate. The position coordinate dependence of Vp can easily be accounted
for explicitly by changing for each p the integration variable to x′ = x− xp. The
new integration range V 0

p corresponds to the volume occupied by the particle with
its position coordinate at the origin. In terms of these new integration variables
Eq. (2.28) reads

Es = E0 exp(−iωt)
1
2π

k2 exp(ikr)
r

N∑
p=1

exp(iq.xp)
∫

V 0
p

dx′ (n2(x′)−n1)/n1 exp(iq.x′)ε̂s.

(2.29)
Now we can calculate the mean intensity [75] from Eq. (2.29) as

Is =
1

2Z1
< |Es(q, t).ε̂s|2 >=

I0Vs

r2

k4

(2π)2
ρ̄× 1

N

N∑
p,m=1

Bp(q)B∗
m(q)〈exp(iq.(xp−xm)〉

(2.30)
where Bp(q) =

∫
V 0

p
dx (n2(x) − n1)/ε1 exp(iq.x′) and ρ̄ = N

Vs
, with Vs the total

scattering volume and 〈...〉 denotes the ensemble average over the orientations
and positions of the the Brownian particles. Experimentally, this is realized by
measuring and averaging the instantaneous intensity over a time long enough for
the system to explore a large number of these configurations.

Now suppose that the particles are identical. Then Bp(q) = B(q) and Eq. (2.30)
can be simplified to

Is =
I0Vs

r2

k4

(2π)2
ρ̄ < |B(q)|2 > × 1

N

N∑
p,m=1

〈exp(iq.(xp − xm)〉 (2.31)

Comparing the value of < |B(q)|2 > with the expression for the form factor in
Eq. (2.23), we see that < |B(q)|2 > is the form factor times V 2

p | n̄2−n1
n1

|2, with n̄2

being the average refractive index of the particles.
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The total scattered intensity of the particles can be factorized into two parts.
The first part results from the scattering of single particles and it is nothing
but the form factor. The second part accounts for the interferences of the light
scattered from different particles; it is a measure of the positional correlations of
the particles. We call it the structure factor S(q) and it is defined as [75]:

S(q) =
1
N

N∑
p,m=1

〈exp(iq.(xp − xm)〉 = | 1√
N

N∑
p=1

〈exp(iq.xp)〉|2 ≥ 0 (2.32)

Therefore the total scattered intensity can be rewritten as:

Is =
I0Vs

r2

k4

(2π)2
ρ̄ × V 2

p |
n̄2 − n1

n1
|2F (q)S(q) (2.33)

The ensemble average in the structure factor can be expressed as an integral
of the probability distribution function for the positions of the particles. The
pair-distribution function is defined as

g(x) := lim
N,V →∞

1
V
〈

N∑
p�=m

δ[x − (xp − xm)] 〉/ρ2 (2.34)

=
1

V ρ2

1
ZN (V, T )

N∑
p�=m

∫
dxN exp(−βVN (xN ))δ[x − (xp − xm)]

where ρ is the average number density of the particles and we have assumed
that system is homogenous. g(x) expresses the correlation between the densities
measured at any two points with separation x. If the system is isotropic g(x) will
only depend on the distance between the particles and is usually called the radial
distribution function. As can be seen from its definition, g(x) is directly related
to the interaction potential between the particles and will be equal to 1, in ideal
gas limit. The general properties of g(x) which readily follow from its definition
Eq. (2.34)are summarized below.

g(x) ≥ 0 , g(x → ∞) = 1 (2.35)
g(x) ≈ 0 for βu(x) � 1 (2.36)

g(x) = exp(−βu(x)) + O(ρ) (2.37)

Decomposing the sum in S(q) into two terms the ones with m = p and the ones
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with m �= p, we have

S(q) =
1
N

N∑
p,m=1

〈exp(iq.(xp − xm)〉 = 1 +
1
N

N∑
p�=m

〈exp(iq.(xp − xm)〉 (2.38)

= 1 +
1
N

〈
N∑

p�=m

∫
dx exp(iq.x)δ[x − (xp − xm)] 〉

The term 1
N 〈∑N

p�=m

∫
dx exp(iq.x)δ[x − (xp − xm)] 〉 is nothing but the Fourier

transform of ρ g(x). As a final result we have

S(q) = 1 + ρ

∫
dx exp(iq.x) (g(x) − 1) (2.39)

S(q) gives us information on the spatial arrangements of the particles inside the
sample. In the q → 0 limit, it is directly related to the macroscopic thermody-
namic quantity of isothermal compressibility.

lim
q→0

S(q) = ρkBT χT (ρ, T ) (2.40)

2.1.3 Dynamic light scattering (DLS)

The speckle pattern from a sample illuminated with light reflects the instanta-
neous configuration of the scattering particles (see Fig. 2.1). Thus if one places a
detector of the size of a typical speckle at a particular point in the far field, the
intensity measured at this point will fluctuate according to the movement of the
scatterers. In dynamic light scattering experiments [74] the objective is to mea-
sure the time dependence of the fluctuating intensities resulting form the density
fluctuations, in contrast to the SLS which measures the mean intensity. The sim-
plest function characterizing the fluctuations of the intensity is the normalized
intensity autocorrelation function (IACF), defined as,

g(q, t) =
〈Is(q, t)Is(q, 0)〉

〈Is(q)〉2 (2.41)

By studying the time dependence of the scattered intensity and its temporal cor-
relations, one can extract useful information about the dynamics of the scatterers
inside the sample. One expects that at sufficiently large times the intensities
I(q, 0) and I(q, t) to be totally uncorrelated,

lim
t→∞ = 〈Is(q, t)Is(q, 0)〉 = 〈Is(q)〉2. (2.42)
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As it is obvious that we are working with scattered intensities, we skip the sub-
script s from now on. The normalized intensity correlation function reaches the
limit g(q, t) → 1 for sufficiently large delay times. Defining δI(q, t) = I(q, t)− <
I(q) >, the normalized IACF can be rewritten as

g(q, t) = 1 +
〈δI(q, t)δI(q, 0)〉

〈I(q)〉2 (2.43)

This relation shows that the fluctuations of intensity (not the intensities absolute
values) are relevant for the intensity correlation function. DLS experiments mea-
sure the intensity correlation function because the detector counts the number of
photons. However, when light impinges on matter it is the electromagnetic field of
light that induces an oscillating dipole moment that radiates a secondary electric
field of light. Therefore, it is important to establish the relationship between the
field and intensity correlation function. Under the condition that the electric field
amplitude is a zero-mean Gaussian variable, the Siegert relation [74] connects the
normalized electric field and intensity correlation functions.

g(q, t) = 1 + ψ
〈(Es.(q, t).ε̂s)(E∗

s(q, 0).ε̂s)〉
2Z1〈I(q)〉 = 1 + ψ|f(q, t)|2 (2.44)

where ψ is a coherence factor that depends on the size of detector relative to the
speckle size and in the ideal case is 1, but in experiments is somewhat smaller
than 1. The normalized electric-field time-correlation f(q, t) is usually called the
intermediate scattering function and can be expressed in terms of the dynamic
structure factor [74] using Eq. (2.8)

f(q, t) :=
〈∑i,j exp[iq.(xi(t) − xj(0))]〉
〈∑i,j exp[iq.(xi(0) − xj(0))]〉 =

S(q, t)
S(q)

(2.45)

Dynamic light scattering by spherical particles undergoing Brownian
motion

Here, we calculate the intermediate scattering function (ISF) of a dilute suspen-
sion of spherical particles, i.e. we neglect the interactions between the particles
[74]. As a result we have exp[iq.(xi(t) − xj(0))] = δij exp[iq.(xi(t) − xi(0))].
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Furthermore the static structure factor is equal to 1 for non-interacting particles,
therefore ISF reduces to

f(q, t) = 〈exp[iq.(xi(t) − xi(0))]〉. (2.46)

In order to calculate this average we need to know the probability distribution
function P (x, t;x0, 0), which is equal to P (x0)P (x, t|x0, 0). For dilute suspensions
P (x0) = 1/V and the conditional probability distribution function, P (x, t|x0, 0),
is the solution of the diffusion equation for a single particle with initial condition
x(t = 0) = x0:

∂

∂t
P (x, t|x0, 0) = D∇2P (x, t|x0, 0) (2.47)

Here, D is the translational diffusion coefficient of the particles. As a result the
ISF is obtained from

f(q, t) =
1
V

∫
dxdx0P (x − x0, t|0, 0) exp[iq.(x(t) − x(0))] (2.48)

=
∫

dx′P (x′, t|0, 0) exp(iq.x′)

This shows that the ISF, f(q, t), is actually the Fourier-transform of the solution
of the diffusion equation.

Taking the Fourier transform of the diffusion equation Eq. (2.47) we can cal-
culate f(q, t), which leads to the result

f(q, t) = exp(−Dq2t) (2.49)

Dynamic light scattering from axially symmetric particles

The anisotropic shape of particles gives rise to an anisotropic polarizability tensor.
When such particles are placed in an electric field, the components of the dipole
moments induced by the field pα = γαβEβ will not necessarily be parallel to the
applied field. In such a case, the scattered field will have a non-zero component
in the direction perpendicular to the polarization of the incident field. DLS under
such conditions can provide us some information about the rotational motion of
the particles [74]. Here, we focus on particles with axial symmetry which include
ellipsoids of arbitrary aspect ratios. Rods and disks can be considered as limiting
cases of ellipsoids. Furthermore, our treatment is restricted to small particle sizes,
R/λ 	 1, so that we can use the Rayleigh approximation.

For such particles, the eigenvalues of the polarizability tensor correspond to
the directions perpendicular, γ⊥, and parallel, γ||, to the symmetry axis.
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The total electric field scattered by particles with axially symmetric optical
anisotropy (when the incident electric field is linearly polarized in vertical direc-
tion) has two components. The first is the vertically polarized component EV V

with an amplitude proportional to the average polarizability ,γ = (γ|| + 2γ⊥)/3.
The second one is the horizontal depolarized component EV H . Its amplitude is
proportional to the intrinsic particle anisotropy β = γ|| − γ⊥, which is the differ-
ence between the polarizabilities parallel and perpendicular to the optical axis.

Polarized and depolarized dynamic light scattering (DLS and DDLS) experi-
ments measure the time correlations of V V and V H scattered intensities, respec-
tively.

Therefore, we would like to measure the following electric field correlations

fV V (q, t) =
〈EV V (q, t)E∗

V V (q, 0)〉
< IV V (q) >

(2.50)

=

∑N
i,j=1〈γi

V V (t)γj
V V (0) exp[iq.(ri(t) − rj(0))]〉∑N

i,j=1〈γi
V V (0)γj

V V (0) exp[iq.(ri(0) − rj(0))]〉

fV H(q, t) =
〈EV H(q, t)E∗

V H(q, 0)〉
< IV H(q) >

=

∑N
i,j=1〈γi

V H(t)γj
V H(0) exp[iq.(ri(t) − rj(0))]〉∑N

i,j=1〈γi
V H(0)γj

V H(0) exp[iq.(ri(0) − rj(0))]〉
These expressions in general are too complicated to calculate. However, assuming
that the suspension is dilute enough so that orientations and positions of different
particles are uncorrelated, we can proceed further [74].

In order to calculate these averages we need to obtain the probability dis-
tribution function of position and orientation of the particles P (r, û, t) in which
r and û characterize the position and orientation of the particle, respectively.
The probability distribution function for dilute non-interacting particles obeys
the Smoluchowski equation of the form:

∂

∂t
P (r, û, t) = L̂sP (r, û, t) (2.51)

L̂s = D̄t∇2
r + DrR̂ + �D∇r · [ûû − 1

3
Î] · ∇r

with the initial condition P (r, û, t = 0) = δ(r− r0)δ(û− û0). Dr is the rotational
diffusion of the particles symmetry axes, D̄t = 1/3(D|| + 2D⊥) is the weighted
average of the two translational diffusion coefficients, and �D = D|| −D⊥ repre-
sents the difference between the two. The term proportional to �D in Eq. (2.51)
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describes the coupling between the translational and rotational diffusion and the
rotation operator is defined as R̂ = û ×∇û.

To progress further, we ignore the coupling between the translation and rota-
tion [74]. This leads to independent equations for the translational and rotational
probability distributions. Consequently, the intermediate scattering functions fac-
torize into a product of the correlations of the orientation of the polarizations
which are purely local and do not depend on q, and the q-dependent translational
correlations.

fV V (q, t) = 〈γi
V V (t)γi

V V (0)〉〈exp[iq.(ri(t) − ri(0))]〉 (2.52)
(2.53)

fV H(q, t) = 〈γi
V H(t)γi

V H(0)〉〈exp[iq.(ri(t) − ri(0))]〉

In order to calculate the polarizability correlations, the laboratory-fixed com-
ponents of the polarizability tensor(γV V and γV H) are first decomposed in the
reference frame fixed to the particle (γ|| , γ⊥), hence expressed as functions of
the angles of orientation. [74]. This turns out to be the product of spherical
harmonics, < Y ∗

2,−1(û(0))Y2,−1(û(t)) >, whose average can be calculated from
the rotational part of the Smoluchowski equation [75]. Likewise the translational
part is calculated from the diffusion equation which is the translational part of
the Smoluchowski equation. The resulting correlations are:

fV V (q, t) =
[γ2 + 4

45β2 exp(−6Drt)]Fs(q, t)
α2 + 4

45β2
(2.54)

fV H(q, t) = Fs(q, t) exp(−6Drt) (2.55)

where γ is the average polarizability of the particles. Fs(q, t) =< exp(i�q.[ri(0) −
ri(t)]) > is the translational self-correlation function. The contribution of the
rotational motion to the V V correlation, is proportional to 4

45β2, i.e. optical
anisotropy. This is usually small, therefore the rotational contribution to fV V

can be neglected. Hence the dynamics of fV V reflects mainly the translational
diffusion of the particles, while fV H is determined by both translational and
rotational motion.

Now let us estimate the magnitude of the coupling �D between rotational and
translational diffusion for Laponite particles considered as disks of radius R =
15nm and thickness 1nm. The translational and rotational diffusion coefficients
of disks can be obtained from the general formula for diffusion of ellipsoids with
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major semi-axis b and minor semi-axis a. The aspect ratio is defined as ρ = a/b.
The disk corresponds to a = 0 and b = R.

The rotational diffusion of ellipsoids with above specifications first calculated
by Perrin [79] is given by [74]:

Dr =
3kBT

16πηb3

(2ρ2 − 1)G(ρ) − ρ

ρ4 − 1
(2.56)

where η is the shear viscosity of the solution and G(ρ) is a function of aspect ratio
ρ. For oblate ellipsoids ρ < 1,G(ρ) is

G(ρ) = (1 − ρ2)−1/2 tan−1 (1 − ρ2)1/2

ρ
(2.57)

and for prolate ellipsoids ρ > 1, G(ρ) has the form

G(ρ) = (ρ2 − 1)−1/2 ln[(ρ2 − 1)1/2 + ρ]. (2.58)

Similarly, the translational diffusion coefficients can be expressed in terms of the
above functions [74, 80]:

D|| =
kBT

8πηb
G(ρ) (2.59)

D⊥ =
kBT

16πηb
G(ρ) (2.60)

For disks taking a = 0 and b = R, we obtain

D|| =
kBT

16ηR
(2.61)

D⊥ =
3kBT

32ηR
(2.62)

As said before in DLS experiments in the VV mode, we measure the average
translational diffusion D0t = 1/3(D|| + 2D⊥) = kT

12ηR for translational diffusion.
The rotational degree of freedom around the symmetry axis can not be detected by
depolarized DLS (VH mode), hence we only consider the rotation of the symmetry
axis for the rotational diffusion which is

D0r =
3kT

32ηR3
. (2.63)

The relative anisotropy for Laponite particles reads: �D/D0t = 0.375, which
is considerable. However, for short-time diffusion the coupling terms become
important only for large scattering vectors: qR > 1 [75].
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”Heterodyne” dynamic light scattering experiments

In the heterodyne method of light scattering, a reference beam (derived directly
from the laser) is mixed with the light scattered from the sample, at the detector
[74]. The reference beam is obtained either by deflecting a small fraction of
intensity of laser light before it reaches the sample or by scattering the incident
light from a solid object in the scattering volume. In this situation the total
electric field at the detector can be written as

Etot(q, t) = Es(t) + EL (2.64)

Assuming that the local oscillator field EL and the scattered light Es are statis-
tically independent, the intensity correlation function is:

G(q, t) = 〈Itot(q, t)Itot(q, 0)〉 (2.65)
= 〈Is(q, t)Is(q, 0)〉 + 2IL(q)�(〈Es(q, t)E∗

s (q, 0)〉) + 2〈Is(q)〉IL(q) + I2
L(q)

In the case that IL �< Is >, the above function simplifies to

G(q, t) = 2IL(q)�(〈Es(q, t)E∗
s (q, 0)〉) + I2

L(q) (2.66)

For dilute solutions of spherical particles, the heterodyne density fluctuation
Eq. (2.66) becomes

G(q, t) = I2
L(q) + 2IL(q)〈Is(q)〉 exp(−Dq2t). (2.67)

2.1.4 Dynamic light scattering in non-ergodic media

In an ergodic fluid-like medium, the scattering particles are able to diffuse through-
out the medium and undergo Brownian motion. Given enough time, the system
evolves through a representative of all possible spatial configurations. In the
course of a single experiment the system can explore enough of phase space so
that the time average inherent in a measurement of a quantity gives a good esti-
mate of its ensemble average.

In non-ergodic media such as gels and glasses, the scattering elements are
localized near fixed average positions and are able only to make limited Brownian
motion about these fixed positions. By virtue of this localization of scatterers, one
sample of a non-ergodic system will be trapped in a restricted region of the phase
space, or sub-ensemble, whose location and extent are determined respectively by
the average positions of the scatterers and the magnitudes of their displacements.
Consequently, in the course of a measurement only a restricted part of phase space
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is explored, so that the time average is not necessarily equivalent to the ensemble
average.

A measurement on a single non-ergodic sample provides an average over only
a single sub-ensemble. Therefore, the full ensemble average of a property of a
non-ergodic medium can be obtained in practice by measuring many independent
sub-ensembles of the medium and averaging over them. In a light scattering
experiment, the illuminated region of the sample, or scattering volume, seen by
the detector (∼ (200µm)3) is generally much smaller than the size of the sample
(∼ 1cm3) itself. Thus, one experimental sample consists of many independent sub-
ensembles. Then an ensemble average of the dynamic structure factor f(q, t) can
be obtained by moving the sample through a series of positions so that different
scattering volumes within the sample are illuminated. However, this approach for
constructing the ensemble average is tedious and time-consuming. Especially, it is
not practical for samples with relatively fast aging. An alternative approach would
be to attempt to calculate the ensemble-averaged dynamic structure factor from
its time-averaged value. Of course, this requires a knowledge of the ensemble-
averaged intensity. Here, we briefly review this method which is developed by
Pusey and van Megen [81].

Considering a medium which contains discrete particles or scatterers, the in-
stantaneous field amplitude of the light scattered by N particles in a scattering
volume V is

E(q, t) =
N∑

j=1

bj exp[iq.rj(t)] (2.68)

Non-ergodicity of the medium is introduced by allowing only limited excursions
{∆j(t)} of the particles about their fixed average positions Rj . In this model, a
sub-ensemble corresponds to a particular set of fixed positions Rj . As a result a
time average defined as < X >T = limT→∞ 1

T

∫ T

0
dtX(t). Thus we can write

rj(t) = Rj + ∆j(t) (2.69)

where Rj =< rj(t) >T .
We now assume that:

1. The number N of the particles in the scattering volume V is large;

2. The linear dimension V 1/3 is much greater than q−1;

3. The medium is amorphous, i.e. the range of correlation between the parti-
cles’ position is, in the full ensemble, much smaller than V 1/3;
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4. In any sub-ensemble the range of correlation between the displacements
{∆j(t)} is also much smaller than V 1/3.

Now, our aim is to calculate the time-averaged properties of light scattered by
a volume V within the non-ergodic media. For a single scattering volume in a non-
ergodic medium, the total scattered field Eq. (2.68) is not a zero-mean complex
Gaussian variable. This is because of the spatial restriction of the scatterers that
result in small fluctuations of the phase factors (q.rj(t) < 2π). However, with
the help of Eq. (2.69) the scattered electric field can be written as the sum of a
fluctuating component EF and a time-independent static component EC ,

E(q, t) = EF (q, t) + EC(q, t), (2.70)

where

EF (q, t) =
N∑

j=1

bj exp[iq.Rj ]{exp[iq.∆j(t)] − 〈exp(iq.∆j(t))〉T }, (2.71)

and

EC(q) =
N∑

j=1

bj exp[iq.Rj ]〈exp(iq.∆j(t))〉T . (2.72)

Taking advantage of assumptions (1-4), it can be shown that E(q, t) is a zero-
mean complex Gaussian variable [81]. Although the total field E(q, t) scattered
by a single volume of a non-ergodic medium considered as a function of time is
not a zero-mean complex Gaussian variable, it can be decomposed into the sum of
such a quantity EF , and a constant component EC . This insight greatly simplifies
the analysis of the properties of the total field, and as a result 〈E(q)〉T = EC(q)
and 〈I(q)〉T = IC(q) + 〈IF (q)〉T .

The calculation of time-averaged intensity correlation function associated with
Eq. (2.70) follows from recognizing that it is equivalent to usual ”heterodyne”
situation where a Gaussian field and a constant field are mixed. Thus,

〈I(q, t)I(q, 0)〉T = 〈IF (q, t)IF (q, 0)〉T + 2IC(q)〈EF (q, t)E∗
F (q, 0)〉T(2.73)

+ 2〈IF (q)〉T IC(q) + I2
C(q).

Now, we need to determine the time correlation function of the fluctuating com-
ponent of the field. This correlation is related to the ensemble averaged normal-
ized electric field correlation f(q, t) = (Nb2)−1

∑N
j=1

∑N
k=1〈bjbk exp[iq.(rj(0) −

rk(t)]〉E :
〈EF (q, t)E∗

F (q, 0)〉T = 〈IC(q)〉E [f(q, t) − f(q,∞)] (2.74)
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where f(q,∞) is defined as lim f(q, t → ∞) [81]. Taking the t = 0 limit of
Eq. (2.74) gives

〈IF (q, t)〉T = 〈I(q)〉E [1 − f(q,∞)]. (2.75)

Indeed Eq. (2.75) shows that f(q,∞) is the fraction of frozen-in density fluctua-
tions in the non-ergodic medium, which is known as the non-ergodicity parameter.

The Gaussian property of EF (q, t) allows us to determine 〈IF (q, t)IF (q, 0)〉T
in terms of its electric field correlation function Eq. (2.74) by employing the Siegert
relation Eq. (2.43).

Finally, from Eq. (2.73), (2.74) and (2.75) we get

gT (q, t) =
〈I(q, t)I(q, 0)〉T

〈I(q)〉2T
(2.76)

= 1 + Y 2{[f(q, t)]2 − [f(q,∞)]2} + 2Y (1 − Y )[f(q, t) − f(q,∞)]

in which Y ≡ 〈I(q)〉E/I(q)〉T . Inversion of Eq. (2.76) will give us our de-
sired ensemble-averaged electric field correlation f(q, t) in terms of the time-
averaged ICF for a particular position in the sample (sub-ensemble) and the
ensemble-averaged intensity I(q)〉E . The full ensemble-average can be obtained
from rapidly rotating and/or translating the sample to average over a large num-
ber of sub-ensembles.

f(q, t) = 1 + (I(q)〉T /I(q)〉E){[gT (q, t) − gT (q, 0) + 1]1/2 − 1} (2.77)

The non-ergodicity parameter f(q,∞) is obtained from the t = ∞ limit of
Eq. (2.77)

f(q,∞) = 1 + (I(q)〉T /I(q)〉E){[2 − gT (q, 0)]1/2 − 1} (2.78)

where the rigorous limit g(q,∞) = 0 has been used [81, 82].
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Figure 2.4: The dynamic light scattering setup used in our experiments.

Experimental setup

The dynamic light scattering setup used in our experiments is a standard one
from the ALV-Laser Vertriebsgesellschaft GmbH company. The dynamic light
scattering setup used in our experiments is a standard one from the ALV-Laser
Vertriebsgesellschaft GmbH company. Figure 2.4 shows schematically the DLS
setup. It consists of a a helium-neon laser with wavelength λ = 632.8nm . The
laser light passes through a polarizer to define the polarization of incident light and
several other optical elements for the purpose of alignment before it is focused
on the sample. The sample tube is placed inside a quartz vat. To reduce the
scattering from stray light the vat is filled with an index matched liquid (in our
experiments: filtered Toluene). The scattered light from the sample traverses an
analyzer which selects a given polarization direction before reaching the detectors.
The detectors consist of two optical fibers coupled to avalanche photodiodes that
can be used as separate channels (single mode) or together in cross correlation
mode. The signal from the detectors is fed into an ALV 60X0 multiple-tau digital
correlator that calculates the scattered light intensity correlation function. This
correlator allows sampling times as fast as 6.5 ns. This gives us the opportunity
to detect fast relaxation times of the order of a few µs. The ”FAST MODE”
of the ALV-60X0 correlator only works in the cross correlation mode, since the
available single photon detectors do not offer good enough characteristics to allow
measuring correlations at very short times. In our experiments only two special
cases of the polarization for scattered light are used. The VV mode in which
the polarization of the incident and scattered light are both vertical and parallel,
and the VH mode in which the polarization the scattered light is horizontal and
perpendicular to the polarization of incoming vertically polarized light. The setup
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Figure 2.5: The three most common geometries used in rheometers to apply shear
through drag flows

is also equipped with a cuvette rotation and translation unit. This unit allows the
measurement of non ergodic samples which due to their non ergodic behavior can
not be measured using a standard goniometric setup. The idea is that by using
turning and up/down movement different speckles of the sample can be measured.
Thus by measuring a large enough number of such independent speckles we can
obtain the ensemble-averaged scattered intensity.

2.2 Rheology

Rheology is the study of the deformation and flow of a material in response to an
applied stress (which can be strain imposed). Simple solids store energy and pro-
vide a spring-like elastic response, whereas simple liquids dissipate energy through
viscous flow. For more complex viscoelastic materials rheological measurements
reveal both the solid and fluid-like responses and generally depend on the time
scale at which the sample is probed [83, 84]. One way to characterize the rhe-
ological response is to measure the shear modulus as a function of frequency.
Traditionally, these measurements are performed on several milliliters of material
in a mechanical rheometer by applying a small amplitude oscillatory shear strain
γ0 sin(ωt) where γ0 is the amplitude and ω is the frequency of oscillation, and
measuring the resultant shear stress. Typically, commercial rheometers probe
frequencies up to 10 Hz. The upper range is limited by the onset of inertial
effects, when the oscillatory shear wave decays appreciably before propagating
throughout the entire sample. For small shear strain amplitudes the structure
is not significantly deformed and the material remains in equilibrium. In this
case, the affine deformation of the material controls the measured stress. The
time-dependent stress is linearly proportional to the strain, and is given by [84]:
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Figure 2.6: a) the schematic Couette geometry b) velocity gradient and deformation
gradient in Couette geometry c) the rheometer MCR300 used in our experiments.

σ(t) = γ0[G′(ω) sin(ωt) + G′′(ω) cos(ωt)] (2.79)

G′(ω) is the response in phase with the applied strain and is called the elastic or
storage modulus, a measure of the storage of elastic energy by the sample. G′′(ω)
is the response out of phase with the applied strain, and in phase with the strain
rate γ̇, and is called the viscous or loss modulus, a measure of viscous dissipation
of energy. The complex shear modulus is defined as G∗ ≡ G′+iG′′. Alternatively,
it is possible to apply stress and measure strain and obtain equivalent material
properties.

The most common geometries used in rheometers [83] to apply shear through
simple drag flows are: sliding plates, Concentric cylinders (Couette flow), Cone-
Plate and Plate-Plate disks (torsional flow), see Fig. 2.5.

Rheology measurements such as these have given valuable insight into the
structural rearrangements and mechanical response of a wide range of materi-
als. They are particularly valuable in characterizing soft materials or complex
fluids, such as colloidal suspensions, polymer solutions and gels, emulsions, and
surfactant mixtures [85, 83, 84].

In this thesis, we take advantage of classical rheology to study the evolu-
tion of viscoelastic properties of Laponite suspensions in the frequency range
0.01 < f < 10Hz.

Experimental setup
The rheometer used in our experiments is a controlled shear stress rheometer
(Anton Paar Physica MCR 300) with Couette geometry (CC27) (See Fig. 2.6)
and occasionally cone-plate geometry. The temperature is controlled by a Peltier
element (TEZ/K 150 P-C). In order to prevent evaporation during the long time
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measurements, we installed a vapor trap.

2.3 Microrheology

Microrheology [86, 87, 88] is a relatively recent technique that allows us to measure
the frequency-dependent response function of viscoelastic soft materials which is
related to the shear moduli via the Stokes relation. It is based on the detection
of small displacements, x(t), of (sub)micron-sized probe particles inserted in a
liquid or any other viscoelastic medium whose mechanical response, one wants to
measure.

Considering the fragility of soft materials, it is promising to use a technique
that can be less invasive compared to conventional rheometry. Furthermore, mi-
crorheology can probe the mechanical properties of soft materials over a wide
range of frequencies (0.1− 105Hz), while most commercial rheometers are usually
restricted to frequencies of up to 10 Hz; beyond that, the inertia of the measure-
ment geometry becomes important. The upper limit in our experiments is also
set by inertial effects of the probe particle. However, since the particle is very
small we can go to much higher frequencies. Moreover, conventional rheometers
provide us with average bulk properties and do not allow for local measurements
in inhomogeneous systems, which could in principle be the case for gels and net-
work forming materials. This can be tested by comparing the microrheology
measurements done at different positions of the sample.

There are two broad classes of microrheology (MR) techniques: those involving
the active manipulation of probes by the local application of stress and those
measuring the passive motions of particles due to thermal fluctuations. In either
case, when the probe particles are much larger than any structural size of the
material, then their fluctuating motions are a measure the macroscopic stress
relaxation. Smaller particles measure the local mechanical response and also
probe the effect of steric hindrances caused by local microstructure.

In the active method the response of the probe particle to an applied oscil-
latory stress is measured. This allows one to measure the real and imaginary
parts of the response function directly as a function of the oscillation frequency.
The manipulation of probe particles can be achieved by various experimental
techniques such as magnetic or electric fields, optical tweezers, and atomic force
microscopy techniques.

In passive microrheology experiments, when the displacement fluctuations of
a probe particle ( Eq. (1.15))are measured, one can obtain the imaginary part of
the response function by assuming that the fluctuation-dissipation relation (FDR)
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Figure 2.7: Diagrammatic summary of steps to extract the viscoelastic shear modulus
in passive microrheology.

holds. The real part of the response can then be extracted from linear response
theory using the Kramers-Kronig relation (Eq. (1.12)). Once both the imaginary
and real parts of response function are known, we can use Stokes relation to obtain
the complex shear modulus G∗ = 1

6πηR . In Fig. 2.7, a summary of steps to extract
the viscoelastic shear moduli from the particle displacement is shown. Using
the generalized Stokes-Einstein relation to obtain the macroscopic viscoelastic
shear moduli of a material requires that the medium around the sphere to be
treated as a continuum material. This necessitates a bead size larger than any
structural length scales in the material. Therefore, one-particle microrheology is
very sensitive to the local environment of the embedded bead and will not yield
the macroscopic shear modulus if the material is inhomogeneous. To remedy this
insufficiency, two-particle microrheology [89] has been developed. Two-particle
microrheology eliminates the motion due to purely local structure and mechanics
by measuring the cross-correlated motion of pairs of tracer particles within the
sample. The correlated motion of the particles is not affected by the size or even
shape of the tracer particles and is independent of the specific coupling between
the probe and the medium. Furthermore, the length scale being probed is not
the individual bead radius R but is the distance r between the tracers, which is
typically 10-100 microns. This increase in length scale means that the technique
is insensitive to short wavelength heterogeneities in the sample smaller than the
bead separation distance and thus may probe bulk rheology even if individual
particles do not.

To take full advantage of the range of frequencies and to be able to calculate the
real part of the response from the Kramers-Kronig integral in passive microrheol-
ogy experiments, it is necessary to use techniques that measure the mean-squared
displacement (MSD) of embedded spheres with excellent temporal and spatial res-
olution. The MSD can be calculated from methods that directly track the particle
position as a function of time or can be obtained from ensemble-averaged light
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scattering experiments. Methods of particle detection vary significantly in tem-
poral and spatial resolution. Additionally, techniques differ significantly in their
ability to provide statistical accuracy over an ensemble of probes. Therefore each
of these detection methods has advantages and disadvantages whose applicability
depends on the type of measurements needed.

Particle tracking methods can be divided into imaging (microscopy) and non-
imaging (laser detection) techniques.

The available imaging techniques are video and confocal microscopy. Tech-
niques in image processing have been developed to automate the process of ac-
curate particle center location to simultaneously track hundreds of embedded
probes in a single field of view of the microscope with submicron precision. While
video microscopy is limited to frequencies available to the camera, the strength
of the technique is in its ability to obtain good statistics on ensembles of beads.
Embedded spheres are imaged with a conventional light microscope using either
fluorescence or bright field microscopy. Using bright field microscopy, spheres
larger than a few hundred nanometers can be observed but the diffraction limited
resolving power of the microscope precludes the study of smaller probes. Fluo-
rescent labelling offers the ability to observe smaller probes up to 20 nm, which
now act as point sources of light.

In a homogeneous isotropic material it is sufficient to examine the projection
of the particle trajectory along a single axis. In heterogeneous materials, it may
be useful to be able to obtain a two- or three-dimensional particle trajectory. In
video microscopy, the motion of the particle is projected into the plane of the
focus and a two dimensional trajectory is obtained for further analysis. Confocal
microscopy is currently most widely used to follow the three dimensional motion
of fluorescently tagged colloids [90, 91].

Non-imaging techniques are based on laser detection schemes which take ad-
vantage of optical trapping [92, 87]. In this method very low laser power is used
so that the trapping force on the particle is quite low compared to the thermally
driven forces of the bead (< 5%). The thermally driven motion will cause the
bead to move off the beams axis and deflection of the laser beam can be mea-
sured. From this deflection the displacement of the single bead is detected from
which the MSD [92] or the power spectral density [87], the position correlation
function in frequency space, can be calculated. This detection scheme has ex-
cellent spatiotemporal resolution such that individual particles are tracked with
subnanometer precision at frequencies up to 100 kHz.

In dynamic light scattering experiments, if dilute concentrations of probe par-
ticles are used, they are statistically independent and their motion is solely due to
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thermal impulses, hence one measures the self-intermediate scattering function:

f(q, t) = exp[−q2〈∆r2(t)〉
6

] × {1 +
1
2
(
q2〈∆r2(t)〉

6
)2α2(t) + · · · } (2.80)

where α2(t) = 3<∆r4(t)>
5<∆r2(t)>2 − 1 is the first non-Gaussian correction to the distri-

bution of particle displacements. By truncating Eq. 2.80 at the second term in
the curly brackets we can solve it to obtain 〈∆r2(t)〉, the particle mean-squared
displacement (MSD), and α2(t) from measurements of Fs(q, t) made at two differ-
ent wave vectors [93]. Alternatively, 〈∆r2(t)〉 can be extracted from the Gaussian
approximation for the self-intermediate scattering function,

f(q, t) = exp[−q2〈∆r2(t)〉
6

] (2.81)

which is recovered from Eq. 2.80 when the quantity q2〈∆r2(t)/6 is small.
Light scattering methods inherently average over a large ensemble of parti-

cles, and are not appropriate for samples that may exhibit local heterogeneity.
However, for homogeneous samples, light scattering has the advantage of better
averaging, a larger statistical accuracy, and a larger accessible frequency range
than any macroscopic measurement or video-based microrheology technique.

A comprehensive review about various microrheology techniques and their
applications is written by M.L. Gardel, et. al. [94]. For further information the
reader can consult the concise reviews written by F. C. MacKintosh et. al. [95],
M. J. Solomon [96] and A. Mukhopadhyay [97].

In this thesis, we use a microrheology technique based on optical trapping that
was developed in the group of Prof. Christoph Schmidt’s at the Free University of
Amsterdam (VU) [98, 99]. In the following, I review the basics of optical trapping,
detection and data analysis for active and passive microrheology.

2.3.1 Principles of Laser trapping

Laser trapping is a micromechanical technique that is broadly used in soft con-
densed matter. An optical trap employs a highly focused beam of light [100, 101,
102] to capture and manipulate small dielectric particles. Optical trapping of par-
ticles uses the momentum transfer of light scattered or diffracted by a dielectric
object near the focus of light. The resulting optical force has traditionally been
decomposed into two components: [94]

1. The scattering force or radiation pressure which acts along the direction of
the propagating beam.
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2. The gradient force which arises from induced dipole interactions with the
electric field gradient and tends to pull the particles toward the focus.

In the Rayleigh regime ( d 	 λ) the trapped particles are treated as point
dipoles, since the electromagnetic force is a constant on the scale of the particle.
The scattering force is given by

Fs = ns
〈S〉σ

c
(2.82)

where 〈S〉 is the time-averaged Poynting vector of the electromagnetic field and
σ is the scattering cross section of a Rayleigh particle of diameter d immersed in
a solvent of refractive index n1.

The gradient force is the Lorentz force acting on the dipole by the electromag-
netic wave:

Fg =
γ

2
∇〈E2〉. (2.83)

E is the electric field and γ is the polarizability as defined in Eq. 2.3. For stable
trapping in all three dimensions, the axial gradient component of the force pulling
the particles toward the focal region must exceed the scattering component of the
force pushing it away from that region. This condition necessitates a very steep
gradient in the light. Steep electric field gradients can be achieved using a high
numerical aperture objective lens to focus the laser beam onto the sample; this
allows the gradient force to dominate and form a stable three dimensional trap.
As a result of this balance between gradient force and scattering force, the axial
equilibrium position of the trapped particle (trap center) is located slightly above
the focal plane. At the trap center the potential energy is given by

U = −3Vpn2

c

n2
2 − n2

1

n2
2 + 2n2

1

I0 exp(−r2/L2) (2.84)

where Vp is the volume of dielectric particle, n2 its refractive index, and I0 is the
intensity of the laser light. Here r is the radial distance from the center of trap
and L is the width of the Gaussian laser profile at the trap. The force on the
particle as it moves away from the trap center is given by

F = −∇U = −ktr exp(−r2/L2)r̂ (2.85)

in which kt named as trap stiffness, is

kt =
6Vpn2

cL2

n2
2 − n2

1

n2
2 + 2n2

1

I0. (2.86)
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Hence, for small displacements the force is approximated by Hook’s law with
an effective spring constant. From above expression, one can see that for stable
trapping n2 > n1 is required. It suggests that the larger the difference in refractive
indices of probe particle and surrounding medium, the more stable the trap will be.
But this is not completely true. The above discussion is based on the scattering
in the Rayleigh regime, while in the real experimental condition, the particle
sizes are about one micrometer and the the typical laser wavelength is 1064 nm.
Consequently the scattering from these particles lies in the Mie regime. Thus,
the Rayliegh approach is only good for a qualitative understanding of the general
features of the optical trapping. Calculations of trapping force on the basis of a
more complicated Mie scattering [103] show that if the n2−n1 > 0.2 the trapping
is not stable and the particle will be propelled along the optical axis [104].

Furthermore, increasing the laser power or probe size gives rise to an enhanced
trap restoring force. However, the laser power can be increased only up to a certain
limit, above which more laser light would lead to heating or photo-damage of the
optics or the examined system.

2.3.2 Position detection

As we said before, optical trapping can be used for non-imaging detection of
nanometer-scale displacements. The basic principle behind this detection method
(developed by Gittes and Schmidt) [105] is the far-field interference of the outgoing
laser light with the scattered light from the trapped particle.

One can achieve trapping in an ordinary light microscope by focusing the
laser in the specimen plane with a high numerical aperture lens (in practice a
microscope objective). One convenient way to detect the particle motion uses a
quadrant diode; a light sensitive diode which is divided into four equal segments
being able to detect the changes in the intensity distribution. It is placed in the
back focal plane of the condenser lens that collimates the outgoing laser light and
the light scattered from the trapped particle (See Fig. 2.8). The intensity of the
interference pattern in the back focal plane does not depend on the position of
the focus and one can reposition the trapped bead in the specimen plane without
changing the photodiode signal. The pattern in the back focal plane represents
the angular-intensity distribution of light that has passed through the focus, and
the back-focal plane detection is equivalent to performing an angular scattering
experiment.

The distribution is only affected by the motion of the trapped object with
respect to the trap center. That is why this plane is imaged onto a quadrant
photodiode. This method of displacement detection of the trapped particle is
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Figure 2.8: The non-imaging detection technique is based on the interference between
outgoing incident laser light with the scattered light from the trapped particle, known
as back-focal plane interferometry.

called back-focal plane interferometry.
The intensity profile in the back-focal plane as a function of lateral displace-

ment of the bead diameter d is [105]

δI(x)
I0

∼= 2k4γ

πr2
x exp(−x2/L2)θ cos(φ) exp(−k2L2θ2/4). (2.87)

The above equation describes the angular-interference pattern caused by a particle
displacement of magnitude x, from the optical axis in the focal plane, observed
in the direction (θ, φ). As said before the quadrant photodiode is oriented for
detection along the ±x and ±y axes; intensity changes on the (+) and (−) halves
are equal and opposite. Integrating Eq. 2.87 over angles θ and φ with −π/2 <
φ < π/2 and sin θ ≈ 0 gives the absolute response of the detector.

δI+(x)
I0

=
I+ − I−
I+ + I−

≈ 16√
π

kγ

L2
G(x/L) (2.88)

G(u) = exp(−2u2)
∫ u

0

exp(y2)dy

For x 	 L, the response is proportional to d3/L3; showing a sensitive dependence
on particle and focus size.
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Figure 2.9: Two laser traps a) in overlapping condition b) at different positions

It should be noticed that the expression in Eq. 2.88 is derived in the Rayleigh
approximation, but has been found to quantitatively agree with observed response
for particle sizes in the Mie regime [105].

2.3.3 Experimental setup

Passive microrheology

The setup consists [98, 106] of two independent linearly-polarized lasers λ1 = 1064
nm (Nd:YVO4, Compass, Coherent, Santa Clara, CA, USA) and λ2 = 830 nm
(diode laser, CW, IQ1C140, Laser 2000) which form two independent optical
traps. The two lasers can be used for trapping two beads at different positions or
in an overlapping condition (see Fig. 2.9). The lasers are protected against back
reflections by means of optical isolators (37 dB isolation, Optics for Research,
Caldwell, NJ) in front of them to enhance their stability.

In order to have maximum stability, we run the lasers at their highest power.
As a result, we control the laser powers via a combination of a rotatable half-wave
plate and a polarizer. The wave plate rotates the linear input polarization while
only a fixed polarization passes through the polarizer. Hence the output laser
power can be tuned from 0 to 100 % by rotating the half-wave plate. Furthermore,
two shutters S1 and S2 were placed in the optical path to facilitate switching the
traps on and off independently.

Fig. 2.10 shows a schematic of the experimental setup used in two-particle
microrheology experiments.
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Figure 2.10: The schematic of experimental setup used in passive microrheology ex-
periments, reproduced from [106].

The 1064 nm laser is first expanded by a 3 × beam expander (BE1) to ex-
tend the Rayleigh range. After passing through the half-wave plate, the beam
is further expanded by a second 3 × Beam expander (BE2) to ≈ 101 mm in
width. A polarization beam splitter (BS1) splits the light into two perpendic-
ularly polarized beams. Like this, part of the beam is deflected and the direct
beam (not deflected) passes through a second beam splitter (BS2). The 830 nm
laser beam is guided into the path of the deflected 1064 nm beam by Mirror M2.
The direct and indirect beams are recombined by the second beam splitter BM2
and then are coupled into the microscope via a dichroic mirror (DM1). Stable
trapping is achieved using a high numerical aperture objective lens which is part
of a custom-built inverted microscope. For each of the lasers, two lenses (f=80
mm) in telescope configuration allow the control of the beam foci positions in
the plane perpendicular to the beam directions. The two beams are focused into
the sample chamber through a high numerical objective of the microscope (100×
, NA 1.3, Neofluor, Zeiss). A CCD camera takes an image of the trapped par-
ticles for calibration purposes. After passing through the sample the laser light
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was collected by an oil immersion condenser (1.4NA, Zeiss) and passed through
a second dichroic mirror (DM2) towards the detectors. The lights scattered from
the two traps are separated by a third beam splitter (BS3). Another lens L(f=
50 mm) was placed before the polarizing BS3 to collimate the divergent beams.
The light intensity distribution in the condensers back-focal plane is projected by
lenses L1 and L2 onto the quadrant photodiodes (QPD1 and QPD2) for each of
the traps, yielding a spatial resolution of about 0.1 nm for the particle position. In
order to remove the cross-talk between the two lasers with different wavelengths,
a laser line filter is placed in front of each quantum photodiode. The 1064 nm
laser is imaged onto a PN photodiode with reverse bias voltage of 100 V , while
the 830 nm light is detected with a standard silicon-type PN operated quantum
photodiode with a reverse bias voltage of 15 V.

As explained before (Sec. 2.3.2), we use back-focal plane interferometry to de-
tect the position fluctuations of the trapped bead away from the trap center [105].
The interference signals of the laser beams detected by the quadrant photodiodes
are converted to voltages and amplified by low-noise amplifiers. A customized
Labview data acquisition program is used to acquire a time series of the particle
position from the quantum photodiode for a minimum time of 45s. Eventually an
A/D converter digitizes the data at 195 kHz frequency.

In order to measure the spontaneous Brownian motion of the probe particles,
we minimized the trap power of the two lasers. During our measurements the
typical power of each laser was less than 10 mW.

For imaging the samples, we used the microscope in differential interference
contrast (DIC) mode, with Köhler illumination using a fiber-coupled mercury arc
lamp (100 W, 546 nm line). The illumination light was coupled into the condenser
lens via DM2, which transmits the laser light but reflects the illumination light.
Images were recorded by an Ultricon tube camera (Model VT100, Dage-MTI).
Focusing in the sample was controlled by a DC motor which moves both objective
and the condenser with respect to the fixed sample. The sample is mounted on a
3-axis piezo stage with 0.7 nm precision.

Active microrheology

The experimental arrangement [99] shown in Fig. 2.11 similar to the two-particle
passive microrheology setup consists of two optical traps formed by two indepen-
dent polarized laser beams whose centers are overlapping. The difference with
the passive MR arrangement is that now the stronger laser (λ = 1064 nm) is
used to drive the oscillations of the trapped particle (drive laser), and the weaker
stationary trap (λ = 830 nm) to detect the position of the particle (probe laser).
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Figure 2.11: The schematic of experimental setup used in active microrheology exper-
iments

The drive laser oscillates the trapped particle with an Acousto-Optical Deflec-
tor (AOD). The AOD consists of a transparent TeO2 crystal inside which an
optical diffraction grating is generated by density changes associated with a trav-
elling ultrasound acoustic wave. A piezo-electric transducer which is driven by
a voltage-controlled oscillator (VCO) generates the acoustic wave which deflects
the incident light beam to the direction of Bragg reflection. In this way VCO
implements the oscillatory motion of laser beam. By sinusoidally modulating the
output frequency of VCO, the Bragg-reflection angle (thus laser beam focus at
the sample plane) is oscillated. The output signal from quantum photodiode that
detects the probe laser is fed into a lock-in amplifier (model SR830, Stanford
research systems). The lock-in amplifier sensitively measures the amplitude and
phase delay of output-signal compared to internally generated reference signal,
which is supplied to the VCO.

2.3.4 Data analysis: Passive microrheology

Passive microrheology (MR) can be performed in two ways: one-particle and two-
particle. In this subsection we discuss the theory and data analysis method for
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either of them.

One-particle Microrheology

In one-particle MR, we extract the complex compliance from the position fluctua-
tions of one particle. The time-series data of the bead displacement measured by
the quantum photodiode is Fourier transformed to calculate the power spectrum
of displacement fluctuations in the frequency domain 〈|x(ω)|2〉 for each of the x
and y directions. The power spectrum of the thermal fluctuations of the probe is
related to the imaginary part of the complex compliance α(ω) = α′(ω) − ıα′′(ω)
via the FDT (Sec. 1.3.1).

α′′(ω) =
ω〈|x(ω)|2〉

2kBT
(2.89)

Provided that α′′(ω) is known over a large range of frequency, one can recover the
real part of the response function from the Kramers-Kronig relation Eq. (1.12):
α′(ω) = 2

π P
∫ ∞
0

ω′α′′(ω′)
ω′2−ω2 dω′. Before calculating the shear modulus, we should

calibrate the setup and correct for the trap stiffness that shows up at low fre-
quencies. The particle displacement x(t) and the applied trapping force change
linearly with the output voltage of the quantum photodiode. In order to obtain
the calibration factor Calf = x(t)/V (t) and the trap stiffness, we measure the
power spectra of several beads in pure solvent, all from the same batch used in
the experiments. Subsequently, we average over these to get good statistics at
low frequencies. The power spectra in the solvent are measured under exactly the
same conditions (optical alignment and laser power) as those used in measure-
ments of other samples. The trap can be considered as a harmonic potential in
which the bead executes Brownian motion, leading to its Langevin equation of
motion:

ktx + ξẋ = ζ(t), (2.90)

where we have ignored the inertia of the bead. Here kt denotes the effective trap
stiffness, ξ the friction coefficient and ζ(t) represents a Gaussian white noise with
zero time average and constant power spectrum 〈|ζ(ω)|2〉 = 2ξkBT . Calculating
the Fourier transform of the Langevin equation, Eq. (2.90), the power spectrum
of displacement fluctuations is found to have a Lorentzian shape.

Sx(ω) = 〈|x(ω)|2〉 =
2kBT

ξ(ω2
c + ω2)

= (Calf)2〈|V (ω)|2〉 (2.91)

where ωc = kt

ξ is introduced as the characteristic frequency of the trap. Fig. 2.12
shows a typical power spectrum measured for silica beads in water. As can be
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Figure 2.12: The measured power spectrum (averaged over several beads) of 0.5 mi-
crometer silica particles in water trapped by a 1064 nm laser.

seen it is well described by the Lorentzian form of Eq. (2.91). At high frequencies
ω >> ωc the quantity SV

∞ = ω2Sx(ω) is almost constant, and must be equal
to 2kBT/ξ. The calibration factor can then be obtained from using the Stokes
formula, ξ = 6πηR, if one knows the bead diameter, the solvent viscosity, and the
temperature.

Calf[m/V] = [
2kBT

ξSV∞
]
1
2 . (2.92)

The trap stiffness can be found by fitting the Lorentzian form of Eq. (2.91) to the
power spectrum of the output voltage measured in the solvent. The true complex
compliance α is obtained from the apparent complex compliance χ that is directly
calculated from the power spectrum, through the relation [98]

α =
χ

1 − ktχ
. (2.93)

Finally, the complex shear modulus G∗(ω) = G′(ω) + G′′(ω) can be obtained
from the corrected complex compliance through the Stokes relation

G∗(ω) =
1

6πRα(ω)
, (2.94)

where R is the radius of probe bead.
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Two-particle microrheology

In two-particle MR, we calculate the correlated fluctuations of two probe beads
inside the material. In general, when we have a certain number of particles, the
displacement of particle m in direction i is related to the force applied to particle
n in direction j via the complex response tensor u

(m)
i (ω) = α

(m,n)
ij (ω)F (n)

j (ω).

In the case of two particles, the response tensors α
(1,1)
ij and α

(2,2)
ij describe how

each of the particles number 1 and 2 respond to the forces applied to the same
particle, while α

(1,2)
ij describes how particle 1 responds to the forces on particle 2.

In thermal equilibrium and in the absence of external forces, FDT relates the
imaginary part of response tensor to the spectrum of displacement fluctuations of
the particles.

α
(m,n)
ij (ω) =

ω

2kBT
S

(m,n)
ij (ω), (2.95)

where the spectra of thermal fluctuations S
(m,n)
ij are defined as

S
(m,n)
ij (ω) =

∫ ∞

0

〈u(m)
i (t)u(n)

j (0)〉eiωtdt. (2.96)

The problem of two hydrodynamically correlated particles in a viscoelastic medium
is the analogue of two conducting spheres surrounded by a dielectric medium. In
[107] this analogy was used to work out the relation between the response tensor
and the rheological properties of the medium.

The cross component part of the response tensor α
(1,2)
ij can be decomposed

into two parts α|| parallel to the vector r separating the two beads and α⊥ per-
pendicular to r: α

(1,2)
ij = α||r̂ir̂j + α⊥(δij − r̂ir̂j). For incompressible fluids each

of the components are related to the complex shear modulus as

α||(ω) = 2α⊥(ω) =
1

4πrG∗(ω)
. (2.97)

Due to the presence of the traps, again we measure an apparent response χ func-
tion. Therefore, the measured response function must be corrected for the trap
stiffness. The relation between the apparent and true response can be obtained
similarly to the one-particle method, as has been explained in detail in reference
[98].

2.3.5 Data analysis: Active microrheology

In this method, developed by D. Mizuno et. al. [99], we actively exert an external
sinusoidal perturbation on the trapped particle in the y direction and measure
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phase and displacement amplitude of the particle in response to the applied force.
In our experiments we oscillate the drive laser with frequency f = ω

2π and the os-
cillation amplitude L. Consequently, this exerts an oscillatory force of magnitude
�{k1[L exp(ıωt) − x(t)]} on the bead. The equation of motion of the bead excited
by an oscillatory force, ignoring its inertia (low Reynolds number), is described
as ∫ t

−∞
ξ(t − t′)ẋ(t′)dt′ + k2x(t) = k1[L exp(ıωt) − x(t)] + ζ(t) (2.98)

where k1, k2 refer to the trap stiffness of drive and probe lasers, respectively.
ξ(t − t′) is a time-domain friction coefficient that reflects the memory effects in
viscoelastic materials. ζ(t) is the random force arising from the medium. In
the active scheme, ζ(t) can be set to zero, since it averages out. Here, f0 =
k1L exp(ıωt) can be interpreted as the apparent oscillatory force exerted by the
drive laser. The particle displacement caused by the apparent oscillatory force is
denoted as xω(t). The apparent response to the sinusoidal force is defined as

< xω(t) >= α∗(ω)f0 exp(ıωt) (2.99)

In practice, lock-in amplifier measures the particle displacements at the oscil-
lation frequency, < xω(t) >= x∗

0(ω) exp(ıωt), with x∗
0(ω) = A(ω) exp(ıϕ(ω)).

Laplace transforming Eq. (2.98), with the Laplace transform defined as f(s) =∫ ∞
0

f(t)e−stdt, and taking the limit (s → ıω), the apparent complex compliance,
according to Eq. (2.99), is

αapp =
x∗

0(ω)
f0

=
1

(k1 + k2) + ıωξ
. (2.100)

The true response of the system is 1
ıωξ , therefore the apparent complex compliance

must be corrected similar to the passive section from equation (2.93) with effective
trap stiffness kt = k1 + k2.

As it is clear from the above formalism, analyzing the data in the active
method requires knowing the trap stiffness and calibration of measured amplitude
of response as well as a correction to the measured amplitude and phase of the
response. The trap stiffness and the calibration factor for the output voltage in
the case of the drive laser and overlapping of the probe and the drive lasers can be
found in the same way as explained for passive measurements. To determine the
amplitude of laser oscillations L we record oscillatory motion of a bead trapped by
the drive laser for different input voltage values, using video microscopy. Fig. 2.13a
shows the position of an oscillating particle as a function of time for Vinput = 4mV .
By fitting it with a sine wave we can determine the amplitude of the oscillation.
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Plotting the amplitude versus voltage gives us the calibration factor and from
there the laser amplitude corresponding to the applied voltage in the measure-
ments (L(nm)= calf × Vinput (V)).

All instruments have their own characteristic response, which has to be cor-
rected from the direct output of the lock-in amplifier. In order to correct the
phase and amplitude of the response, we measure the acousto-optical deflector
(AOD ) response.

To acquire the AOD response we measure the interference signal from a large
probe particle stuck to the cover slip while oscillating the drive laser. Since the
particle does not move in response to the oscillations of the drive laser, the output
voltage of the quantum photodiode that detects the probe laser does not give
any response, however the probe particle diffracts the drive laser beam. Hence,
the change in the interference pattern detected in the back- focal plane of the
condenser lens is not due to bead motion but due to the presence of AOD. The
output of the quantum photodiode that detects the drive laser is fed into the
lock-in amplifier and gives us the AOD response.

Fig. 2.13c and Fig. 2.13d show the response function of our experimental
system (amplitude and phase delay). We can see that the amplitude of the lock-
in amplifier output decreases at frequencies lower than 1 Hz. This is due to the
AC coupling to the input signal channel. Therefore, a significant phase delay also
occurs in this region which has to be corrected. The phase delay is due to the
finite propagating time of the acoustic wave in the AOD. Since the piezo-electric
transducer is placed at the edge of the crystal in the AOD, it takes some time
for the generated ultrasonic wave to reach the position where the incident laser
is crossed (and diffracted). The phase delay changes linearly with the oscillation
frequency in the high frequency region.

Since the drive laser is strong, there is a danger that it heats up the sample.
This can lead to refractive index gradient that can act as an optical lens causing
the deflection of the probe laser. This phenomenon is called photothermal lens
effect. This effect should be taken into account if its impact is large. We tested
this by measuring the AOD response in an aged sample without presence of the
beads. No significant effect was observed.
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Figure 2.13: a) The position of trapped particle (silica d=0.5 µm) in water obtained
by analyzing video images b) changing the oscillation amplitude, linear relation between
quantum photodiode output and particle displacement was obtained. c) Amplitude and
d) phase delay of the system response obtained for a typical optical alignment. The
oscillating drive laser is diffracted by the colloidal particle stuck to the glass surface and
the resultant response in quantum photodiode is detected.





3.

Distinct Pathways for Aging
of Laponite Suspensions

3.1 Introduction

The main issue in the study of glasses is that from the point of view of their molec-
ular structure, they closely resemble liquids. On the other hand, their mechanical
properties are much closer to those of solids: ordinary window glass, for instance,
does not flow on human timescales [108, 109]. To explain the extremely high
viscosity of glassy systems, it is commonly accepted that the motion of molecules
or particles that constitute the glass are blocked by the neighboring molecules,
who in turn are blocked also by their neighbors and so on, making it impossible
for the system to flow.

Translated in terms of the free energy of the system, the paradigm for glasses
is that of a complicated free energy landscape, with many local minima of the free
energy. Therefore after a quench into a glassy state, the system falls into a local
minimum of the free energy. As the system ages, both the mechanical properties
and the diffusion coefficient change in time. The interpretation of this time evo-
lution is that at early times after the quench, the system is able to access at least
part of the phase space, and can get out of local minima by thermal activation.
However, as time goes on, the system finds deeper and deeper minima of free en-
ergy, that are more difficult to escape from. Consequently the evolution becomes
slower. Because of this, the system cannot reach thermodynamic equilibrium: it
becomes non-ergodic. During the aging, the viscosity increases and the diffusion

67
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coefficient of the particles decreases, emphasizing the link between the blocking
of the particle motion and trapping of the system in deeper and deeper valleys of
the free-energy landscape.

However, although this provides an appealing intuitive picture of glassy dy-
namics, to our knowledge there is no direct experimental evidence for the existence
of such a complicated free-energy landscape with many local minima [110, 111].
Here, we are able to provide such evidence by showing that for a soft glassy ma-
terial, multiple paths can be taken through the free energy landscape, that can
even lead to different ’final’ non-ergodic states at the late stages of aging.

3.2 Gels and glasses in the Laponite system

The system we consider is a suspension of anisotropic and charged colloidal par-
ticles suspended in water: Laponite, a synthetic clay [49, 64, 50, 52, 14, 67, 112].
When dissolved in water, Laponite spontaneously evolves from an initially ergodic
liquid-like state to a non-ergodic solid-like state. During this process the relevant
physical observables of the system change with waiting time. This is called ag-
ing, meaning that there is a significant time dependence of measurable quantities
such as diffusion coefficient and viscosity. To be more precise, in aging systems
correlations and response functions become waiting-time (tw) dependent, and a
significant part of the relaxation takes place on a time scale which grows with
this waiting time. In Laponite the aging speed (the rate of change of e.g. relax-
ation time or viscosity) depends on the concentration of Laponite. The higher
the Laponite concentration, the faster it evolves. For example for a sample of
Laponite 3.5 wt%, within an hour the relaxation time of system grows by more
than an order of magnitude, while for a sample of 0.2 wt%, only a small change
in the relaxation function is observed within a month (see Fig. 3.1).

The study of colloids has allowed for a significant contribution to elucidat-
ing the basic physics of glass transition [42, 46]. In colloidal systems, as the
particle volume fraction is increased, the particles become increasingly slower
and for even higher volume fractions the glass transition is encountered. On the
other hand, colloidal gels are known to form at extremely low volume fractions
≈ 10−4 − 10−2 in the presence of strong attractions [113]. Gelation and the glass
transition have important similarities. Both are ergodic to non-ergodic transi-
tions that are kinetic, rather than thermodynamic in origin, and distinguishing
between these two types of non-ergodic states experimentally is a longstanding
controversy [65, 66, 64, 67, 50]. The experiments reported below provide direct
criteria for distinguishing gels from glasses. This allows us to show that for a
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range of Laponite concentrations, two distinctly different non-ergodic states can
result (at late times of aging): either the glass or the gel forms with roughly equal
probability. There is no way to tell beforehand which of the two options will be
taken by the sample, suggesting that there are at least two metastable minima in
the system. In addition, our results show that the free energy landscape is indeed
complicated, since a number of samples are observed to hesitate between the two
options for a long time and an initial evolution in one of the two directions can
lead to a final state that is the other one.

We subsequently show that if salt is added to the system, thereby screening
the electrostatic repulsion between the particles, even a third option appears to
exist for the system. At high salt concentrations, the system ends up having some
characteristic features of the glass, whereas other features are those of the gel. We
propose that this happens because a glass is formed from small gel-like clusters
of particles; this state is dubbed attractive glass.

3.3 Experimental details

Since Laponite can absorb water up to 20% of its weight, it was first dried in an
oven at 100oC for one week and was subsequently stored in a desiccator.

We prepare a number of Laponite samples in a wide range of concentrations
and salt contents. Laponite solutions without added salt are prepared in ultra pure
Millipore water (18.2MΩcm−1) and are stirred vigorously by a magnet between
1 and 2 hours to make sure that the Laponite particles are fully dispersed. The
dispersions are filtered using Millipore Millex AA 0.8µm filter units to obtain
a reproducible initial state [50]. This instant defines the zero of waiting time,
tw = 0.

The Laponite solutions with pH=10 are prepared in pH=10 solution, obtained
from mixing 10−4 mole of NaOH in Millipore water. The samples with non-zero
salt content are prepared by diluting the Laponite suspensions in pure water with
a more concentrated salt solution [114]. For instance, a sample of 0.8 wt %, 6mM
NaCl is prepared by mixing equal volumes of 1.6 wt% Laponite solution in pure
water with 12mM salt solution.

A standard dynamic light scattering (λ = 632.8nm) measures the time-averaged
intensity correlation functions (Eq. (3.1)) in VV mode, i.e. when polarization of
incident light and scattered light are both perpendicular (vertical) relative to the
scattering plane.

gt(q, t) =
< I(q, t)I(q, 0) >t

< I(q, 0) >2
t

(3.1)



70 Chapter 3. Distinct Pathways for Aging of Laponite Suspensions

where 〈〉t stands for the time average. This is related to the intermediate
scattering function f(q, t) in the ergodic regime through Siegert relation Eq.
(2.44) and in the non-ergodic regime this correlation together with the ensemble-
averaged scattered intensify can be used to calculate f(q, t) (see Sec. 2.1.4 for
details).

The measurements are performed at scattering wave vector q = 4πn
λ sin( θ

2 ),
in which θ = 90o is the scattering angle. The correlation functions are measured
at a rate depending on the speed of aging of different Laponite suspensions. For
experimental details of light scattering experiments and the DLS setup, see Sec.
2.1.

3.4 Experimental evidence for an intricate free-
energy landscape

Measuring the intensity correlations of scattered light from numerous Laponite
dispersions, one observes two regimes of aging in the evolution of the intensity
correlations: In the first regime the system is ergodic, whereas the second regime
corresponds to a non-ergodic (arrested) state. This suggests that in the non-
ergodic regime the dynamics is slower. The cross-over from the former to the
latter is visible in the experiments: the time-averaged normalized correlation
function no longer varies between one and zero, i.e. a part of the degrees of
freedom is frozen in on the time scale of the measurement. The waiting time for
which the time-averaged correlation functions are not equal to their ensemble-
averaged values, i.e. their values change from one position to another in the
sample. This defines the ergodicity-breaking time teb. Figure (3.1) shows the
evolution of intermediate scattering functions f(q, t) for two different samples. In
both cases, the correlation functions evolve from an ergodic state to a non-ergodic
state, as the system ages. However, the low- and high-concentration samples are
observed to behave in a distinctly different manner.

In the ergodic regime, as depicted in Fig. 3.1 for both low and high concentra-
tion samples, the intermediate scattering functions f(q, t) decay in two steps, and
mainly two relaxations can be observed. The first one, observed for short delay
times t, is relatively fast and appears to be independent of waiting time for the
high concentration samples (example: Lap 3.5 wt % in panel a), while it increases
considerably for the low concentration samples (example: Lap 0.2 wt % in panel
b). The second relaxation, observed for longer delay times, depends strongly on
the waiting time for both types of samples.

At this point it is worth emphasizing that the range of delay times which are
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Figure 3.1: Evolution of intermediate scattering function for two Laponite concen-
trations, at scattering angle 90o. The unit of the delay time is millisecond. The
symbols present the measured correlation functions at increasing waiting times (from
left to right) that are (tw = 1, 49, 71, 80, 85, 89, 99, 112, 141 days) for C = 0.2 wt%
and (tw = 7, 40, 54, 71, 86, 113, 260, 1356 min) for C = 3.5 wt%. In both pan-
els, the lines on the curves that decay to zero (ergodic stage) show the fits with
A exp(−t/τ1) + (1 − A) exp(−(t/τ2)

β).

measured in our experiments are of the order the microscopic time scale for the
Brownian motion (2R)2

D0
≈ 10−5 s and this time scale can be very different from tw,

which can vary from minutes to days depending on the situation. Therefore in our
data in the ergodic regime there is a clear time separation between the waiting
times and relaxation times. In the non-ergodic regime the relaxation time can
be comparable to the waiting time. However with the standard dynamic light
scattering technique we can not measure delay times longer than 104 s.

Before ergodicity breaking tw < teb, as can be observed from the fits shown in
Fig. (3.1), both the low-and the high concentration samples can be described by
a sum of a single exponential and a stretched exponential [49, 115, 52]:

f(q, t) = A exp(−t/τ1) + (1 − A) exp(−(t/τ2)β) (3.2)

Here τ1 is related to the inverse of the short-time diffusion τ1 = 1/(Dsq
2). τ2

can be used as a measure for the growth of slow relaxation time, although it is not
the mean relaxation time, since β which characterizes the width of distribution
of relaxation times also evolves with waiting time. However, assuming that the
resulting stretched exponential is a weighted average of single exponentials with
different relaxations

∫ ∞
0

f(τ) exp(−t/τ) = exp(−(t/τ2)β), it can be shown that
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Figure 3.2: The evolution of a) the slow relaxation time normalized to its initial value
τ2/τ0 and b) the stretching exponent β versus scaled waiting time tw/teb for different
Laponite samples. The colloid concentrations are shown in the legend. The samples
can be divided into two groups according to the evolution of slow relaxation times. In
both figures (and the following ones), the open symbols correspond to gels, and the filled
symbols to glasses.

the mean relaxation time is τm = τ2
1
β Γ( 1

β ) [52, 116], where Γ is the Euler Gamma
function. Ruzicka et. al. have shown that the growth of τ2 and τm are similar
and occur at the same rate [52]. Thus, here we plot τ2 as a function of waiting
time, which directly comes out of the fitting. τ2 is found to grow dramatically
with waiting time and its evolution is well described for all the samples by the
general form:
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τ2(tw) = τ0 exp(B
tw

t∞w − tw
) (3.3)

in agreement with earlier observations [52, 115]. Here τ0 = τ2(tw ≈ 0) results
from fitting of the correlation function at tw ≈ 0. B and t∞w are left as free
fitting parameters in Eq. (3.3) to be determined. Through our analysis, it turned
out that for lower concentrations teb ≈ t∞w and for higher concentrations teb ≈
0.6t∞w . Therefore, t∞w can be interpreted as the time characterizing the transition
from fluid-like to solid-like state. The B values are found to be ≈ 0.7 for low
concentration samples and ≈ 6 for high concentration samples.

Interestingly, if we plot the quantities τ2/τ0 and β as a function of scaled
waiting time tw/teb , the data of all the different concentrations split up into
two branches as shown in Fig. 3.2 (remember that teb characterizes the time that
system becomes non-ergodic). All the data for both the τ2/τ0 collapse on a single
curve and so does the data for β parameters of lower concentrations while the data
at higher clay concentrations fall on another master curve. We already observed
from the direct comparison of Fig. 3.1(a) with Fig. 3.1(b) that the aging process
is qualitatively different for the low- and high concentration samples. Ruzicka et.
al. [52] found similar results, scaling the waiting time with the fitting parameter
t∞w . Here, we use the ergodicity-breaking time teb as the parameter to scale the
data, since it is directly extracted from the measurements, so it is a physically
accessible time that characterizes the transition from ergodic to non-ergodic state.

Now, we turn to the non-ergodic regime of aging. The evolution of non-ergodic
states in our system is followed in time again using light scattering. For waiting
times tw > teb, we calculate the ensemble-averaged electric field correlation func-
tion i.e. intermediate scattering function f(q, t, tw) from the time-averaged inten-
sity correlation function gt(q, t, tw) and ensemble-averaged intensity IE measured
by rotating the sample at different heights [49, 81, 42](see Sec. 2.1.4)

f(q, t, tw) = 1 + (It/IE){[gt(q, t, tw) − gt(q, 0) + 1]1/2 − 1} (3.4)

In the non-ergodic regime, the aging rate of the system can be quantified by mea-
suring the time evolution of the non-ergodicity parameter f(q,∞, tw) = limf(q, t →
∞, tw) (for more details see Sec. 2.1.4). Note that the long time limit t → ∞ is
taken with respect to the Brownian time scale τB = (2R)2

6D0
≈ 10−5 s, i.e t � τB .

Note that our definition of non-ergodicity parameter here is different from what
is usually used in glass community in which the limit of both t → ∞ and tw → ∞
are taken.
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Figure 3.3: a) The evolution of the non-ergodicity parameter f(q,∞, tw) versus reduced
waiting time tw/teb − 1 for different Laponite samples. The colloid concentrations are
shown in the legend. The samples can be divided into two groups according to the
evolution of non-ergodicity parameters. In both figures, the open symbols correspond
to gels, the filled symbols to the glass. b) the evolution of non-ergodicity parameter of
glass samples at very large waiting times. As can be seen, the non-ergodicity parameter
does not go beyond 0.85.

The non-ergodicity parameter, (which quantifies the fraction of frozen-in fluc-
tuations [82, 81]), of all the samples with different Laponite concentrations col-
lapses also onto two distinct master curves when plotted as a function of reduced
waiting time (tw/teb − 1) (Fig. 3.3)(the −1 shift is because for tw/teb < 1 the
non-ergodicity parameter is identical to 0). This shows that two possible routes
towards non-ergodicity exist. In the first group of samples (low concentrations)
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Figure 3.4: The ergodicity-breaking time as a function of concentration of Laponite
particles.

the non-ergodicity parameter almost reaches unity: the colloidal particles are com-
pletely blocked, suggesting that they are rigidly held in place, as they would be in
a gel-like structure. In the second group (high concentrations), the non-ergodicity
parameter evolves at a slower rate and goes to ≈ 0.8 at late times, indicating that
there is still some freedom for the particles to move: the hindrance of the particles
is only sterical, as it would be in a glass. In fact measuring the non-ergodicity
parameter for a couple of (glassy) samples until tw/teb = 15 (Fig. 3.3b), we found
that f(q,∞) did not exceed 0.835.

Perhaps the most striking observation is that for the intermediate concentra-
tions 1.3 < C < 2.3wt%, samples of identical concentrations may evolve at very
different rates, thus having a very different ergodicity-breaking point. In Fig.
(3.4), we have plotted the ergodicity-breaking time of the ensemble of the sam-
ples we have measured as a function of concentration. The samples fall into two
separate groups, and the samples in the intermediate concentration region fall in
either of the two. This suggests that the intermediate concentration samples have
two options, either following the same trend as the samples of high concentration
or behaving similarly to the samples of low concentrations.

The difference between the two states becomes clear if we look at the rest of
the data. As is shown in fig. 3.5, the short time diffusion coefficient is almost con-
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stant for the samples of high concentration (C > 2.3wt%); this corresponds to the
’rattling in the cage’ motion reported earlier for colloidal glasses [115]. However,
Ds decreases significantly with waiting time for low concentrations (C < 1.4wt%)
which is again related to the incorporation of the colloidal particles in a gel net-
work [52]. In addition, the slow relaxation time τ2, is found to grow exponentially
with waiting time for high concentrations, in agreement with earlier observations
for the glassy state [52, 115]. However, for the gel phase, the relaxation time
increases faster than exponentially (Fig. 3.2a); this is likely to be related to the
formation of small clusters in the beginning that subsequently aggregate to form
a macroscopic structure (with a large relaxation time) [117], a situation similar
to diffusion-limited cluster aggregation (DLCA).

Figure 3.5: The evolution of short-time translational diffusion normalized to its initial
value (tw ≈ 0) as a function of tw/teb.

The measured static structure factor proportional to the intensity of scattered
light (Fig. 3.6) provides two further pieces of evidence for structure formation.
First, for all the low-concentration samples, the scattered intensity at a fixed
scattering angle of 90o consistently increases with waiting time, while for the
high concentration ones it does not evolve much (Fig. 3.6a). The increase of
scattered light intensity is usually attributed to formation a network or clusters of
particles [113, 118, 117, 119]. Second, although the range of wave vectors is rather
limited, measurement of the static structure factor S(q) for the different samples, a
power law behavior for S(q) appears to be observed for the lowest concentration
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samples with an exponent 1.1 ± 0.2. This exponent is indeed lower than the
fractal dimension characterizing DLCA df ≈ 1.8, [113, 118, 119] indicating that
less compact string like clusters are formed for such low volume fractions. To the
contrary, an almost flat structure factor is found for the highest concentrations,
suggesting homogeneity (Fig. 3.6b), very characteristic of a glass [50]. The noise at
low q for these measurements is probably due to imperfections of the measurement
cell that scatter light at small angles.

Combining all these data, we identify the low-concentration samples as col-
loidal gels and the high-concentration ones as colloidal glasses.

Intermediate concentrations can be either gels or glasses at late times, with
no way of telling beforehand how the sample is going to evolve. That the path
towards these non-ergodic states is indeed complicated follows from the observa-
tion that samples may ’hesitate’ for a long time between the two states, and may
evolve in one direction to end up in the other. In Fig. 3.7, some of the ’hesitat-
ing’ samples are indicated by triangles. It clearly shows how a few samples in the
intermediate concentration region that behaved consistently like glassy samples
before the ergodicity breaking point, end up as gels at late times. Perhaps even
more surprisingly, Fig. 3.7b shows that even if one looks at a single observable
such as the non-ergodicity parameter, a crossover between the two behaviors can
be observed; this is most evident in the data for 1.9wt%. The data shown in the
figure are mere examples; approximately 20% of the samples in the intermediate
concentration region behaved in an ambiguous way in the sense that they seemed
to have a hard time to ’decide’ whether they were glasses or gels.

In conclusion of this section, the nature of the non-ergodic state in Laponite
suspensions has been the subject of considerable controversy: both colloidal gel
[67, 64] and colloidal glass formation [50, 112] have been invoked and were thought
to be mutually exclusive [67, 50, 120]. We have shown here that gel and glassy
states of Laponite (in pure water) both exist and are well-defined in the limit of
low and high concentrations. Besides, our data here provide a clear experimental
evidence for the distinction between gel and glassy states.

In gels the main cause of aging is the building up of a network. The evidence
for aggregation comes from the time evolution of scattered intensity of light. For
the high concentrations we see a slight decrease of intensity (suggesting that no
aggregation occurs during aging), while for the lowest concentrations we see a
dramatic increase of intensity (Fig. 3.6a) suggesting aggregation or formation
of a network. Slowing down of particle motion will happen when the particles
are trapped in the network, which may be formed already for very low particle
concentrations.

On the other hand the caging effects become relevant when the particles are
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Figure 3.6: a) Scattered intensity at scattering angle 90o as a function of reduced
waiting time. So as to focus on the effect of aging, we have normalized the intensity
to its value at the beginning of aging. b) The scattered intensity as a function of
the dimensionless scattering wave vector qR for several Laponite concentrations. To
compare the q-dependence of different samples, we have normalized the data to their
value at highest measured qR = 0.38.

close enough to make topological constraints for the motion of neighboring par-
ticles. For the lowest concentrations the interparticle distance is several times
the particles diameter, and so this is not relevant. Therefore glasses are usu-
ally formed in samples of higher concentrations and the slowing down of motion
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Figure 3.7: a) Slow relaxation time τ2 as a function of scaled waiting time b) non-
ergodicity parameter as a function of scaled waiting time. These samples behave like
a glass at the early stages of aging and after tw/teb ≈ 1.2 they evolve according to the
gel line. The filled lines show the glass and dotted lines show the gel line, obtained by
smoothed averaging over all the samples measured.

in glasses is due to topological constraints [42, 121] that hinder the motion of
particles.

Distinction of gels and glasses allows for the observation that in the interme-
diate concentrations the transition to non-ergodicity can occur in either direction
(gel or glass), and may be accompanied by ’hesitations’ between the two direc-
tions. A qualitative explanation for this behavior is provided by the free energy
landscape picture of slow dynamics. Here, one attributes the slow structural re-
laxation to the complex pathways that connect the configurational states on the
multidimensional free-energy surface. For Laponite, our data suggest that there
are at least two global minima in the free energy corresponding to gel and glass
states, and that different pathways towards these non-equilibrium states exist,
providing the first evidence for the existence of such a complicated free-energy
landscape.
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3.5 Emergence of an attractive glass in Laponite
suspensions

At least part of the confusion about glassy or ge-like behavior of Laponite suspen-
sions finds its origin in the fact that some groups added salt to the suspensions
[117, 51, 120], whereas others did not [63, 14]. We therefore now consider the
effect of salt (NaCl) addition on aging behavior of Laponite suspensions.

We present here similar data as those described above, but with different
amounts of added salt to three different samples: 0.8, 1.5 and 2.5 % of Laponite.
The effect of salt in charged (spherical) colloidal systems is well-known and un-
derstood by now [122]: the salt screens the repulsive electrostatic interactions,
and at sufficiently high salt the van der Waals attraction may prevail over the
repulsion: the particles stick together and a gel may form. One would expect
added salt in the Laponite system to have a similar effect, and thus maybe help
the particles to ’decide’ that they want to be gels in the intermediate region rather
than glasses. It turns out that the experimental reality is quite different, and that
the hesitation of the system only becomes more pronounced.

We find, first, that adding salt to a sample of a given concentration of Laponite
accelerates the aging, however, the trend of evolution of the correlation function is
qualitatively similar, and we observe a transition from an ergodic to a non-ergodic
state( see Fig. 3.8).

Fig. 3.9 shows the ergodicity-breaking time for the three samples as a function
of salt concentration. The effect is tremendous: by adding a few mM of salt, teb

can decrease by 4 orders of magnitude, with a roughly exponential dependence of
the ergodicity breaking time on salt concentration.

Fig. 3.10 shows that in spite of the accelerated aging, the evolution of non-
ergodicity parameter f(q,∞), versus scaled waiting time tw/teb still falls onto one
of the two branches observed before for samples without salt. These branches
were interpreted above as belonging to a colloidal gel or colloidal glass state.
However, from Fig. 3.10b, it is evident that the samples with salt deviate from
the glass line obtained from the data without adding salt for longer waiting times.
These samples seem to evolve faster than glass. Measurements performed on these
samples at very long waiting times (a year later) showed that the non-ergodicity
parameter of these samples eventually reach the value 1.

Hence, it turns out that in the presence of salt, the story is more complicated
than the scenario sketched above without salt. If we look, for instance, at the
scattered intensity as a function of the wave-vector (Fig. 3.11), we find that with
increasing salt the intensity increases, and for the low concentration samples the
wave-vector dependence of I(q) increases as well ( Fig. 3.11a). Both increase
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Figure 3.8: Evolution of intermediate scattering function for Laponite 0.8 wt%, with
two different salt concentrations, at scattering angle 90o. The symbols present the
measured correlation functions at increasing waiting times (from left to right) that are
(tw = 0.075, 5.7, 7.3, 8.8, 9.7, 11.9, 15, 19 days) for 3 mM and (tw =9, 44, 66, 90, 119,
164, 311 min) for 7.5 mM salt. In both panels, the lines, on the curves that decay to
zero (ergodic stage), show the fits with A exp(−t/τ1) + (1 − A) exp(−(t/τ2)

β).

of intensity and decrease of short-time diffusion are in principle indicative of
the building up of structure, and thus suggest that a gel forms. Comparing,
however, with the data for the non-ergodicity parameter, we find that the high-
salt concentration samples (Lap 0.8 wt% with 5 and 7.5 mM) are rather on the
glass branch, whereas the low-salt concentration samples are on the gel branch.
Fig. 3.12b shows again a measurement of the scattered intensity as a function of
time. All of the 0.8 wt% Laponite samples (even the ones on the glassy branch of
the non-ergodicity parameter) show an increase in intensity as a function of time,
as if a structure was building up. All of the 1.5 wt% Laponite samples should
be glassy also, according to the non-ergodicity parameter criterion; at least for
the 1.5 wt%, 7.5 mM sample also a clear increase in intensity is observed. If we
look at the dynamics (Fig. 3.8), similar discrepancies occur for the other samples
notably at high salt.

Fig. 3.13a shows the slow relaxation time normalized to its initial value τ0

as a function of the scaled waiting time. Again, we see that the slow relaxation
of a sample of Laponite 0.8 wt%, 7.5 mM salt shows the faster-than-exponential
growth that is characteristic of gels (see above). The stretching exponent associ-
ated with the relaxation times of a considerable fraction of samples also follows
the behavior of gels (Fig. 3.13b). However, comparing again with the ’master
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Figure 3.9: The ergodicity-breaking time teb as a function of the salt content for a few
Laponite concentrations. The dependence of teb on the salt concentration is roughly an
exponential decay.

curves’ for the non-ergodicity parameter, the high-salt concentration samples (5,
6 and 7.5 mM) behave like glasses, so that again there seems to be an internal
contradiction.

Very similarly, the short-time diffusion coefficients of these sample behave like
that of a gel, so that there seems to be a problem here too (Fig. 3.12a).

It should be noted here that this behavior is very different from the one re-
ported above without addition of salt. We see no ’hesitations’ of the samples
between two states in the sense that a sample that starts evolving in one di-
rection ends up in the other one. Rather, all individually measured quantities
consistently show an evolution in one direction. However, comparing between dif-
ferent quantities, an inconsistency appears, which is always the same one. Looking
at the non-ergodicity parameter, all the samples at high salt always behave like
glasses: there is no hesitation here. However, all other measured quantities: slow
relaxation time and stretching exponent, scattered intensity and short-time dif-
fusion consistently behave as if the sample were a gel. This situation is indeed
quite different from the one without salt.

The data therefore suggest that although the sample has some definite char-
acteristics of a glass, the other characteristics are those of a gel. One possible
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Figure 3.10: a) The evolution of the non-ergodicity parameter f(q,∞, tw) versus re-
duced waiting time tw/teb − 1, for different Laponite samples with salt. The colloid
concentrations and salt contents are shown in the legend. The samples can be divided
into two groups according to the evolution of non-ergodicity parameters. The open sym-
bols correspond to gels, the filled symbols to the glass. The dotted line shows the gel
line and the solid line the glass line. b) The evolution of the non-ergodicity parameter
for long waiting times. As can be seen, for most of the samples with salt (attractive
glass) the non-ergodicity parameter deviates from glass line.

way of realizing such a state is that clusters start to form, but that subsequently
the clusters of particles can no longer move with respect to each other and form
a glass of which the elementary building block is a cluster. The fact that clusters
of particles start to form in our system is evident from the increase in scattered
intensity. Then from the fact that we nonetheless and simultaneously retain some



84 Chapter 3. Distinct Pathways for Aging of Laponite Suspensions

Figure 3.11: The scattered intensity relative to the toluene intensity as a function
of dimensionless scattering vector qR for different amounts of added salt (NaCl) at 3
different Laponite concentrations, as shown in the legends. These data are taken a long
time after the sample has become fully non-ergodic.

of the characteristics of the glassy state, we infer that subsequently the clusters
are dynamically arrested by each other, as particles in a glass. Following Tanaka
et al. [65], we dub this new state for the Laponite system an ’attractive glass’.
Existence of attractive glass requires the presence of attractive interactions. At
this moment the nature of attractive interactions between Laponite particles is
unclear. Possible sources are the van der Waals interactions and the attractions
between the positive charge on the rim and the negative charge on the surface of
Laponite particles. Indeed, recent experiments [123] have shown evidence for a
short-range attractive potential in the effective interaction potential.

Hence, to summarize, the addition of salt introduces new patterns in the aging
behavior in the sense that there are samples which share some of the properties of
the gel and some of the features of the glass. This behavior resembles to that of
an attractive glass [46, 47]. Therefore, we suggest to call these samples attractive
glasses.

At this point it is worth to compare the aging features of our attractive glass
with the attractive glass formed in hard spheres with short-ranged attractions
and to see if there are similarities or differences.

In hard sphere systems attractive glass is formed at moderately high volume
fractions and strong enough attractions. It can be achieved in experiments by
adding polymers that cause a depletion interaction [46, 47]. It is called attractive
glass in the sense that in this state the particles are tightly bound in a narrow
attraction well. Light scattering studies have revealed differences between attrac-
tive and repulsive glass. The distinction between attractive and repulsive glass
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Figure 3.12: a) The evolution of short-time translational diffusion normalized to its
initial value (tw ≈ 0) as a function of tw/teb. The solid and dashed lines show the glass
and gel line, respectively, according to the data of Laponite in pure water. b) Scatted
intensity at scattering angle 90o as a function reduced waiting time. So as to focus on
the effect of aging, we have normalized the intensity to its value at the beginning of
aging.

appears in both their static and dynamic properties, as described below.
Pham et. al. [46] show that upon increasing the attraction strength and

entering the attractive glass region (for a fixed volume fraction of colloids), the
peak position of the structure factor shifts to a higher q-value and its height
slightly decreases. The increase in the q-value of the peak position shows that
a significant fraction of neighboring particles get trapped in each others’ narrow
potential well, when the attractive glass is formed. This leads to clustering of
particles and implies that the average number of nearest neighbors should decrease
(leading to the decrease in peak height), and ’holes’ are opened up to render the
structure more heterogenous on the spatial scale of a few particles. The increased
heterogeneity is reflected in a rise in the structure factor at low q values. A similar
trend in our data is observed upon increasing the salt concentration that screens
the repulsions, thus this is equivalent to the increase of attractions (see Fig. 3.11).
Note that here we have only measured the structure factor at low q values. The
increase of attraction strength leads to a rise in the value static structure factor
at low q-values and a more heterogenous structure is reflected in the stronger
q-dependence of structure factor at high salt concentrations.

The differences in dynamics of attractive and repulsive glasses is evident in
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Figure 3.13: a)The evolution of slow relaxation time as a function of the scaled waiting
time tw/teb. The solid and dashed lines show the glass and gel line, respectively, obtained
from smoothed averaging over the data of Laponite in pure water. b) The stretching
exponent β versus tw/teb.

both the short- and long-time relaxations [46]. The short-time dynamics of par-
ticles progressively depart from free diffusion upon increasing attraction. In fact,
for the attractive glasses the particles are confined so tightly by attractive poten-
tial wells that short-time diffusion drops dramatically compared to the repulsive
glass at the same particle concentration [46]. This is consistent with our attrac-
tive glass samples for which a dramatic decrease of the short-time diffusion is
observed (Fig. 3.12). The evolution of the non-ergodicity parameter in attrac-
tive and repulsive glasses of hard sphere system is also different. The intermediate
scattering function of a pure hard sphere glass shows a plateau at a value ≈ 0.7 for
qR ≈ 3(corresponding to particles getting stuck in their nearest-neighbor cages)
and a very slow aging [46]. On the other hand, the non-ergodicity parameter of
an attractive glass has a higher value ≈ 0.9 at a equal waiting time (half a day)
and shows a much faster evolution with waiting time. Looking at Fig. 3.10, this
strengthens the resemblance of the attractive glass observed in our system and the
one in hard sphere system. Although at early times after the ergodicity-breaking
the non-ergodicity parameter in attractive glass follows the same dynamics as for
the repulsive glass, at later stages of aging tw/teb > 3, the non-ergodicity param-
eter in the attractive glass evolves at a faster rate and asymptotically reaches 1 at
very long waiting times, as we measured the samples a year after their preparation.
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3.6 The Concluding phase diagram

Figure 3.14: The non-equilibrium phase diagram of charged colloidal disks

In Sec. 3.4, we showed that gel and glassy states of Laponite both exist and
are well-defined in the limit of low and high concentrations of Laponite without
adding salt. These conclusions are reinforced by the study of Laponite with
addition of salt. Upon adding a sufficient amount of salt, we even uncover a new
state for Laponite, an ’attractive glass’ which has some of the characteristics of
the glass, and others of the gel. We tentatively propose that the glass is made
up of aggregates of clustered Laponite particles that sterically hinder each other,
thus arresting the motion even further. This again shows how closely glassy and
gel states are connected to each other.

Our findings are summarized in Fig. 3.14 where we have plotted the phase
diagram of the Laponite system in the Laponite concentration/added salt content
plane as follows from the ensemble of the measurements presented above. Without
salt, we observe the region between gels (low concentration) and glasses (high
concentration) where the samples may ’hesitate’, but always ends up being either
a gel or a glass. Upon adding salt, for salinities higher than 5mM we observe the
’attractive glass’ region, where the non-ergodicity parameter behaves like those
for glasses, but the other measured quantities resemble closely to what would be
expected for a gel.

The phenomena described here should be general for colloidal systems with ef-
fectively attractive interactions between the particles; indeed the recent discovery
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of ”attractive glasses” for spherical colloids [46] also suggests that gels and glasses
are not necessarily clearly distinct states of matter, but rather metastable minima
in an otherwise complicated free-energy landscape, resulting from both steric and
attractive interactions, as suggested by some simulations [124] and experiments
[125].

3.7 Discussion and conclusion

The non-equilibrium behavior of Laponite suspensions has been an active subject
of research in the last decade with the aim of getting a deeper insight into the
general features of aging and glassy dynamics. Several independent groups have
studied different aspects of non-ergodic Laponite suspensions in different regions
of phase diagram. Perhaps the earliest systematic studies come from Mourchid et.
al. [48, 126, 127], Willenbacher [128] and Kroon et. al. [49, 63, 50]. Willenbacher
and Mourchid et. al. focused on the rheological properties. Mourchid et. al.
varied both particle concentration and ionic strength. They performed oscillatory
shear measurements on samples a week after their preparation and defined a
sol-gel transition line where the zero frequency elastic shear modulus increases
remarkably. They further modified their phase diagram following the suggestion
of Bonn et. al. [63] for the existence of a repulsive glass at very low ionic strengths
(I < 10−4 M ) as shown in Fig. 1.4. Their phase diagram gives a general overview,
but their method is flawed as the measurements were done after some arbitrary
waiting time tw and viscoelastic properties depend on tw.

Willenbacher mainly studied the phenomenon of thixotropy in Laponite sus-
pensions and was the first to observe aging of Laponite suspensions. He found
that after cessation of steady shear, the magnitude of viscosity |η∗| increased
monotonically with time and even after 16 days no equilibrium viscosity value
was reached. A single power law |η∗| ∼ tnw described the data within the time
regime from 10 to 106s. The exponent n = 0.13 turned out to be independent of
clay concentration and mechanical pre-treatment of the material.

On the other hand, Kroon et. al. [49] studied the aging of Laponite using
dynamic light scattering experiments. They measured a range of sample concen-
trations between 2.2 and 3.5 wt%. They found that all the samples show a similar
aging behavior and evolve from an initially ergodic state to a non-ergodic state
around a certain time (ergodicity-breaking point) that decreases exponentially
with concentration. For a sample of Laponite 3wt%, they reported growth of non-
ergodicity parameter from almost zero to approximately 0.8 at tw = 3teb. Bonn
et. al. [63] measured the q-dependence of the intermediate scattering function for
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a sample of 3.5 wt % in the non-ergodic regime and showed that the relaxation
time associated with short delay times is independent of waiting time and has a
q−2 dependence. They found similar results as Kroon et. al for the evolution of
non-ergodicity parameter and an exponential decay of the form exp(−Aq2) for its
q-dependence. Furthermore, they suggested aging in this sample is due to strong
electrostatic repulsions, leading to formation of a low volume fraction Wigner
glass. They described the dynamics by cage-diffusion process. In a further study,
Abou et. al. [14] measured the intermediate scattering functions of a couple of
samples (2.5 and 2.8 wt%) in the ergodic regime of aging and showed that the cor-
relation functions can be described by sum of a single exponential and a stretched
exponential. The relaxation time of the first mode turned out to be independent
of waiting time, while the relaxation time of slow mode grows exponentially with
tw. The fast mode corresponds to a rapid diffusion of particles in a cage formed by
neighboring particles. The slow mode corresponds to the escape from the cages.
Besides, they measured the q-dependence of intermediate scattering function and
showed both fast and slow relaxation scale as τ1 ∼ q−2 and τ2 ∼ q−2.

The Munch group have also studied the aging dynamics of Laponite solutions
in the high concentration region 2.5 < C < 3.5 wt% [129, 112, 53]. In [129],
Knaebel et. al. have studied the aging behavior of Laponite suspensions by
multi-speckle diffusive wave spectroscopy (DWS) measurements of tracer particles
of 500 nm diameter (Latex particles) in the non-ergodic regime of aging [129].
The advantage of multi-speckle DWS is that long delay times can be measured
in non-ergodic samples. They observed that relaxation time of the slow mode
grows with waiting time as τ2 ∼ t1.05±0.05

w . This behavior has been observed in
other glassy systems and is not in contradiction with our measurements or prior
measurements of other groups in which an exponential growth of relaxation time
is reported. This is because the latter measurements are performed in the ergodic
regime, while the former ones in the non-ergodic regime of aging. The exponential
rate of aging should disappear in the non-ergodic regime, because τ2 can never
exceed tw

The same group later performed multi-speckle dynamic light scattering ex-
periments on Laponite suspensions [112]. They observed two regimes of aging.
In the first regime the decay time of the slow mode grows exponentially with
waiting time and in the second regime, called full aging regime, decay time grows
linearly with waiting time. However, in the second regime they found that the
relaxation function is described by a compressed exponential exp(−(t/τ2)β), with
β = 1.35 ± 0.15 i.e a hyperdiffusive relaxation. In addition, the spatial depen-
dence of this relaxation time scales as τ2 ∼ q−1.3 which is in contrast with the
q-dependence observed for the non-ergodicity parameter [63]. This is in disagree-
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ment with our measurements, since in the time scale they observe a decay of
correlation function, our correlation functions show a plateau. The reason for
this discrepancy remains unclear at this stage.

Multispeckle x-ray photon correlation spectroscopy measurements performed
on Laponite samples [130] led to similar results as [112], however the range of q
measured in their experiments corresponds to smaller length scales of the order
of interparticle distance. A compressed exponential with the stretching exponent
β ≈ 1.5 and the characteristic relaxation time has the q-dependence of the form
τ2 ∼ q−1. A convincing generic mechanism for such a hyperdiffusive behavior has
not been developed. Hence, the origin of such behavior remains to be clarified.

Nicolai and Cocard [117, 51] have studied the aging of Laponite suspensions at
low concentrations with added salt (1 wt%, 5mM). They observe that the mean
relaxation time grows with waiting time. More importantly in agreement with
our data, the scattered intensity increases with waiting time. The increase of
intensity is concomitant with the evolution of q-dependence of the structure: the
intensity at lower q-values increase at a faster rate, so that a strong q-dependence
characteristic of fractal structures (power law behavior) and aggregation appears.

The nature of the non-ergodic state in Laponite suspensions has been the sub-
ject of considerable controversy: both colloidal gel [51, 117, 67, 64] and colloidal
glass formation [50, 112] have been invoked and were thought to be mutually ex-
clusive [67, 50]. Our data on whether Laponite is a glass or gel are in agreement
with results in the literature. In our view, the controversy about the nature of
non-ergodic states of Laponite suspension is due to lack of comprehensive studies
on aging behavior of Laponite suspensions. Each group has only studied a specific
range of concentrations or salt content. Furthermore, most of the studies have
been performed in the ergodic regime of aging. Perhaps, the most complete study
is the recent one of the Ruocco group [52, 68, 116], spanning both low and high
concentrations region and varying the salt concentration. However, their studies
are restricted only to the ergodic regime of aging and they do not present any re-
sults in the intermediate range of concentrations 1.5 < C < 2.2. Their important
finding is the existence of two different routes of evolution in the ergodic regime
[52], in agreement with our measurements.

At this point it is useful also to compare our experimental results with present
simulations on Laponite. Unfortunately, there are not so many simulations works
on Laponite and especially its aging behavior. Most of simulation studies have
focused on understanding the static properties of structures resulting from charged
disks [131, 132]. Furthermore the effective interactions between the two disks are
not incorporated in the right way to mimic the real situation and the range of
concentrations and ionic strengths in the simulations do not match the range of
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experiments. In the simulation of Dijkstra et. al. the Laponite particle and its
associated double layer of coions and counterions is replaced by an effective disk
which is neutral but carries a fixed quadrupole moment [131]. Their model gives
rise to a sol-gel transition in which the resulting gel structure resembles more that
of house of cards structure, with no long range order. In the simulations of Kutter
et. al. the platelets carry discrete charged sites interacting via screened Coulomb
potential. In their molecular dynamic simulations for a few concentrations and
Debye lengths they obtain, gel and crystal phases. Mossa et. al. [133] used
the model of Kutter et. al. to simulate the aging of Laponite suspensions with
Brownian dynamics. Again they simulated a concentration higher than usual
experimental conditions. However their results qualitatively agree with aging
dynamics observed in the glassy region of phase diagram.

There are no simulation studies of aging during the gel formation. However,
there exist simulations based on simple models which show the evolution of struc-
ture factor during the aggregation in a similar trend observed for Laponite gels. In
one simple toy model, trajectories of particles undergoing Brownian motion in a
solvent are computed using a Molecular Dynamics algorithm at constant temper-
ature. When two or more particles touch each other, they stick definitively. Then
the mean acceleration and velocity resulting from all independent accelerations
and velocities of the particles inside the cluster are computed. And, in order to
conserve the relative positions of the particles inside the cluster, the mean accel-
eration and velocity are used for all particles of the corresponding cluster. Thus
in this method no attractive potential between particles is used for computing
time reasons and the sticking is an irreversible process. The aging of resulting
structure factors from this simulation are comparable to the experiments reported
in [134] and Laponite experiments [117](see Fig. 3.15), thus confirming that aging
in systems denoted as gel and attractive glass is due to aggregation.

Another simulation reporting gel formation is a Brownian dynamics simulation
of aggregating Lennard-Jones particles, in which both cluster growth and cluster
reorganization occur simultaneously [135]. The well depth in the Lennard-Jones
interaction potential is chosen in such a way that it corresponds to the unstable re-
gion of phase diagram and therefore leads to irreversible aggregation. The results
of their simulations show at low volume fractions there is a competition between
cluster growth and cluster reorganization. At very low volume fractions loose
clusters are formed. In moderately low volume fractions and a deep attraction
well cluster-cluster aggregation wins. At volume fractions φ > 0.07 percolating
networks appear which seem to be formed by reorganization of large aggregates,
during which branched strands are formed with voids in between.

Also a recent simulation has studied the aging in attractive colloidal glasses
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[136]. Puertas have shown that aging of attractive glasses is broadly analogous
to the aging of repulsion driven glasses, albeit with some specifications arising
from interaction potential in either case: bond formation for the former, steric
hindrance for the latter [136]. Specific differences appear, for instance, for the
value of the non-ergodicity parameter and the aging of static structure factor in
accordance with our results and earlier observations in attractive glasses [46, 47].

To summarize, we have shown Laponite suspensions can form different types
of non-ergodic states (repulsive glass, gel and attractive glass) upon changing con-
centration and salt content. All these different types of non-ergodic states show
similar features which is the aging of their dynamic structure factor. The distinc-
tion between them can be made from details of the behavior of static structure
factor and translational diffusion with waiting time. While the static structure
factor and short-time rotational diffusion of a glass are independent of waiting
time, the same quantities are a strong function of waiting time for a gel. Besides
the evolution of the non-ergodicity parameter is different in gels and glasses, pro-
viding a distinctive measure for distinguishing gels and glasses. Attractive glasses
are formed in the intermediate Laponite concentrations and high salt content,
their features resembling those seen in hard sphere systems to which an attractive
potential is added.

Figure 3.15: Comparison of aging of structure factor in Laponite suspensions in the
gel and attractive glass phase with a simple simulation model explained in the text. a)
The structure factor at initial and late stage of aging for Laponite 0.2 wt% in pure water
(gel) b) The evolution of structure factor as a function of waiting time for Laponite 1
wt%, 5mM salt (attractive glass) taken from [117] c) The aging of structure factor in a
simulation model of [134].



4.

Rotational Dynamics in
Colloidal Gels and Glasses

4.1 Introduction

In chapter 3, we studied the translational diffusion aging dynamics of suspensions
made of charge-stabilized anisotropic Laponite particles. As it was shown, the
translational motion of the particles slows down as the material becomes more
viscous and solid-like. Measuring the intermediate scattering function during
the evolution from an ergodic to a non-ergodic state of such samples revealed
that there are two pathways towards the non-ergodic state leading to glasses
and gels. In the first pathway, the slowing down of motion occurs due to the
topological constraints imposed by cages of neighboring particles. This mechanism
is responsible for the aging of high concentration samples. The second path of
evolution is characterized by the formation of clusters or networks of particles.
This pathway is responsible for the aging of low concentration samples. The first
group of samples can be identified as glasses and the second one as gels. These
two types of non-ergodic states are distinguishable by different aging behavior of
fast and slow relaxations of translational motion as well as the structure factor.

Since Laponite particles are disk-shaped, their anisotropy could in principle
affect the aging. Despite various studies of the aging dynamics of translational
diffusion [49, 14, 112, 53] and the viscoelastic response [115] of this system, no
information is available as yet on the aging dynamics of the particles’ rotational
degree of freedom. Therefore, the questions that arise are:
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• What is the aging behavior of the rotational motion of anisotropic particles
in colloidal gels and glasses?

• Is the aging behavior of rotational diffusion different between colloidal gels
and glasses and does this provide an extra criterion for distinguishing gels
and glasses?

This allows us to study whether translational-rotational decoupling can be ob-
served in colloidal glasses. Such decoupling is characteristic of supercooled liquids
with dynamic heterogeneity [5, 11, 30, 31]. Recent studies on (hard-sphere) col-
loidal glasses reveal the presence of such dynamical heterogeneities [28]; it would
be interesting to see whether this has repercussions for the rotational dynamics.

The aging dynamics of the rotational motion of the particles can be investi-
gated using depolarized dynamic light scattering (See Sec. 2.1.3). Here we de-
scribe for the first time, the evolution of the rotational diffusion during the aging
of colloidal gels and glasses. We find that together with the slowing down of
the translational motion, the rotational motion of the particles slows down as
well both in gels and glasses. Furthermore, we find that the evolution of both
short- and long-time rotational diffusion is distinctly different for the systems that
evolve into gel and glass non-ergodic states. Thus, this provides another criterion
for discerning them from each other.

4.2 Results

In depolarized dynamic light scattering (DDLS), one measures the correlation
functions of the scattered light intensity whose polarization (horizontal) is per-
pendicular to the polarization of incident light (vertical), i.e. the VH mode, as
opposed to the VV mode for which the polarization of scattered and incident light
are both vertical. Similar to VV intensity correlations, one observes two regimes
of aging in the evolution of the VH intensity correlations: the ergodic and non-
ergodic regimes. Here, we focus only on the aging of VH correlations in the
ergodic regime. We found that for a wide range of concentrations show that VH
correlations become non-ergodic at nearly the same time as VV correlations, or at
most tw = 0.9teb, within the uncertainties in determining the ergodicity-breaking
point.

Figures 4.1 shows the evolution of VV and VH intermediate scattering func-
tions for one gel and one glass sample measured at a fixed scattering angle θ = 90o

corresponding to q = 1.87 × 107 m−1. In both cases, the relaxation times of the
correlation functions grow with time, as the system ages. This figure shows that
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not only the VV correlation functions behave differently between gels and glasses
as discussed previously (chapter 3), but also their VH correlations show a dis-
tinctly different behavior.

Figure 4.1: Evolution of polarized (VV) and depolarized (VH) intensity correlation
functions (symbols) and their corresponding fits (solid lines) to Eq. (4.1) a) for a glass
(Laponite 3 wt%, pure water) and b) for a gel (Laponite 1.2 wt%, pure water) measured
at a scattering angle of 90o. The waiting times are shown in the legends. Note that here
only the correlations in the ergodic regime of aging are shown.

The VV and VH correlations become non-ergodic at nearly the same time
(teb = 450 min for Laponite 3wt% and teb = 18 days for Laponite 1.2wt%).
For the VH measurements, similarly to what has already been found for the VV
correlation functions [115] a two-step relaxation can be observed [137].

In order to consistently describe these two processes quantitatively, we fit the
normalized correlation functions, both VV and VH, by the sum of an exponential
and a stretched exponential as:
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Figure 4.2: Evolution of fast τ1 and slow τ2 relaxation times of VV and VH correlation
functions plotted versus scaled waiting time tw/teb for a glass (Laponite 3 wt%, pure
water) and a gel (Laponite 1.2 wt%, pure water). The lines show the fits of relaxation
times with the general form τi(tw) = τ0 exp(B tw

t∞w −tw
).

f(q, t) − 1 = A exp(−t/τ1) + (1 − A) exp(−(t/τ2)β) (4.1)

The stretched exponential is used since it has been found empirically that
it provides a good description of the slow relaxation processes encountered in
glassy systems [138, 115]. To ensure the accuracy of the extracted value for
short-time diffusion and constrain the fitting procedure, we first determined τ1

independently, using a linear fit for ln(fV H(q, t) − 1) for short times ( t < 0.005
ms), corresponding to the short-time diffusion. We find that the behavior of the
fast and slow relaxation times in the VH mode (related to the rotational motion of
the particles) is qualitatively similar to what is seen in the VV mode for a glass.
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Figure 4.3: Short-time translational and rotational diffusion coefficients normalized to
their values at tw ≈ 0 as a function of scaled aging time tw/teb a) in a glass of Laponite
C=3.2 wt% b) in a gel of Laponite C= 1.2 wt%

The relaxation times of VH correlations evolve in parallel with the relaxation
times of VV correlations.

For the glass sample above the fast relaxation time is roughly constant with
waiting time, while it grows remarkably in the gel sample, as demonstrated in Fig.
4.2c. This figure also suggests that the short-time rotational diffusion decreases
at a faster rate than translational diffusion. To investigate this, we have plotted
in Fig. 4.3, the short-time rotational and translational diffusion coefficients nor-
malized to their initial values for a glass and a gel sample as a function of scaled
waiting time. This clearly confirms that the rotational diffusion in the gel becomes
restricted at a faster rate than the translational degree of freedom. In contrast
for the glass both short-time and translational diffusion are almost constant as a
function of waiting time.

The slow relaxation times of both translational and rotational diffusion grow
exponentially in the glass sample, while in the gel phase they grow faster than
exponentially. This means that the average relaxation time (the time that it
takes for the particles to forget their initial orientation) increases exponentially
with waiting time in the glass and faster than exponential in the gel. This is
likely to be related to the formation of small clusters at early stages of aging that
subsequently aggregate to form a macroscopic structure (with a large relaxation
time)[117, 52], therefore restricting both translational and rotational motion of
particles.

The evolution of slow relaxation times in both gel and glass and the short
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Figure 4.4: The stretching exponents β for VV and VH correlations functions plotted
versus scaled waiting time tw/teb in a glass (Laponite 3 wt%, pure water) and in a gel
(Laponite 1.2 wt%, pure water)

time relaxations in the gel can be described with the general function τi(tw) =
τ0 exp(B tw

t∞w −tw
) (see Fig. 4.2) [52]. Indeed this function is a generalization of

exponential growth that is used to describe the evolution of slow relaxation times
in the glassy state [14].

Also it is observed that the stretching exponent β decreases with waiting time
in both gel and glass, in parallel and at almost the same rate as the corresponding
ones from VV correlation, as depicted in Fig. 4.4.

The strong resemblance between the evolution of correlation functions for the
translational and rotational degrees of freedom in the gels, suggests that the
evolution of rotational diffusion in all of the gel samples should be of the same
character and different from the glassy samples.

In Fig. 4.5a, we have plotted short-time rotational diffusion coefficients Dshort
r ,

normalized to the rotational diffusion of hard disks in the infinite dilution limit
D0r = kBT/32ηR3, versus scaled waiting time tw/teb. For hard disks of radius
R = 15nm the translational and rotational diffusion coefficients are D0t = 2.59×
10−11 m2s−1 and D0r = 1.1 × 105 s−1, respectively. We see only a moderate
decrease of Dshort

r for the glass samples, while the short time rotational diffusion
decreases enormously in the gels. The fact that both the short-time rotational and
translational diffusion decrease significantly during the gel formation is plausible
and can be caused by particles building up some type of structure. The different
behavior of short-time rotational diffusion for a gel and a glass provides another
criterion for their distinction. The enormous decrease of short-time rotational
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Figure 4.5: a) The short time rotational diffusion coefficients normalized to those of
infinitely diluted hard disks of radius R = 15 nm: D0r b) The VH scattered intensity
relative to Toluene intensity Ir; both plots as a function of scaled waiting time tw/teb.

diffusion in a gel also accounts for the stronger increase of its non-ergodicity
parameter relative to that of glasses; for the latter, there will always remain a
”rattling in the cage” motion that assures the non-ergodicity parameter does not
reach unity for long times.

An issue which deserves attention at this point is that the rotational motion
of particles in the final non-ergodic states of both gels and glasses is hindered,
as can be deduced from Fig. 4.5a. The rotational motion of particles in glass is
constrained from the very beginning due to crowding of particles at high concen-
trations (glass), while in the gel the rotational motion of particles is obstructed
as they become part of the network or clusters. To get an idea of the difference
in evolution of rotational and translational motion in gel and glass, we have plot-
ted the short-time translational and rotational diffusion coefficients as a function
of concentration at the initial and final stages of aging in Fig. 4.6. Both rota-
tional and translational diffusion are normalized to their corresponding values for
hard disks at the infinite dilution limit. As can be observed the translational
diffusion decreases with time only at low concentrations (gel) while the rotational
diffusion decreases in time over a wider range of concentrations and it is almost
concentration-independent in the non-ergodic state.

The distinction between gels and glasses was further investigated by looking at
the scattered intensity in the VH mode, as presented in Fig. 4.5b. As can be seen
the scattered intensity in the VH mode behaves in a distinctly different manner
for gels and glasses. The VH scattered intensity is the product of orientational
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Figure 4.6: Short-time a) translational b) rotational diffusion coefficients normalized
to diffusion coefficient of hard disks at infinite dilution as a function of concentration at
two stages of aging: immediately after preparation and at tw ≈ teb.

correlations and the structure factor. Since both gel and glass states are disor-
dered with no long-range orientational order, the increase of VH intensity can be
attributed purely to growth of the gel structure, as we saw before in the increase
of VV intensity.

In addition, if we plot the quantities τ2 and β for VH correlations as a function
of scaled waiting time tw/teb , the data from all concentrations again collapse onto
two master curves identified as gel and glass phases, as shown in Fig. 4.7. This is
in agreement with the classification based on the aging of the translational degree
of freedom in chapter 3.

To summarize, we find that both fast and slow relaxation times behave in a
qualitatively similar manner in VV and VH modes. We conclude from this that
both the translational and the rotational dynamics slow down as the system ages.

The fact that the VH correlation functions are well described by a stretched
exponential (Fig. 4.1) suggests that rotational degrees of freedom for different
particles relax with different rates. Furthermore, the decrease of the stretch-
ing exponent with waiting time expresses the fact that the distribution of these
relaxation times becomes wider as the system ages, again in line with earlier
observations for the translational dynamics [14].

One should keep in mind that the VV mode reflects mainly the aging of trans-
lational degree of freedom, whereas both translational and rotational degrees of
freedom contribute to the VH correlations. In order to gain more insight into the
rotational dynamics, we extract the orientational correlation function defined as
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Figure 4.7: The evolution of a) the slow relaxation time normalized to its initial value
τ2/τ0 b) the stretching exponent β of VH correlations versus scaled waiting time tw/teb

for different Laponite samples. The colloid concentrations are shown in the legend.
Similarly to the translational degree of freedom, the samples can be divided into two
groups according to the evolution of the slow relaxation times of VH correlations. In
both figures the open symbols correspond to gels, the filled symbols to the glass. In
panel a) the solid and dashed line correspond to the glass and gel lines obtained from
growth of relaxation time of translational diffusion.

the ratio for = fV H

fV V
, assuming that to a first approximation the rotational and

translational motions are uncorrelated. The obtained orientational correlations
for a gel and a glass are depicted in Fig. 4.8 for different waiting times. The
orientational correlations of the gel and the glass clearly behave in a different
manner and again can be fitted with the form of Eq. (4.1). The slow relaxation
times extracted from these fits are plotted in the inset in comparison with the
relaxation times from the translational degree. This confirms what we concluded
before, that in both gel and glass the slow relaxation time of the orientational
degree of freedom grows faster than the corresponding one for the translational
degree.

4.3 Discussion and conclusions

We have measured both the translational and rotational dynamics in aging col-
loidal gels and glasses. The dynamics are qualitatively similar between the two
degrees of freedom.
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Figure 4.8: The orientational correlation functions defined as fV H/fV V at different
waiting times in a glass (Laponite 3 wt%, pure water) and a gel (Laponite 1.2 wt%,
pure water). The lines show the fits with the sum of single and stretched exponential
as in Eq. (4.1). The insets show the slow relaxation times extracted from orientational
correlations compared with the ones from translational diffusion

In the glass, the short-time diffusion is independent of the time elapsed since
the sample preparation. The intermediate- and long time diffusion, on the other
hand, slows down over several orders of magnitude during the aging. The slowing
down of the rotational diffusion is much faster than that of the translational diffu-
sion. It was suggested previously [50, 14] that the translational diffusion dynamics
in this (and many other glassy systems) can be described by a cage-diffusion pro-
cess: for short times or small displacements ’normal’ Brownian motion is observed;
however for larger times or excursions, the particles are confined in effective cages
formed by their neighbors. The slow mode then corresponds to the escape of the
particles from their respective cages, which becomes more and more difficult as the
system ages. This shows up in the experiments as an increase of the slow relax-
ation time. The rotational degree of freedom that we look at here is the rotation
of the disk around an axis parallel to the faces of the disk; our measurements thus
indicate that this motion, too, is hindered, and more readily than the transla-
tional motion. Our results [137] are in qualitative agreement with measurements
of rotational diffusion in colloidal glass of Laponite using the NMR relaxometry
technique [139] which showed a strong slowing-down of rotational motion.

The short-time rotational diffusion decreases dramatically during gel-formation
at a rate faster than the short-time translational diffusion. The slow relaxation
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time also grows with a much faster rate compared to translational one in the gel.
This can be understood from the constraints present for particles in a gel network.

An issue that deserves to be discussed is decoupling between rotational and
translational diffusion and its relation to the non-exponential relaxation dynamics.
The different behavior of the slow relaxation between translational and rotational
diffusion in both gels and glasses (see insets of Fig. 4.8) points to the decoupling
of translational and rotational diffusion.

The combination of Stokes-Einstein relation for translational diffusion and the
Debye-Stokes-Einstein relation for rotational diffusion predicts that the product
of translational diffusion Dt and rotational relaxation time τ2rot will be a con-
stant, even if the macroscopic viscosity increases by orders of magnitude when
approaching the glass transition (by decreasing the temperature of glass form-
ing liquids) [11, 140, 31]. However, such a relation is observed to break down in
supercooled liquids approaching the glass transition [11]. This is known as the de-
coupling of translational and rotational diffusion. Recently it has been shown in a
model system (mixture of ellipsoids and Lennard-Jones spheres) that decoupling
of translational and rotational diffusion is correlated with manner of exploration
of the free energy landscape [141]. Chakrabarti et. al. have shown that the decou-
pling between rotational and translational diffusion is signaled by an increase in
the rate of fall of the average inherent structure energy [141]. Furthermore, it is
found that the onset of non-exponential relaxation in the supercooled regime cor-
responds to the temperature below which the dynamics of the system is influenced
by its energy landscape [18].

The non-exponential behavior of both translational and orientational correla-
tions and their description by a stretched rather than a simple exponential points
to a broad distribution of relaxation times for both degrees of freedom. It seems
likely that this distribution of relaxation times is at least partially due to spatially
heterogeneous dynamics, i.e., rotational and translational motions of particles are
faster in some parts of the sample than in other parts and particles in the slow
domains are responsible for the long tail of correlations. It is discussed in the
literature that the dynamic heterogeneity plays a central role in the decoupling
between rotational and translational diffusion [22, 142]. The diversity of the depth
of meta-basins and of their connecting pathways in configuration space are ex-
pected to result in the broad spectrum of relaxation times underlying dynamic
heterogeneity.

In summary, our data provide further evidence for the decoupling of transla-
tional and rotational diffusion and its correlation with dynamic heterogeneity in
both gel and glassy non-ergodic states. Our data also suggest that the decoupling
is stronger in heterogenous samples (gels) than the homogeneous ones (glasses),
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as the the difference in the aging behavior of rotational and translational degrees
of freedom is more pronounced in gels.

Finally, we would like again to emphasize that the rotational degree of freedom
evolves differently in the gel and glass as the material ages. Therefore, the aging
of the rotational degree of freedom provides us further indicators to distinguish
between gels and glasses of Laponite suspensions.



5.

FDR in Colloidal Glasses
and Gels

5.1 Introduction

Developing a statistical mechanical description of non-equilibrium systems such
as glasses and gels still remains an important challenge in physics. One of the
most interesting recent developments along these lines is the proposal to gener-
alize the fluctuation dissipation relation (FDR) to non-equilibrium situations [3],
as was explained in section 1.3.2. The FDR relates the response of a system
to a weak external perturbation to the relaxation of the spontaneous fluctua-
tions in equilibrium. The response function is proportional to the power spec-
tral density of the thermal fluctuations, with a prefactor given by the temper-
ature. This suggests a generalization for systems out of equilibrium, in which
the (non-equilibrium) fluctuations are related to the response via a time-scale-
dependent effective temperature ( Eq. (1.22) or Eq. (1.24)). Deviations from
fluctuation-dissipation relations (FDR) have been studied extensively in theoreti-
cal methods and simulations for various model systems such as structural glasses
[143, 38], spin glasses [3, 36, 144, 13, 37], non-equilibrium ferromagnetic systems
[145, 146, 147, 148], trap model [149, 150, 151] and driven systems such as a fluid
under shear [152, 153, 154, 155, 156, 157, 158] aging critical systems [159, 160]
and some other solvable theoretical models [161, 162, 163, 164, 165, 166]. In all
simulations [143, 38] and theoretical investigations [3, 36, 144, 13, 37], where vi-
olations are found they occur when the characteristic observation time t is of the
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same order or greater than the age of the system, i.e., when t ≥ tw or ωtw ≤ 1,
where ω ∼ 1/t is a measurement frequency and tw is the waiting time.

However, the experimental support for a meaningful effective temperature is
unclear. There have been few experiments on a structural glass [39], a spin glass
[167], granular matter [168, 169, 170], hard sphere colloidal glasses [71, 41] and the
colloidal glass of Laponite [40, 171, 25, 70], with sometimes contradictory results.

Perhaps the most convincing experiments supporting deviations from FDR
are the measurements on a spin glass of Hérisson and Ocio [167]. They measured
the deviations from FDR of the slope of the magnetic susceptibility together
with magnetization fluctuations, in a spin glass with a quench temperature of
T = 0.8Tg = 13.3K . They observed deviations from FDR when the delay time is
larger than the waiting time. These deviations are an increasing function of the
delay time for a fixed waiting time and decrease as the spin glass ages. The mean
slope of FDR data corresponds to an effective temperature of about 30K, which
is 2.25 times higher than the bath temperature.

Grigera and Israeloff quenched glycerol below its glass transition temperature
to a temperature of 179.8 K. They determined the effective temperature of this
structural glass by coupling it to a capacitor which acts as a harmonic oscilla-
tor and measured the ratio of voltage fluctuations to the frequency dependent
impedance (see the Nyquist formula Eq. (1.20)). They report a weak deviation
from FDR which is at most 5 degrees higher than bath temperature at the reso-
nance frequency f = 7.7Hz of their setup [39].

Bonn and Kegel have determined the effective temperature of a supercooled
hard sphere colloidal fluid from the ratio of the frequency-dependent mean square
displacements (MSD) derived from light scattering experiments to the viscoelastic
response function measured by rheology [71]. Their results, suggest effective tem-
peratures which are decreasing functions of frequency and 60 times larger than
the bath temperature at the lowest frequency reported. However, these are not
direct comparisons, since the MSD and mechanical response were measured for
different samples.

Song et. al. measured the effective temperature in a hard sphere colloidal
glass [41]. They determined the effective temperature from the long-time limit
of MSD and the mobility of tracer particles (by applying a constant magnetic
force). According to their findings, the MSD and mobility scale with the ageing
time as a power law. Nevertheless, according to their analysis the glassy system
thermalizes at a constant temperature independent of the age and twice the bath
temperature.

For the Laponite system, especially, contradictory results have been reported
for deviations of the FDR. Bellon et. al. [40, 25] measured the effective temper-
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ature resulting from the Nyquist formula Eq. (1.20) which relates the voltage
fluctuations to the impedance. They reported an effective temperature which is
a decreasing function of waiting time and frequency and can be 1000 times larger
than the bath temperature at lowest measured frequency of 1Hz. While electrical
measurements report strong violation of FDR in the frequency range 1-40 Hz,
the same group does not see deviations in their mechanical measurements in the
frequency range 1-20 Hz [171]. These measurements by the same group seem
contradictory. However one does probe different degrees of freedom in these two
sets of measurements.

On the other hand, Abou et. al. report a non-monotonous behavior for the
effective temperature of Laponite samples as a function of waiting time deter-
mined from the application of the Einstein relation [70, 172]. According to their
measurements there is a frequency-dependent effective temperature of the form
Teff = f(b, β, tw)(ω/ω0)2−b−β , in which the values of both β and b evolve with
waiting time; at the beginning of aging β(tw) = 0, b(tw = 0) = 2 and at late
stages of aging β(tw) = 1, b(tw) = 1. The above form leads to an effective temper-
ature which is an increasing function of frequency. Therefore, their Teff is equal to
the bath temperature T for a young sample; it subsequently increases up to max-
imum value at an intermediate age and then decreases when the sample further
ages towards the bath temperature again. In this study the frequency-dependent
effective temperature was derived by measuring the diffusion and mobility of mi-
crometric beads embedded in the glass.

The usefulness of the extension of the FDR to non-equilibrium situations is
still therefore a matter of controversy and deserves further investigation. It is
important to identify the time-scales at which FDR is violated, since this has
practical consequences. For instance, the passive microrheology technique (see
Sec. 2.3) which is a useful tool to determine viscoelastic properties of complex
fluids is based on FDR and has been used in non-ergodic systems [173].

In microrheology tracer particles are used to probe the dynamics of the fluid.
Taking advantage of a combination of both active and passive microrheology
techniques, we are then able to examine the validity of FDR in the form of the
Einstein relation Eq. (1.15) in a wide range of frequencies (1-100k HZ) for two
different glassy systems.

In passive microrheology, one measures the displacement fluctuations of the
probe particles x(t). While in the active method, one directly measures the me-
chanical response of the probe particle to an applied oscillatory force α(ω). Conse-
quently, by comparing the power spectrum of thermal fluctuations 〈|x(ω)|2〉 with
the imaginary part of the response function α′′(ω), we can obtain the frequency-
dependent effective temperature (See Sec. 1.3.2 and 2.3).
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Teff

Tbath
=

ω〈|x(ω)|2〉passive

2kBTbathα′′
active(ω)

=
α′′

passive(ω)
α′′

active(ω)
(5.1)

If Teff = Tbath, then the fluctuation-dissipation relation is valid. Microrheology
technique provides a way to directly test the applicability of the Einstein relation
in non-equilibrium systems.

Here, we examine the validity of the Einstein relation as an example of FDR
(see Sec.1.3.1) in aging Laponite suspensions during the evolution from a liquid-
like state to a non-ergodic gel or glass state. We also investigate the validity of
FDR for a hard sphere glass.

5.2 Einstein relation in aging colloidal gels and
glasses of Laponite

As was demonstrated in chapter 3 depending on Laponite concentration and salt
content, different mechanisms are responsible for the evolution of system into a
non-ergodic state. Laponite suspensions can form either gel-like or glassy struc-
tures. Here, we study the validity of the Einstein relation in one sample which is
known to be a glass and a few gel-forming samples.

Experimental procedure

Laponite samples immediately after their preparation (see Sec. 3.3), are mixed
with a small fraction (< 10−4 vol%) of silica probe beads. The solution is then
introduced into a sample chamber of about 50 µl volume, consisting of a coverslip
and a microscope slide separated by a spacer of thickness 70 µm. This is sealed
with vacuum grease to avoid evaporation of the sample. We then optically trap a
single silica bead and perform active and passive microrheology experiments. The
size of silica particles used in these experiments was either 1.16 or 0.5 micrometers
in diameter. Note that the bracket <> in Eq. (5.1) refers to ensemble-averaging,
while in our measurements we use time-averaging. Since the system evolves to-
ward a non-ergodic state, one might worry that the time average may not be
equal to ensemble average for the measured displacement power spectral densities
(PSD). To investigate this, we confirmed that our results do not depend on the
time interval used to compute the time average. Thus, we conclude that, after
all, we can use the time-averaged PSD without further ensemble-averaging.
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5.2.1 FDR in the Colloidal glass of Laponite

We chose a concentration of 2.8 wt% of Laponite in water (see chapter 3). The rate
of aging at this concentration is slow enough, on the one hand, that no significant
structural and dynamic changes occur during each individual active and passive
microrheology measurement lasting at most 2 min. On the other hand, the system
evolves fast enough to allow us to follow the evolution from ‘liquid’ to ‘solid’ (the
sample no longer flows when the sample cell is tilted) within about 8 hours. In
these experiments, we used silica particles of 1.16 µm diameter as probe particles.

Figure 5.1: The displacement power spectral densities (PSD) of 1.16 µm silica probe
particles as a function of frequency in a 2.8% Laponite solution in water with increasing
age (after preparing the sample). Fluctuations were recorded for 45 seconds with the
830 nm laser focus and results averaged in x-y directions for 1 bead several times. Aging
times are given in the legend. The filled squares show the PSD of a bead in pure water
for comparison. An acoustic noise signal around f ≈ 200Hz is cut out from the curve at
the latest stage of aging where the displacement signal was the lowest. All experiments
were done at 21oC.

Figure 5.1 shows the displacement PSD of a single bead measured with the
passive method for different aging times measured at a fixed position in the sam-
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ple. It is evident that the particle motion progressively slows down with increasing
waiting time, reflecting the increase in viscosity of the system. Qualitatively two
regimes of aging are seen: for tw < 200 min the PSD can be described by a single
power law. At longer aging times two distinct slopes appear in the log-log plot
(Fig. 5.1).

We also measure the (active) response of the same bead used in passive mea-
surements, as a function of waiting time and for oscillation frequencies of f =1.2,
10.8, 116, 1035 and 12000 Hz.

Figure 5.2 depicts the amplitude and phase of the response function versus
waiting time for several frequencies. We have normalized the amplitude to its
value at the beginning of the measurement, tw ≈ 45 min. Fig. 5.2b shows the
frequency dependence of the response amplitude in the early stages of aging. It is
a linear function of frequency with slope 1 leading to a constant mobility, similarly
to what happens for water. With time, both the amplitude and the phase of the
response function decrease. Again the the frequency behavior of the phase at
early stages of aging resembles that of water (phase = π/2, independently of
ω ). Subsequently the phase decreases and becomes frequency-dependent. As
is apparent, the lowest frequency has the fastest evolution. In the latest stages
of aging the frequency-behavior of the phase in the low frequency region (1-100
Hz) is similar to that of a purely elastic solid as shown in Fig. 5.2d; at higher
frequencies the material behaves more like a viscoelastic fluid.

To directly compare the (passive) fluctuations with the (active) response, we
express our fluctuation PSDs normalized in such a way as to permit a direct
comparison with the measured α = α′ + iα′′ in the form of Eq. (5.1). Thus,
we first calculate the measured PSD multiplied by ω/(2kBT ), which we define
to be called the imaginary part of passive response α′′

passive. We obtain the real
part using a Kramers-Kroning (principal-value) integral Eq. (1.12): α′

passive(ω) =
2
π P

∫ ∞
0

ξα′′
passive(ξ)

ξ2−ω2 dξ. The cutoff error due to a finite range of frequencies sets an
upper limit to α′

passive(ω) about a decade lower than that of α′′
passive(ω). Fig. 5.3

depicts the real and imaginary parts obtained from the active and passive methods
at different stages of aging. We see that the results for α′′

active and α′′
passive are

identical to within the experimental errors, showing that there are no deviations
from the FDR in this system over the range of frequencies and aging times probed
in our experiments. Note that the small deviations between the respective α′(ω)
values at high frequencies are likely due to cut-off errors in the Kramers-Kronig
integrals. The values of α′ calculated from the extrapolated power spectrum of
α′′, obtained through fitting, show a significantly better agreement, as depicted
by solid lines in the Fig. 5.3.
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Figure 5.2: The time evolution of a) amplitude normalized to its value at tw = 45
min, b) the frequency dependence of response amplitude at tw = 45 min c) phase of
complex compliance obtained from active microrheology measurements for 1.16 µm silica
beads at frequencies (f=1.2, 10.8, 116, 1035 and 12k Hz). d) the frequency behavior of
response phase in pure water, aged Laponite and a purely elastic solid. The amplitude of
oscillation for the active experiments was 77 nm. Note that after 200 min, we increased
the trap power from 1.47×10−5 to 1.21×10−4, since a larger force amplitude was needed
to oscillate the bead in stiffened material.

The fitting is based on assuming a simple addition of two power law contribu-
tions to the complex shear modulus (only a single power-law contribution at the
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Figure 5.3: Comparison of active and passive microrheology results: Real α′ and
imaginary α′′ parts of the frequency-dependent response functions at different stages of
aging obtained from active (solid symbols) and passive (open symbols) microrheology
using the same 1.16 µm diameter silica beads in the same aging sample. Imaginary
parts of the response functions are obtained directly and real parts are calculated with
a Kramers-Kronig integral from the PSDs for the passive experiments. Both parts were
measured directly in the active experiments. An acoustic noise signal around f = 200Hz
is cut out from the passive data at the latest stage of aging where the displacement signal
was the lowest. Both parts were measured directly in the active experiments. The lines
show the fits of the response function to Eq. (5.2). At early stages of aging the data
can be described with one power law, while at later stages, a superposition of two power
laws is needed to describe the whole frequency range.

early stages of aging) which is inversely proportional to the response function:

α(ω) =
1

6πRG∗(ω)
=

1
C1(ıω)a + C2(ıω)b

(5.2)

The above form has been chosen since a similar description in terms of a net-
work in a more fluid-like background has been suggested before for polymeric gels
[174, 175]. The interpretation of the model is that it results from an elastic struc-
ture, in addition to the more viscous response that is always present. As can be
seen the agreement between the data and suggested form of the fits is excellent
for both the imaginary and the real parts of response function. Despite the model
being usually employed for network-like structures [174, 175], our sample is com-
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Figure 5.4: The ratio of (apparent) response derived from fluctuations via FDT and
actively measured response Teff/Tbath as a function of waiting time for different frequen-
cies (f = 12000, 1035, 116, 10.8 and 1.2 Hz from top to bottom ) in Laponite colloidal
glass of 2.8 wt% concentration. Note that the apparent increase after 200 min, is due
to calibration errors, caused by changing the trap power to apply the oscillatory force.

pletely homogenous. In Fig. 5.4, we plot the resulting Teff/Tbath = α′′
passive/α′′

active

as a function of waiting time for several different frequencies. This figure confirms
again that to within experimental uncertainty the FDR holds: the measured ef-
fective temperature does not differ from bath temperature. The errors for the
lowest frequency (1.2 Hz) are relatively large and the data for aging times greater
than 5 h are not reliable anymore, because at long waiting times the material be-
comes stiff and the signal to noise ratio decreases. Consequently, 1/f noise from
laser pointing fluctuations becomes dominant at low frequencies. This is directly
visible in the passive data at low frequencies: when the fluctuations become small
the error becomes large. In addition, for the active measurements the uncertainty
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in determining the phase of the response becomes large at low frequencies when
the elastic modulus of the material becomes dominant (See Fig. 5.2).

We conclude that these measurements show that the FDR in the form of the
Einstein relation is valid for all the frequencies investigated here, and can be used
for all the stages of aging in this system.

Since we have directly compared both the real and imaginary parts of the
response functions, this represents a stronger test of the FDR than the previous
measurements of Abou et. al. [70] and much more convincingly demonstrates that
the FDR is valid in the measured range of frequencies for this non-equilibrium
system.

ω

ω

Figure 5.5: The frequency-dependent diffusion coefficient at a scattering vector corre-
sponding to qR = 0.3 for different stages of aging of a colloidal glass of Laponite 3.2 wt
%. The waiting times are shown in the legend.

A relevant issue here is at what time scales we might expect to find deviations
from FDR. By theoretical predictions, the deviations from FDR are expected
when ωtw � 1 [3]. However this condition makes sense for glassy systems in
which the relaxation times are comparable to the waiting times. In our system,
the relaxation times can be several orders of magnitude smaller than the waiting
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times. The more reasonable criterion is to expect the deviations from FDR at the
time scales that we see the structural relaxations and not the in-cage dynamics. To
have a better idea of what is going on, we have obtained the frequency-dependent
diffusion of Laponite particles from DLS measurements and compared it with
the frequency-dependent diffusion coefficient of tracer particles used in our MR
experiments. The DLS and MR measurements were performed simultaneously on
the same sample of Laponite 3.2 wt%, in pure water. As we showed in chapter
3, the correlation functions of Laponite suspensions can be well described by
a sum of a single exponential and a stretched exponential (Eq. (3.2)), in the
ergodic regime of aging (see Fig. 3.1). Fortunately, the Laplace transform of a
stretched exponential though difficult, can be calculated analytically. We used
Mathematica to do it analytically. By knowing the form of the intermediate
scattering function (f(q, t)) in the frequency domain (S(q, ω)), we can calculate
the frequency dependent diffusion coefficient [176].

S(q, ω) =
∫ ∞

0

f(q, t) exp(iωt) =
1

−iω + D(q, ω)q2
(5.3)

Fig. 5.5 shows the frequency-dependent diffusion coefficient at a scattering
vector corresponding to qR = 0.3 for different stages of aging.

The frequency-dependent diffusion coefficient in MR can be obtained from the
power spectrum of displacements as D(ω) = 1

2ω2|x(ω)|2. In order to compare the
diffusion coefficients from MR and DLS experiments, we have scaled their values
with the factors 6πR and 12R, respectively to remove the trivial dependence of
diffusion coefficient to particle size. In Fig. 5.6, we have depicted the frequency-
dependent diffusion of Laponite particles and the tracer particle at two different
waiting times. At early stages of aging the two diffusion coefficients agree at high
frequencies, while the diffusion of Laponite particles is significantly lower at low
frequencies. However, as the sample ages, the two diffusions do not agree at any
frequency and surprisingly the diffusion of the larger tracer particle has evolved
with a faster rate than the Laponite particles. This comparison clearly shows
us that in addition to the short-time dynamics, we are probing the structural
relaxations. The difference in the speed of aging for diffusion of Laponite particles
and tracer particle is most likely due to the different length scales that we are
looking at. This suggestion agrees with the experiments of Strachan et. al. who
investigated the diffusion of trace particles of different size [177] as a function of
waiting time. Measuring the diffusion of tracer particles of 50, 100 and 200 nm
particles in aging Laponite particles, they found that the particles relaxations are
identical at the beginning of aging, however as the time proceeds, the correlation
functions of the larger tracer particles evolve at a faster rate.
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Figure 5.6: The frequency-dependent diffusion coefficient of Laponite particles at a
scattering vector corresponding to qR = 0.3 compared to the diffusion of a probe particle
of diameter 1.16 µm at two different stages of aging in a colloidal glass of Laponite 3.2
wt %. The waiting times are shown in the legend. Note the diffusion of probe and
Laponite particles are scaled with their radii to be comparable.

5.2.2 FDR in colloidal gels of Laponite

Colloidal gels and attractive glasses are another class of non-equilibrium systems
(See chapter 3). In such systems, similarly to what happens in glasses, correlation
and response functions can be a function of time elapsed since their preparation
and their relaxation times grow in time, despite the fact that the origin of aging
in these samples is different: the time evolution of the gel is a result of formation
of network-like clusters or aggregates. Despite a number of studies on the validity
of FDR in colloidal glasses, as far as we know there has as yet been no study in-
vestigating the FDR in evolving non-equilibrium gels. In some range of Laponite
concentrations and salt content, the particles form a soft colloidal gel and at-
tractive glass which is evolving from an initially liquid-like state to a viscoelastic
solid-like state.

We performed the experiments on two samples: Laponite 0.8 wt % with 6 mM
salt (attractive glass) and 0.8 wt % with 3mM salt (gel). In chapter 3, we showed
that the final structure factor of these samples shows a q-dependence, suggesting
a heterogenous structure. Therefore, we examined the heterogeneity of these
samples by measuring displacement PSD of several beads at different positions
of the samples at different stages of aging. At intermediate stages of aging, the
PSDs of beads measured at almost the same time but different positions were not
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equal (Fig. 5.7), hence demonstrating the heterogeneity of the samples at length
scales of a few micrometers, as the light scattering experiments did indeed suggest.
Furthermore, at some positions in the sample we observed some anisotropy, i.e.
displacement PSDs measured at x and y directions were not equal. The details
of these experiments and how heterogeneity develops with time will be discussed
in the next chapter. Here, we choose a few beads at different positions in the
sample and investigate the validity of the Einstein relation by performing both
active and passive microrheology on each bead at in the sample.

Figure 5.7: The PSDs of several silica 0.5 µm beads measured at nearly the same time
at different positions of an attractive glass of Laponite 0.8 wt %, 6mM NaCl, after 4 h
and 9 h.

Fig. 5.8 shows the imaginary part of response function obtained from active
and passive microrheology measured at different positions of Laponite 0.8 wt%,
6mM and different stages of aging. Similar to the glass, here we also observe a good
agreement, verifying the validity of FDR in the measured range of frequencies.

Fig. 5.9 shows the response function obtained from active and passive mi-
crorheology measured at 3 different positions of Laponite 0.8 wt%, 3mM. The
rate of aging for this sample is slow enough, that there is no significant evolu-
tion during the one series of measurements. These data are measured 5 days after
sample preparation. To inhibit sedimentation of beads, the sample chambers were
rotated slowly during the aging. As can be seen, for beads (a) and (c) the mea-
sured PSDs are not equal in the x and y directions. Nevertheless the apparent
response from passive microrheology in the y direction agrees well with active re-
sponse obtained by exerting an oscillatory force in the y direction. Measurements
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Figure 5.8: Imaginary parts α′′ of the frequency-dependent response functions from
active (solid symbols) and passive (open symbols) microrheology using 0.5 µm diameter
silica beads at different positions of the Laponite 0.8 wt%,6mM NaCl sample measured
at different stages of aging. The aging times are shown in the legend.

without rotation of the sample chamber show identical results.

Figure 5.9: Imaginary parts α′′ of the frequency-dependent response functions in the
y direction from active (solid symbols) and passive (open symbols) microrheology using
0.5 µm diameter silica beads at 3 different positions of the Laponite 0.8 wt%, 3mM NaCl
sample. The dotted lines in panel (a) and (c) show the α′′ in the x direction which is
different from its value at y direction at these positions of the sample. The data are
measured 5 days after sample preparation.
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The most important conclusion from this section is that despite the presence
of heterogeneity in the gels, FDR in the form of the Einstein relation is valid
locally at each point of the sample just as it was for the glassy system (see Fig.
5.10).

Figure 5.10: The ratio of (apparent) response derived from fluctuations via FDT and
actively measured response Teff/Tbath as a function of frequency, obtained from 0.5 µm
diameter silica beads at 4 different positions (shown by different symbols) of the Laponite
0.8 wt%, 3mM NaCl sample. The data are measured 5 days after sample preparation.

The validity of Einstein relation for a wide range of frequencies (1 − 105 Hz)
allows us to obtain the viscoelastic properties of aging Laponite suspensions over
a very wide frequency range from passive microrheology; classical (macroscopic)
rheology is limited to frequencies up to about 10 Hz [115]. The frequency behavior
and time evolution of viscoelastic properties of Laponite suspensions is the subject
of the next chapter of this thesis.

5.3 The Einstein relation in a hard sphere col-
loidal glass

Experimental details The experimental system mimicking a hard sphere
system is a dispersion of poly-methyl methacrylate (PMMA) colloids sterically
stabilized with a layer of 10 nm poly-12-hydroxystearic acid ( kindly provided
by Didi Derks) [178] in a refractive index and density matched solvent. The
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solvent is a mixture of Cyclohexyle bromide (CHB, C6H11Br) and cis-decalin
(Decahydronaphthalene) with weight ratio 3:1. Since CHB is a polar solvent,
colloidal particles dissolved in it are charged. To screen the charges, the mixture
is saturated with salt tetrabutyl ammonium bromide (TBAB) ( around 300 µM/l).

The density of PMMA particles is ρ= 1.19 g/cm3 and n(λ = 500 nm) =1.49
(n(λ = 1064nm) = 1.4184). The density and refractive index of decalin is
ρ1 = 0.893 g/cm3 n1(λ = 500 nm)= 1.481 and n1(λ = 1064 nm)=1.470 and
the corresponding values for CHB are ρ2 = 1.33 g/cm3, n2(λ = 500nm)= 1.50.
The refractive index of the mixture n12 can be estimated from the Lorentz-Lorenz
mixing rule. This turns out to be the theoretical estimate that best matches the
experimental results [179].

n2
12 − 1

n2
12 + 2

=
n2

1 − 1
n2

1 + 2
φ1 +

n2
2 − 1

n2
2 + 2

φ2 (5.4)

where φ1 = 0.332 and φ2 = 0.668 are the corresponding volume fractions
of cis-decalin and CHB, respectively. This would lead to the refractive index of
nmix = 1.493 which is more or less the same as that of PMMA.

The mixture density is estimated as 1/ρmix = x1/ρ1 + x2/ρ2, in which xi are
the mass fractions of each component. The resulting density is 1.185 gr/cm3 very
close to that of PMMA particles, so that no sedimentation takes place.

The viscosity of the solvent mixture was measured using the rheometer ap-
plying a shear rate and measuring the stress, yielding a Newtonian flow behavior
with a viscosity ηs = 2.47 mPa.s.

The probe particles used for trapping are 1.1 µm melamine resin particles
(micro-particles GmbH, Germany) with density ρ = 1.51 gr/cm3 and refractive
index of n = 1.68 allowing for convenient trapping (the main experimental prob-
lem here is that the probe particle must have a higher refractive index than the
solution itself to allow for optical trapping.). A very small fraction of melamine
particles φ < 10−4 are dissolved in the solvent before mixing it with the PMMA
colloids which are received as a dry powder. The powder is dissolved in the sol-
vent gradually and stirred vigorously using a spin-mixer. The radius of colloidal
particles used in most of the experiments is R = 197nm while a few experiments
are performed with larger colloids R = 565 nm. Since the density of solvent and
colloid are equal, the samples are prepared in weight fraction, assuming this to
be equal to the volume fraction. The sample volume fractions of interest are in
the supercooled and glassy region (φ ≈ 0.49 − 0.59)(refer to Sec. 1.4.1 for the
phase diagram of hard sphere suspensions). The samples in the supercooled region
were measured within a couple of hours after preparation, since at later times,
we observed the formation of crystals. The solution is introduced into a sample
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chamber of about 50 µl volume, consisting of a coverslip and a microscope slide
separated by a spacer of thickness 70 µm. This is sealed with epoxy glue to avoid
evaporation of the sample. We then trap a single melamine bead and perform the
active and passive experiments on it.

To measure the displacement of the probe particle more accurately at long
times i.e. low frequencies t > 1 s, we also used video microscopy with sampling
frequency of 25 Hz, in addition to the quadrant photodiode detection, used at all
times.

Results
We would again like to test the validity of Einstein relation in the metastable
supercooled colloidal fluids and glass phase as there have been reports of its
violation for these systems [71, 41]. In the frequency range (0.1-100000 Hz), we
investigate the Einstein relation by comparing the response functions obtained
from active (direct) and passive (indirect) microrheology Eq. (5.1) performed on
the same bead. We stress that the PSDs of several beads measured at different
positions of samples were equal. In the measured frequency range, we did not see
any effect of aging within 12h. We performed active and passive microrheology
on different concentrations of d = 394 nm PMMA particles (C= 53, 58, 58.5 wt
%) of which two are metastable colloidal fluids for which the FDR violation was
reported by Bonn and Kegel [71] and the third one is a colloidal glass (See Sec.
1.4.1) for which deviations from FDR were reported by Song et. al. [41]. Note
that the supercooled liquids are in principle ergodic systems and one does not
expect to see deviations for the FDR in these. However, to resolve the apparent
controversy existing in the literature, we have done experiments also on such
supercooled liquids.

As demonstrated in Fig. 5.11 the agreement between active and passive re-
sponse functions for all the samples is excellent showing that again no deviations
are observed from FDR in this range of frequencies.

Furthermore, we did one set of active-passive experiments on a supercooled
colloidal fluid with particles of diameter d = 1.13µm for which the probe particles
and host particles have almost the same size (see Fig. 5.12). At φ = 0.55, again
excellent agreement is found.

In Fig. 5.13, we plot the resulting Teff/Tbath = α′′
passive/α′′

active as a function
of frequency for the two glass samples and the supercooled fluids. This figure
confirms again that to within the experimental uncertainty, the FDR is valid in
the measured range of frequencies and the effective temperature does not differ
from bath temperature, in agreement with the earlier experiments of Mason for
φ ≈ 0.56 [173].
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Figure 5.11: Real and imaginary parts α′′ of the frequency-dependent response func-
tions from active (solid symbols) and passive (open symbols) microrheology using 1.1
µm diameter melamine beads for 3 different concentrations of d = 397nm hard sphere
colloids. The data are measured at 21 0C. Note, the data (shown by triangles) at low
frequencies ω < 10 rad/s in the glass sample with φ = 0.585 are obtained from video
microscopy to reduce the noise at low frequencies.
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Figure 5.12: Real and imaginary parts α′′ of the frequency-dependent response func-
tions from active (solid symbols) and passive (open symbols) microrheology using 1.1 µm
diameter melamine beads for 55 wt% concentration of d = 1.13µm hard sphere colloids.
The data are measured at 21 0C.

Figure 5.13: The effective temperature as a function of frequency for 53, 58 and 58.5
wt % d = 397nm colloids and 55 wt % concentration of d = 1.13µm colloids. The
concentrations are shown in the legend.

It is necessary at this point to emphasize that we are in the same frequency
region in which the plateau in structural relaxation is seen and deviations from
FDR are possibly expected. This is more clear if we rescale the frequency with
the Brownian time scale τB = R2

6D0
. For our colloidal glass with particle radius of

197 nm, τB = 1.46 × 10−2 s. Therefore the range of dimensionless frequencies in
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our measurements vary as 8.7 × 10−3 < ωτB < 1.46 × 103. In the van Megen et.
al. data [93] for a colloidal glass similar to ours the plateau of the intermediate
scattering function is observed at time scales 1 < t/τB < 105 (see Fig. 5.14),
which corresponds to 6× 10−5 < ωτB < 6. Therefore, we are in the plateau; here
one would already expect to see deviations from the FDR, if there are any.

Figure 5.14: The mean-squared displacement of tracer particles in hard sphere sus-
pensions obtained from the intermediate scattering function (−6(qR)−2lnFs(q, t)) vs the
dimensionless time τ = t/τB , taken from reference [93].

5.4 Discussion

We have investigated the validity of the FDR in the form of the Einstein relation
in colloidal glasses and gels of Laponite suspensions and a hard sphere glass in
the frequency range 0.1 − 104 Hz. We see a good quantitative agreement be-
tween the response function and the spontaneous thermal fluctuations, implying
that we observe no violation of the FDR in any of these non-equilibrium sys-
tems. Equivalently, we find an effective temperature that does not differ from
the bath temperature in the measured frequency range. It is important to note
that these measurements provide a direct test of the FDR, since we directly mea-
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sure the response and the corresponding fluctuations over the same wide range of
frequencies.

The same experimental systems the as those studied here have been inves-
tigated by other groups, as we reviewed in the introduction. The rheological
measurements of the Ciliberto group in a colloidal glass of Laponite are in agree-
ment with our results [171], whereas their electrical measurements disagree [40].
It is necessary to note that in the electrical measurements, a different degree of
freedom is measured. This could be the reason for the disagreement. On the other
hand, simulations on a sheared binary Lennard-Jones fluid [158] have shown that
the effective temperature is independent of the chosen observable, while it has
been shown theoretically [151] that the effective temperature does depend on the
observable in the glass phase of the Bouchauds trap model. Subsequent work of
Ciliberto showed [25], however, that the measured FDR violations are due to the
violent intermittent events, which cast some doubts on the measurements.

Abou et. al. [70] use a similar method as we do to investigate the validity
of the Einstein relation during the aging of Laponite suspensions. However our
method is more direct, since we are measuring the displacement and response on
the same probe particle. They report slight violations from FDR, whereas our
effective temperature is identical with the bath temperature. At this moment, it
is not clear where this discrepancy comes from.

Also, in hard sphere glasses there have been reports of the violations of Stokes-
Einstein relation. The large deviations from FDR reported by Bonn and Kegel [71]
are likely to be due to the fact that they compared the rheological measurements
and light scattering results of two different systems with different sizes of particles.

On the other hand, the Makse group [41] reports an effective temperature
for a hard sphere glass that is twice the bath temperature for frequencies much
lower than ours, corresponding to t ∼ 1000s. However, also here some doubt can
be cast on the method that they have used to determine the response function
(mobility). In their experiments mobility is defined as the ratio of a constant
force to the displacement of particle caused by the force at long times, which is
not strictly true [41].

Although our results do not exclude the possibility of deviations from FDR
at longer time scales, they do disagree with the simulation results which observe
deviations from FDR in a binary Lennard–Jones mixture glass [38] and a fragile
glass [143]. Our measurements are already in the time regime for which the models
suggest that the FDR violations should be visible. In both of these systems the
deviations from FDR have been observed by other groups at intermediate and
long times, when the decay of correlation function is not exponential anymore.

To conclude, we remark that experimental works on this issue are still scarce,
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owing to the difficulty of measuring the response function and the fluctuations
simultaneously in experiments on soft materials or glasses. However, the technique
used here offers a direct method for simultaneous measurements of response and
correlation functions and shows no deviations from FDR.



6.

Viscoelastic Properties of
Colloidal Gels and Glasses

6.1 Introduction

Soft glassy materials are ubiquitous in our everyday life. A common feature of
all such materials is their relatively large response to small forces (’soft’) and
their disordered nature (’glassy’). Pertinent examples of such systems are foams,
gels, slurries, concentrated polymer solutions and colloidal suspensions. These
systems show interesting viscoelastic properties; depending on the frequency with
which they are perturbed, they can behave like liquids or solids. However, the
mechanical behavior of such soft glassy materials is still incompletely understood
[20].

In recent decades, colloidal suspensions have been extensively used as model
systems for the glass transition in simple liquids [42, 49, 50, 46] and gel formation
[113, 118, 180]; since the diffusion of the particles can easily be measured using
e.g. light scattering. In addition, they are good model systems in the sense that
the interactions can be tuned to some extent by e.g. screening the electrostatic
interactions between particles by adding salt. The viscoelasticity of such systems
has received much less attention, especially during the aging of glassy systems
or gel formation. Another issue which deserves more attention is differentiating
between colloidal gels and glasses in terms of their rheological properties.

As an example of a soft glassy system, here we focus on studying the vis-
coelasticity of Laponite suspensions for which a very rich phase diagram has been

127
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reported [62]. When dissolved in water, Laponite suspensions evolve from a liquid-
like state to a non-ergodic state [49, 115, 63, 50, 112]. During this process both the
diffusion slows down and the viscoelasticity develops. In chapter 3, we studied the
evolution of translational and rotational diffusion of Laponite suspensions over a
wide range of concentrations and salt content. Based on these studies, we could
classify Laponite dispersions as gels and glasses. The main difference between
colloidal gels and glasses stems from their structure. While the glass is a spa-
tially homogenous structure with no long-range order, the gel has heterogenous
structure whose length is set by the mesh size of its network.

Therefore we are interested to know

• How the viscoelastic properties of Laponite gels and glasses develop in time.

• Do the different structures of gel and glass lead to different dynamic vis-
coelastic properties and possibly position-dependent local shear moduli?

To reply to these questions, we take advantage of microrheology (Sec.2.3),
that allows to measure the frequency-dependent shear moduli of colloidal sus-
pensions over a wide range of frequencies. It is based on the detection of small
displacements of probe particles inserted in the soft glassy material, and allows to
obtain the mechanical properties of surrounding matrix. Considering the fragility
of soft materials, it is interesting to use a technique that can be less invasive than
conventional rheometry.

There are two broad classes of microrheology (MR) techniques: active and
passive (see Sec.2.3). In a non-equilibrium system, application of any of active
and passive methods appears difficult in principle. On the one hand, passive
MR is based on the fluctuation-dissipation relation (FDR) the validity of which
can not be taken for granted in non-equilibrium systems such as glasses. On
the other hand, in active MR the response at every single frequency should be
measured separately, contrary to passive MR for which the power spectrum of
thermal fluctuations provides the information about the response function over
the whole frequency range in a single shot [89, 181, 182]. Therefore, in the active
method, collecting the data over the full range of frequencies is time-consuming
and is limited to systems where the aging process is slow with respect to the
time of measurement. However, in chapter 5, we have tested the validity of FDR
in the same systems we intend to focus on here, and not only found that the
FDR was obeyed at all times and for the frequency range we measured, but also
found excellent agreement between active and passive methods. Therefore, in
what follows we will use the much faster passive method.

Employing the microrheology technique has several advantages over conven-
tional rheometry:
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• The range of frequencies which can be measured by microrheology is much
wider (0.1 − 106 Hz) relative to the classical rheometry methods. Most
commercial rheometers are in general restricted to frequencies up to 10 Hz;
beyond that, the inertia of the measurement geometry becomes important.
The upper limit in microrheology experiments is equally set by inertial ef-
fects of the probe particle; however, since the particle is very small, we can
go to much higher frequencies. The lowest frequencies which can be mea-
sured by conventional rheometers are also restricted in evolving systems
(gels and glasses), which sets the lower limit of f = 10−2 − 10−1Hz for fast
evolving samples.

• Conventional rheometers provide us with average bulk properties and do
not allow for local measurements in inhomogeneous systems, which could in
principle be the case for colloidal gels and glasses. With microrheology tech-
nique, one measures the local viscoelastic properties of material at a length
scale of the same order as the probe particle size. Therefore, by comparing
the microrheology measurements performed with a single probe particle at
different locations in the sample, we can detect possible inhomogeneities.

• We can use both one-particle and two-particle MR as explained in Sec. 2.3.4.
One-particle MR extracts the rheological properties of the material from the
displacement autocorrelation function of an individual embedded particle.
Such measurements probe the dynamics of the medium on length scales of
size of the probe particle [87, 181, 183, 182]. Two-particle microrheology
[184, 183, 185, 186, 187, 188] on the other hand, uses the interparticle corre-
lated fluctuations of two particles at a separation distance r larger than the
probe particle size. Therefore, such measurements probe the viscoelastic
properties of the medium on length scales comparable to the interparti-
cle separation. These two measurements can yield different values for the
apparent shear modulus, depending on the characteristic structural length
scales of the complex fluid [89, 189, 188]. Thus, the combination of one and
two-particle MR measurements can be used to probe inhomogeneities of the
system under study.

Here we use the combination of one and two-particle MR measurements to
probe the possible inhomogeneities of colloidal gels and glasses at length scales of
the order of the particle size 1µm and separation distances of the order of 5-20
µm.

We measured the local shear moduli at several different positions of our col-
loidal gels and glasses at roughly equal aging times.
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At early stages of aging the local shear moduli obtained from different positions
of the sample are identical for both gel and glass samples. However, by progress
of time, the local shear moduli of a gel turn out to vary from one point to another,
while the shear moduli of a colloidal glass remain independent of the bead position
at all stages of aging. The variation of shear moduli with position increases as the
gel becomes more stiff with time. These findings suggest a heterogenous structure
for the gel on the length scales on the order of 10 µm. Furthermore, shear moduli
obtained from one- and two-particle MR are equal for the glass while for a gel
the shear moduli obtained by two-particle MR are considerably lower than shear
moduli extracted from single-particle MR. The relatively good agreement of shear
moduli obtained from single bead MR with bulk rheology measurements provide
another evidence for homogeneity of a glass.

In summary, our microrheology results confirm the homogeneity of glass and
inhomogeneity of the gel, as suggested by the light scattering experiments in
chapter 3.

Despite the different structure of gel and glass, we find that the time evolution
of local shear moduli in gel and glass are qualitatively similar. During aging of
Laponite colloidal suspensions around a certain time t0 the complex shear modulus
of the system shows a crossover from a single frequency-dependent component to
a superposition of a strongly frequency-dependent viscoelastic component plus a
weakly frequency dependent (elastic) component. Such a behavior was previously
interpreted in the context of polymer networks as being due to a network, which is
inhomogeneous [190], but our two-particle MR studies on a colloidal glass indicat-
ing homogeneity for a glass exclude this interpretation. It seems more plausible
to interpret the observed power law behavior as a broad distribution of relaxation
times as suggested in the context of soft glassy materials rheology [20, 191].

6.2 Microrheology of Laponite suspensions

We carried out the measurements on a variety of Laponite concentrations and salt
contents (2.8, 3.2 wt%, in pure water, 3 wt% in pH=10, 1.5 wt %, 5mM NaCl, 0.8
wt %, 6mM NaCl, 0.8 wt %, 3mM NaCl ). We have chosen these samples since
their rate of aging is slow enough so that no significant aging happens during each
measurement. On the other hand they evolve fast enough to allow us to follow the
whole evolution within a few hours. The samples 2.8, 3.2 wt%, in pure water, 3
wt% in pH=10 and 1.5 wt %, 5mM NaCl are in the glass region of phase diagram
and samples 0.8 wt %, 6mM NaCl, 0.8 wt %, 3mM NaCl behave like a colloidal
gel (for details see chapter 3). Note that the pH=10 does not affect the aging
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Figure 6.1: The normalized displacements power spectral densities |x(ω)|2/2D0 of silica
probe particles in a glass (3.2 wt% , bead diameter 1.16 µm ) and a gel ( 0.8 wt%, 6mM,
bead diameter 0.5 µ, in the x direction) with increasing age after preparing the sample.
Waiting times are given in the legend. The filled squares show the PSD of a bead in
pure water for comparison. All experiments were done at 21oC.

dynamics. It merely acts as an electrolyte that slightly accelerates the aging.
The same holds for Laponite 1.5 wt%, 5mM. In this case salt just accelerates
the aging, but it does not change the underlying physics of the aging process, as
demonstrated in chapter 3. the sample belongs to the glass region of the phase
diagram.

We trapped a bead in a single laser trap and measured the displacement power
spectral densities (PSD) as a function of waiting time.

Since the system evolves towards a non-ergodic state, the time average may
not necessarily be equal to the ensemble average for the measured PSDs. However,
in our range of frequencies (1−105 Hz) we confirm that our results do not depend
on the time interval used to compute the time average. Thus, we can use the
time-averaged PSD without averaging over several beads in our study.

Fig. 6.1 shows the measured displacement PSDs as a function of frequency
during the aging of the glass and gel. We have normalized the PSDs with the
diffusion coefficient (D0 = kT/(6πηwaterRbead) of the same bead as measurements
in water , so that PSDs will be independent of bead size. It is evident that in both
systems the particle motion progressively slows down with increasing waiting time
tw, reflecting the increase of viscosity in the system. The PSDs in both sample
start from a state similar with water, for which |x(ω)|2/2D0 = 1/ω2, and gradually
their magnitudes as well as their slopes decrease with time. There is a crossover



132 Chapter 6. Viscoelastic Properties of Colloidal Gels and Glasses

Figure 6.2: Glass data: The symbols show the shear moduli G′(ω) and G′′(ω) as
a function of frequency measured using 1.16 µm silica probe particles in a 3.2 wt%
Laponite solution in pure water with increasing age after preparing the sample. Waiting
times are given in the legend. The lines show the fits of G′(ω) and G′′(ω) according to
C1(iω)a + C2(iω)b in which C2 = 0 for waiting times tw < 120 min.

time t0 such that for tw < t0, the PSD can be described by a single power law. At
longer waiting times tw > t0, two distinct slopes appear in the log-log plot (Fig.
6.1). For the gel, we have shown the PSDs only in one of the possible directions,
since the PSDs in the x and y direction are not necessarily equal anymore. At
late times, this leads to anisotropic local shear modulus. Measuring the PSDs
of several beads, we did not find a preferred direction of anisotropy, for some of
the beads, the PSD in the x direction was larger and for some others in the y
direction.

Let us look at the evolution of the local shear moduli G∗ obtained from PSDs.
Fig. 6.2 (glass) and 6.3 (gel) present the elastic and shear moduli derived from
single particle MR according to Eq. (2.94). As can be observed, the system
evolves from an initially completely viscous liquid to a strongly viscoelastic fluid.
At the early stages of aging, the loss modulus is much larger than the storage
modulus (G′′ � G′) and we have a more liquid-like state. With time it develops
into a solid-like state in which the elastic modulus dominates the loss modulus
(G′′ << G′). Also we observe that the changes in G′ are more dramatic than the
changes in G′′. While G′′ almost saturates after 170 min for the glass and 100
min for the gel, G′ continues to grow in time.

Visual inspection shows that gel is ”softer” than the glass. When we tumble
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Figure 6.3: Gel data: The symbols show the shear moduli G′(ω) and G′′(ω) as a
function of frequency measured using a 0.5 µm silica probe particle in a 0.8 wt% Laponite
solution in 6 mM NaCl water with increasing age after preparing the sample. Waiting
times are given in the legend. The lines show the fits of G′(ω) and G′′(ω) according to
C1(iω)a + C2(iω)b in which C2 = 0 for waiting times tw < 100 min.

similar tubes containing gel and glass, the gel fluidifies with a smaller force: it
appears that gel has a lower yield stress compared to glass. Therefore it must have
a lower viscoelastic modulus than the glass, as comparison of Fig. 6.2 and Fig. 6.3
confirms. Furthermore, at late stages of aging the ratio G′/G′′ at low frequencies
is higher in the gel (G′/G′′ = 30 for Laponite 0.8 wt%, 6mM) compared to the
glass (G′/G′′ = 12 for Laponite 0.8 wt%), when G′′ has almost saturated and G′

evolves very slowly.

6.2.1 Heterogeneity

Single bead MR measures the local shear moduli, which in principle can be differ-
ent from the average bulk shear modulus measured by a rheometer, if the material
is heterogenous. Discrepancy between the shear moduli obtained from one- and
two-particle MR can be used as an indicator of a heterogenous structure. The
potential heterogeneities can be explored by measuring the PSDs of several beads
at different positions in the sample. Further test of heterogeneity in a material is
provided by comparison of MR with bulk rheology, as will be discussed in the next
section. Therefore, we investigate here the potential inhomogeneities of colloidal
gels and glasses of Laponite, combining one- and two-particle MR.
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Glass

Figure 6.4: Glass data: The shear moduli G′(ω) and G′′(ω) at different stages of
aging in a 3 wt% Laponite in pH=10 solution derived from one (lines) and two-particle
(symbols) MR of 1.16 µm silica probe particles. The distance between the two particles
was 6 µm. The waiting times are shown on the figure. Note that in the late stages
of aging material is too stiff to have a large enough signal for obtaining a proper cross
correlation between the two beads.

For the glass samples the displacement PSDs turned out to be independent
of the bead position, as was concluded from a comparison of simultaneous mea-
surements of PSDs of two independent beads in two independent traps during
aging. Furthermore, the comparison between one- and two-particle MR reveals



6.2. Microrheology of Laponite suspensions 135

Figure 6.5: Glass data: The shear moduli G′(ω) and G′′(ω) at different stages of aging
in a 1.5 wt%,Laponite in 5mM salt derived from one (lines) and two-particle (symbols)
MR of 1.16 µm silica probe particles. The distance between the two particles was 7.5
µm. The waiting times are shown on the figure.

that within the experimental error, the shear moduli are identical between the
two methods for all stages of aging as demonstrated in Fig. 6.4 and Fig. 6.5. This
was further verified by measuring the PSDs of several beads at different positions
of an aged sample (see Fig. 6.6). Obviously, the resulting shear moduli were inde-
pendent of position of the bead in the sample, verifying the homogeneity of glass
as depicted in Fig. 6.8.

This suggests that the Laponite glass is homogenous on length scales larger
than half a micrometer. If this were indeed true, an additional check on this can
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Figure 6.6: The displacement PSDs of 0.5 µm silica beads measured at different posi-
tions of an aged glass (Laponite 3.2 wt % in pure water, tw ≈ 5 h ) and an aged colloidal
gel (Laponite 0.8 wt% in 6mM NaCl solution, tw ≈ 10 h ).

be obtained from a comparison between microrheology and macrorheology: these
should yield the same results if the sample is homogeneous.

Figure 6.7: The elastic and loss modulus as a function of waiting time for a sample of
Laponite 3.2 wt % in pure water obtained from macro and one-particle MR techniques.

Figure 6.7 depicts the shear moduli extracted from MR and bulk rheology ex-
periments for a single frequency of (f = 0.7 Hz). The overall agreement between
bulk rheology and MR is good. For the early stages of aging, the G′′ measured
by the rheometer appears slightly higher, but this can be attributed to the large
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Figure 6.8: Local elastic modulus G′ and loss modulus G′′ measured at different posi-
tions in an aged glass sample of Laponite 3.2 wt % in pure water (tw ≈ 5h)

moment of inertia of the rheometer bob; macrorheology does not provide accu-
rate measurements of the shear moduli, when G∗ < 1 Pa. On the other hand,
MR technique has other sources of error at low frequencies, especially for the late
stages of aging, when the material becomes very elastic. In this case, the signal
detected by the photodiode becomes so small that it can become comparable to
the noise level; especially 1/f noise dominates the low frequencies. This is the
most plausible explanation for the slight discrepancy between the two methods
at long waiting times.

Gel

Note that the data in this section are about what we called attractive glasses in
chapter 3 for which light scattering shows heterogeneity, although we use the term
gel for them.

Measuring the displacement PSDs of several beads at different positions of a
gel at the late stages of evolution reveals a considerable degree of inhomogeneity
(Fig. 6.6). Not only the PSDs are position dependent, but also at some positions
in the sample the measured PSDs are anisotropic.

This is consistent with the static light scattering measurements for this sample
(see Chapter 3). Therefore, exploring a gel with a probe size smaller than the
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Figure 6.9: Gel data: local elastic modulus G′ and loss modulus G′′ measured at
different positions in an aged gel sample of Laponite 0.8 wt % in 6mM NaCl solution
(tw ≈ 10h)

mesh size of the network, would detect the inhomogeneities. In order to know
how the observed heterogeneity in the PSDs translates into the inhomogeneity in
the local shear moduli, we have plotted the shear moduli of the bead at different
positions (Fig. 6.9). As can be seen there is an order of magnitude difference
between the smallest and largest elastic moduli measured.

The question which arises is whether the heterogeneity exists from the very
beginning, after sample preparation, or it appears as a network-like structure is
building up in the gel. To answer this question, we measured the PSDs of two
beads at different positions of a gel as a function of waiting time. We performed
two sets of experiments: in the first one the two beads were chosen at a relatively
close distance r = 4.66µm (Fig. 6.10) and at the other one r = 19µm (Fig. 6.11).

In both experiments, in the early stages of aging the PSDs at different positions
were equal. However, as time progresses, some inhomogeneity appeared and the
PSDs measured at different positions were not equal anymore. Interestingly, at
later stages of aging, the displacement PSDs measured for some of the beads
became anisotropic, meaning that the PSDs in the x and y directions were not
equal anymore. In one case the anisotropy survived the latest measurement (Fig.
6.11). For another one, the appeared anisotropy disappeared after some time
(Fig. 6.10). This suggests that the building up of structure in the gel is a dynamic
process; at some points and times more particles join to the network and at some
other points and times some particles disintegrate from the network.
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Figure 6.10: Gel data: The shear moduli G′(ω) and G′′(ω) at different stages of aging
derived from one and two-particle MR of 0.5 µm silica probe particles in a gel of Laponite
0.8 wt % in 6mM NaCl solution.The distance between the two beads was 4.66 µm. The
waiting times are shown on the figures.

Now, let us investigate how the shear moduli obtained from correlated motion
of the two-particle MR compare to the single particle MR. As explained before,
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Figure 6.11: Gel data: The shear moduli G′(ω) and G′′(ω) at different stages of aging
derived from one and two-particle MR of 0.5 µm silica probe particles in a gel of Laponite
0.8 wt % in 6mM NaCl solution. The distance between the two beads was 19 µm. The
waiting times are shown on the figures.

two-particle MR measures the shear moduli on a length scale comparable to the
distance between the two particles and is a better representative of the bulk
properties in contrast to single particle microrheology which is sensitive to the
local properties. Our experiments show that immediately after preparation, shear
moduli obtained from two-particle MR and one-particle MR are equal. But,
at relatively early stages of aging, the two-particle MR differ from 1PMR as
demonstrated in Fig. 6.10 and Fig. 6.11. This deviation appears long before the
local shear moduli of the two beads in one-particle MR start differing. Therefore
the heterogeneity is more important for longer length scales.
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6.2.2 Model for the viscoelastic behavior

Figure 6.12: The complex shear moduli of Laponite suspensions can be described as the
sum of two power laws C1(iω)a+C2(iω)b in which C2 = 0 for waiting times tw < t0. The
crossover times are t0 = 155, 95, 120, 105, 95 min for Laponite concentrations 2.8 wt%,
3 wt%,pH=10, 3.2 wt% , 1.5 wt%, 5mM NaCl and 0.8 wt%, 6mM NaCl, respectively.
(a) The evolution of exponents a (filled symbols) and b (empty symbols) as a function
of waiting time for different concentrations of Laponite. (b) The exponents a (filled
symbols) and b (empty symbols) as a function of scaled waiting time (c) The amplitude
of viscoelastic contributions C1 (filled symbols) and C2 (empty symbols) as a function
of aging for different samples. (d) The same as panel (c) but versus scaled waiting time.
The samples concentrations are shown in the legend.

As shown before, the combination of one- and two-particle MR can differen-
tiate in the mechanical properties between gel and glass. It is also interesting to
investigate if there are similarities between gel and glasses.

Looking at Fig. 6.2 and Fig. 6.3 we see that the complex shear modulus of both
gel and glass is observed to cross over from a single power law to a superposition
of two power laws around a certain waiting time t0 depending on the sample
(t0 ≈ 155min for the glass sample of Laponite 3.2 wt % and t0 ≈ 95min for the
gel sample of Laponite 0.8 wt %,6mM NaCl ) [190]. The local shear moduli of
both samples turn out to be well-described by the following:



142 Chapter 6. Viscoelastic Properties of Colloidal Gels and Glasses

G(ω) = G′(ω) + iG′′(ω) ≡
{

C1(iω)a : tw < t0
C1(iω)a + C2(iω)b : tw > t0

(6.1)

The exponent of the single power law decreases from 1 to a value about 0.7
before the second component becomes visible. The exponent and amplitude of
the first component does not change with waiting time for tw > t0 while the
amplitude of the other one grows appreciably for the same waiting times.

Indeed, we find a very similar behavior for the other samples measured. In
Fig. 6.12(a) and (c), we have plotted the evolution of the fitting parameters as a
function of waiting time for different samples. As can be seen the development
of the two viscoelastic components for different samples are qualitatively similar,
although the rate of change depends on the sample concentration and salt content.

Interestingly, the exponents a and b of the different samples coincide if we
scale the waiting time as t′a = (tw − t0)/t0. The crossover times are t0 =
155, 95, 120, 105, 95 min for Laponite concentrations 2.8 wt%, 3 wt%, pH10, 3.2
wt%, 1.5 wt%, 5mM and 0.8 wt%, 6mM NaCl, respectively. For the amplitudes
on the other hand, the data do not collapse. Especially the amplitudes of the
second (viscoelastic) component systematically decrease as the Laponite content
is reduced. Furthermore for the gel we can see some fluctuations in the amplitude
of the second component C2, at later stages of evolution. This can be understood
in terms of the dynamic process of gel formation in which Laponite particles still
can join or detach from the network.

6.3 Discussion and Conclusion

We have studied the evolution of the viscoelastic properties of a variety of Laponite
suspensions including both gel and glass over a wide range of frequencies using
MR.

The one-particle microrheology provides us with the possibility of studying the
local shear moduli of colloidal gels and glasses at length scales of the order of the
probe particle size. On the other hand, two-particle microrheology measures the
viscoelastic properties of the system at length scales of the separation distances
between two probe particles which can vary between a few microns to a few tens
of micrometers. Therefore the combination one and two-particle microrheology
can be used as a strong tool to detect the potential inhomogeneities in gels and
glasses.

Our microrheology measurements reveal the differences between gel and glasses
from the rheological point of view : while glass is homogenous on all length scales
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probed in our experiments (l > 0.5µm), the colloidal gels show a considerable
degree of inhomogeneity that increases as the gel develops into a solid-like state.

Moreover, in the glass, we checked the homogeneity of our system on even
larger length scales, by comparing microrheology and conventional rheology re-
sults. We find that measurements at different scales all give the same results.
Thus, there is no evidence for spatial inhomogeneity, neither in our system, nor
in glassy systems in general.

In the gel, however, along the evolution from a liquid-like state to a viscoelas-
tic state, inhomogeneities develop in time, as was detected by measuring the local
shear moduli at different positions of the sample at nearly equal waiting times.
Our measurements on several beads at different distances suggest that these in-
homogeneities extend over a range of 100 micrometer. Therefore the macroscopic
bulk shear modulus is not necessarily equal to that measured by single particle
MR. In Fig. 6.13, we compare the shear moduli obtained from one- and two-
particle MR with the results of bulk rheology at late stages of aging (tw ≈ 8.5 h)
when the changes of loss and elastic moduli are slow. As can be seen the local
shear modulus of one of the positions in the sample is equal to its bulk value,
while the other has a considerably lower shear modulus. Notably, the shear mod-
ulus obtained from the cross correlation of two-particles is lower than both bulk
and local shear moduli. This suggests two-particle MR can be used to detect
inhomogeneities. However, it still does not reflect bulk properties.

In addition, we find that the local viscoelastic moduli for both gel and glass
around a certain time t0 cross over from a single power law to the sum of two
power laws. These results demonstrate the existence of two distinct contributions
in the viscoelasticity of the system in the later stages of aging. In addition to
a strongly frequency-dependent viscoelastic shear modulus at high frequencies
∼= ω0.7 , we also observe the slow development of a more elastic (only weakly
frequency-dependent) shear modulus during the aging. The exponents of the
power laws have exactly the same trend of evolution for different concentrations
if we scale the waiting time as t′a = (tw − t0)/t0. This result is truly independent
from the sample being a gel or a glass.

The crossover from a single frequency-dependent component to a superposition
of a strongly frequency-dependent viscoelastic component plus a weakly frequency
dependent (elastic) component was previously interpreted in the context of poly-
mer networks as being due to large inhomogeneities [190, 192, 193, 174, 175].

Here the sum of two power-laws describes both gel (heterogenous) and glass
(homogenous) local shear moduli, suggesting that locally the underlying physical
process responsible for the evolution of gels and glasses is similar. This poses
the rather puzzling question where the two power-laws in the viscoelasticity come
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Figure 6.13: The complex shear modulus at a late stage of aging tw ≈ 8.5h obtained from
different methods of single-particle MR at two different positions of the sample, two-particle
MR and bulk rheology in a sample of Laponite 0.8 wt%, 6mM NaCl. The circles show G′

and triangles show G′′ values.

from. One phenomenological interpretation of power law frequency-dependence
of shear moduli is a broad distribution of relaxation times as can be obtained from
a sum of a large number of Maxwell fluids with different relaxation times whose
distribution obeys a power law behavior. This is makes sense, as we showed in the
previous chapter that the correlation functions of both gels and glasses at long
times can be described by a stretched exponential which corresponds to a broad
distribution of relaxation times.

At this point it is also tempting to believe that t0 has a relation with the
onset of the glass transition or the gel formation. In light scattering experiments
the characteristic transition point is when a transition from ergodic to a non-
ergodic state occurs, i.e. ergodicity-breaking point teb . It is interesting to see
how t0 is related to teb. We have performed simultaneous DLS (at scattering
vector q = 1.87× 107m−1) and microrheology experiments on the same sample of
Laponite 3.2 wt % (chapter 3). We found that the ergodicity-breaking point teb ≈
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450 min occurs much later than the time we see dramatic changes in rheological
properties, the time t0 ≈ 120 min. A similar trend can be seen if we compare
the ergodicity-breaking points teb obtained for other samples (see Fig. 3.3 and
3.9) with t0 obtained from microrheology, although they have not been measured
simultaneously. The values of ergodicity-breaking and mechanical transition times
are teb ≈ 750, 150, 900, 180, 450 min and t0 ≈ 105, 95, 155, 95, 120 min for the
samples Lap 0.8 wt%, 6mM, Lap 1.5 wt%, 5mM, Lap 2.8 wt%, Lap 3 wt% pH=10,
Lap 3.2 wt%, respectively.

An analogous observation has been reported before [194], in which the me-
chanical transition occurs before ergodicity-breaking point. Although there the
mechanical transition point is defined differently. Cocard et. al. have defined
the mechanical transition point [194] as the time for which G′ and G′′ become
equal at low frequencies. They observe that for a sample of Laponite 1 wt %,
5 mM, this point is well before teb [194]. They attribute it to the fact that in
DLS experiments, they are looking at different length scales. DLS experiments
are performed at a typical wave vector q = 2× 107m−1 corresponding to a length
scale of the order of 350 nm. The motion at this length scale is prohibited only
when the material has become stiff enough. In summary, we think that charac-
teristic points of transition from different experiments occur at different waiting
times because we are looking at different frequency and length scales (wave vector
windows). Furthermore, in light scattering experiments, we measure the density
fluctuations which are longitudinal modes, whereas in microrheology, the thermal
response of the bead embedded in the viscoelastic medium mainly excites the
transverse shear modes.

Another point which deserves discussion is the different role of ergodicity-
breaking point and mechanical transition point in the classifying of gels and
glasses. We saw in chapter 3, that the slow relaxation times and the non-ergodicity
parameters of all Laponite suspensions in a wide range of concentrations and salt
contents fell into two classes (gel and glass) when scaling the waiting time with
teb. Here, scaling the waiting time with t0 does not lead to a classification of
distinct groups of samples. Nonetheless, microrheology, measuring the local shear
moduli of material, is used as a powerful tool to detect the inhomogeneities and
therefore differentiating the gel and the glass.





A.

Viscoelastic Properties of
Hard Sphere Colloids

Hard sphere colloids are a very simple model system for molecular systems in
which the interaction potential is solely determined by excluded volume. Un-
derstanding their behavior can be an insightful first step in understanding either
molecular systems or more complex suspensions of technological importance. The
phase diagram of hard sphere suspensions has consequently been studied exten-
sively by numerous simulations [195, 196] and experiments [44, 42] (see Fig. 1.3).

Highly monodisperse particles with hard- sphere-like interactions undergo an
entropically driven fluid-solid transition to form crystals and glass [44](See Sec.
1.4.1). Here, we are interested in understanding the viscoelastic behavior of the
hard sphere suspensions at volume fractions approaching the glass transition (su-
percooled liquids) and in the glass region of phase diagram. The frequency-
dependent shear moduli of hard sphere systems have been studied using clas-
sical rheometry techniques by several groups for wide ranges of concentrations
[197, 198, 199], among which van der Werff et. al. [197] have done high frequency
measurements using a high torsion oscillator.

There have been a few microrheology experiments on hard spheres based on
diffusive wave spectroscopy [86, 173] and dynamic light scattering [200] techniques.
Here, we use the microrheology based on optical trapping of probe particles to
study the viscoelasticity of concentrated hard sphere suspensions and compare
our results with existing ones in the literature.

The experimental system used to mimic the hard spheres is (d = 397 nm)
PMMA particles in an index and density-matched solvent. Melamine beads (1.1

147
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Figure A.1: The normalized displacement power spectral densities of several concen-
trations of hard spheres with diameter 397 nm.

and 1.3 µm diameter) are used as probe particles. For more details on sample
preparation, we refer to Sec. 5.3.

Fig. A.1 shows the displacement PSDs normalized to the free diffusion constant
of the probe particle in the solvent for a few concentrations of PMMA. As can
be observed the higher the concentration of the host particles, the more difficult
it is for the probe particle to diffuse, therefore the slower the motion. This in
turn leads to increasing values of the viscoelastic moduli with concentration. We
obtain the shear moduli from the response function as explained in Sec. 2.3.4,
assuming that Stokes relation is valid.

In Fig. A.2, we have plotted the frequency-dependent shear moduli of hard
sphere suspensions. The viscoelastic moduli are seen to increase by several orders
of magnitude at volume fractions around φg, as expected approaching the glass
transition.

Now let us see what is the origin of viscoelastic behavior. The contributions
to the shear stress come from (1) the Brownian motion of the particles, (2) their
hydrodynamic interactions and (3) structural relaxations (caging effect). By ex-
erting a shear, we disturb the particles from their equilibrium configuration. The
Brownian motion of the particles acts as a restoring force, which tends to restore
to equilibrium configuration. Thus it leads to a weak elasticity of the suspension.
The applied shear, also influences the flow field around each particle which in turn
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Figure A.2: The shear moduli of several concentration of hard spheres with diameter
397 nm. The complex shear moduli are fitted according to Eq. (A.9)

affects the particles motion (hydrodynamic interactions). The hydrodynamic in-
teractions become important specially when the particles come close together,
since expelling the fluid from the gap between two colloids costs energy.

Using Stokesian computer simulations of hard spheres, Brady and coworkers
[201] have shown that at high frequencies the Brownian motion does not have
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sufficient time to contribute to the shear stress. Therefore the high frequency
viscosity consists only of the hydrodynamic contribution. The disappearance
of the Brownian contribution leads to a viscosity reduction and therefore shear
thinning.

At very short times the localized motion of individual spheres (with the full
details of hydrodynamic interactions) determines the high frequency viscoelastic
behavior, while at relatively long times for high enough volume fractions particles
are trapped in ’cages’ by their neighbors. The changes in the configuration of these
cages provides a mechanism for energy storage and dissipation, contributing to
the shear moduli.

Mason et. al. [199] have suggested to add up these contributions of different
mechanisms of energy storage and dissipation, to determine the frequency behav-
ior of the shear moduli. The contribution due to hydrodynamic interactions and
Brownian motion has been calculated by Brady [202] using a ’free drainage’ ap-
proximation for the hydrodynamic interactions which ignores lubrication effects.
Taking into account lubrication effects causes G′ to reach a constant plateau at
high frequencies as ω increases[203]. Our data do not show a saturated G′ at high
frequencies, therefore, we can use the Brady approximation [202]:

G∗(ω) = iωη′
∞ + G1(iωτD)1/2 (A.1)

G1 =
3
5π

kBT

R3
φ2g(2R,φ) (A.2)

where τD = R2/Ds is determined by the φ-dependent short time diffusion
coefficient and g(2R,φ) = 0.78/(0.64 − φ) is the radial distribution function at
contact, consistent with the simulations, which show a divergence of g(2R,φ) at
random close packing [195].

To describe the viscoelasticity originating from caging effects in dense suspen-
sions φ ≥ 0.50, we take advantage of the mode coupling theory (MCT) formalism,
as suggested in [199]. MCT successfully describes the light scattering data from
the hard spheres at volume fractions near the glass transition [199]. Assuming
that the stress autocorrelation function has the same form as the density correla-
tion function Eq. (A.3), we can get the form of shear moduli at low frequencies.
The lowest frequencies measured for our experiments are 0.1 Hz. Hence, we only
need to take into account the β relaxation regime. In the β regime the density
correlation function is described as [204]:
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f(q, t) = fc(q) + h(q)(t/τ0)−a τ0 	 t 	 τβ (A.3)
f(q, t) = fc(q) − Bh(q)(t/τ0)b τβ 	 t 	 τα (A.4)

τ0 =
S(q)
D0q2

(A.5)

τβ = τ0[
φ − φg

φg
]−

1
2a (A.6)

where a = 0.301, b = 0.545 and B = 0.963 are determined from MCT for hard
spheres and fc(q) represents the amplitude of arrested state at φg. fc(q) as well
as the critical amplitude h(q) are independent of concentration fixed by MCT.

Taking τ0 ≈ 10−3s as estimated from light scattering experiments on particles
of nearly the same as ours (R = 200nm) [205], we can estimate the values of τβ

and τα. Of course these values are concentration-dependent and are diverging
at φg. For our range of concentrations (0.5 < φ < 0.6), we have τβ � 0.02s
and τα � 8s. The lowest frequency in our microrheology measurements 0.1 Hz
corresponds to 10s.

The suggested form for the stress autocorrelation, assumed to be proportional
to the density correlations, is then [199]

Cσσ(t) = fσσ + hσσ[(t/τ0)−a − B(t/τ0)b] (A.7)

Near the glass transition, contribution of structural relaxation to the complex
shear modulus is given by Gg(ω) = G0[ıωCσσ(ω)], where Cσσ(ω) is the unilateral
complex Fourier transform of the stress autocorrelation function. This leads to

Gg(ω) = G0 + G2[Γ(1 − a)(iωτ0)a − BΓ(1 − b)(iωτ0)b] (A.8)

Taking the sum of all these contributions, we get the following form for the
complex shear modulus of dense hard sphere suspensions

Gtotal(ω) = G0 + iωη′
∞ + G1(iωτD)1/2 + G2[Γ(1 − a)(iωτ0)a − BΓ(1 − b)(iωτ0)b]

(A.9)
The above form describes the viscoelastic behavior of semi-dilute suspensions
taking G0 = G2 = 0.

This is a function with 4 fitting parameters G0, G2,Ds, η
′
∞. In order to reduce

the number of fitting parameters, we determine the high frequency viscosity η′
∞

independently from limω→∞
G′′(ω)

ω , as demonstrated in Fig. A.3a. In panel b we



152 Appendix A. Viscoelastic Properties of Hard Sphere Colloids

Figure A.3: High frequency shear viscosity as a function of concentration. The dashed
and solid line show the Krieger-Dougherty expression Eq. (A.10) and Sierou and Brady
formula Eq. (A.11), respectively.

have plotted the reduced high frequency viscosity η′
∞/ηsolvent as a function of

volume fraction.
Different equations have been suggested to describe the concentration depen-

dence of high frequency viscosity, here we mention two of them. The first one is
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the phenomenological Krieger-Dougherty expression:

η∞ = (1 − φ/0.71)−2 (A.10)

which fits the experimental data not so well. The more accurate expression is
derived by Sierou and Brady [201] which is consistent both with the known exact
results in the dilute limit and fits the experimental data on concentrated disper-
sions.

η′
∞/ηsolvent =

{
1+ 3

2 φ[1+φ(1+φ−2.3φ2)]

1−φ[1+φ(1+φ−2.3φ2)] : 0 ≤ φ ≤ 0.56
15.78 ln 1

1−1.160φ1/3 − 42.47 : 0.60 ≤ φ ≤ 0.64
(A.11)

We have plotted both expressions in Fig. A.3b. As can be seen from our
experimental data, there is a better agreement with Sierou- Brady expression.
The small deviations near the glass transition are expected since this expression
is not valid for φ > 0.56.

Note that in our data both G′ and G′′ are increasing functions of frequency in
the measured range of frequencies and G′ does not reach a saturation value G∞.
This is consistent with the bulk rheology measurements of Van der Werff et. al.
[206] and microrheology measurements of Mason et. al. [173] but in contradiction
with the bulk rheology results of Shikata et. al. [198] and microrheology mea-
surements of [200]. While the first two groups [206, 173] see a power law behavior
for G′ at high frequencies, the other two groups [198, 200] see a plateau for G′ at
high frequencies. Theoretically, the power law behavior at high frequencies is ex-
pected if the hydrodynamic interactions between the particles are negligible [207].
Dissimilar high frequency behaviors for different experiments probably originate
from the details of interactions between two spheres at close distances; it is likely
that not in all experiments the systems behave like hard spheres. Lionberger and
Russel [203] have suggested that the stabilizing layers on spheres produce different
lubrication forces, therefore hydrodynamic interactions.

The fits according to Eq. (A.9) are shown in Fig. A.2. They describe the
data reasonably well, leaving G0 and G2 as free parameters. Fig. A.4, shows the
concentration dependence of amplitudes and the ratio of short time diffusion to
the free diffusion coefficient Ds/D0 extracted from the fits. We have compared
this ratio with the inverse of high frequency relative viscosity, i. e. ηs/η′

∞. They
show a similar behavior.

Another phenomenological fit along the same lines used for Laponite suspen-
sions is the simpler form of
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Figure A.4: The concentration-dependence of parameters obtained by the fit according
to the equation Eq. A.9

G(ω) = iωη′
∞ + C1(iωτ)a (A.12)

which is a special case of the form of Eq. (6.1) with b=1.
The exponent a here changes from 0.5 for the semi-dilute samples to 0.3 for

the glass samples. The concentration dependence of the fitting parameters are
plotted in Fig. A.5.

Figure A.5: The concentration-dependence of parameters obtained by the fit according
to the equation Eq. (A.12)

This form suggests a superposing of a purely viscous liquid and a viscoelastic
fluid. The power law frequency behavior can be interpreted as the sum of a large
number of Maxwell modes with different relaxation times [20, 191].
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Summary

Materials such as slurries, pastes, gels, clay suspensions, foams, emulsions and
granular media are ubiquitous in our everyday life. These materials, despite their
very different appearance, share many physical properties from a physicist’s point
of view. Common features of such substances are the absence of flow, their rela-
tively large response to small forces (’soft’) and their disordered nature (’glassy’).
Therefore, the paradigm of soft glassy materials has been used to describe such
widely differing materials. Mesoscopic rearrangements due to thermal fluctua-
tions occur rather slowly in such substances. As a result, these systems can show
aging meaning that the system properties depend on time; notably the relaxation
time of the density fluctuations grows in time.

We aim here to get a deeper insight into the dynamics and non-equilibrium
behavior (aging) of soft glassy materials. The soft glassy system investigated in
this thesis is a synthetic clay called Laponite. To a good approximation Laponite
particles can be considered as rigid disks of 15 nm radius and 1 nm thickness.
Laponite is a white powder that dissolves easily in water and evolves from an
initially liquid-like ergodic state to a final non-ergodic solid-like state, which looks
like a transparent gel.

Here, we have studied the aging dynamics of the translational degrees of free-
dom of Laponite particles over a wide range of concentrations and salt content
using light scattering. The speed of evolution in these system turns out to be a
very strong function of the Laponite concentration. The lower the concentration,
the longer it takes for the Laponite samples to become non-ergodic. In the free
energy landscape picture of glassy systems, the slow dynamics characteristic of
these systems is believed to be due to the existence of a complicated free-energy
landscape with many local minima. Our studies reveal that there are different
paths of evolution through the free energy landscape. However, these paths lead
to only two different non-ergodic states at the late stages of aging that we identify
as gel (the route mainly taken by low concentration samples) and glass ( the route
mainly taken by high concentration samples). For the concentrations in between
the transition to non-ergodicity can occur in either direction (gel or glass), the
system ’hesitates’ between two non-ergodic states. It shows that the route to-
wards the gel and glass may wander through an intricate free energy landscape.
Furthermore, we provide clear experimental evidence for the distinction of gel and
glassy states in the system.

Studying the aging dynamics of rotational degrees of freedom of colloidal gels

172



and glasses of Laponite, we find that rotational diffusion slows down at a faster
rate than translational diffusion in both cases. Furthermore, the rotational degree
of freedom evolves in a distinctly different manner in gel and glassy samples,
providing us further indications for the distinction between gels and glasses of
Laponite suspensions.

We then turn to the question whether a statistical mechanical description of
non-equilibrium systems can be developed. In non-equilibrium systems such as
aging materials, the validity of the fluctuation-dissipation relation (FDR) can not
be taken for granted, as it is strictly valid only in equilibrium. It has been pre-
dicted theoretically that the FDR is violated in glasses and suggested that the
deviations from the FDR can be quantified with a time-scale-dependent effec-
tive temperature. We have studied the validity of the FDR in the form of the
Einstein relation in aging colloidal gels and glasses of Laponite and hard sphere
colloidal glasses. The use of combined active and passive microrheology allows
us to independently measure both the correlation and response functions in a
non-equilibrium situation. Contrary to previous reports, we find no deviations
from the FDR over several decades in frequency and various aging times for both
systems. The effective temperature is simply the bath temperature.

The validity of the FDR allows us to take advantage of the passive microrheol-
ogy technique to study the viscoelastic properties of colloidal gels and glasses over
a wide range of frequencies. Furthermore, by measuring the local shear moduli at
different positions of the sample, we can investigate the presence of heterogeneity.
Our microrheology measurements reveal differences between gel and glasses from
the rheological point of view. While the glass is homogenous on all length scales
probed in our experiments (l > 0.5µm), the colloidal gels show a considerable
degree of inhomogeneity that increases as the gel develops into a solid-like state.
Thus the picture obtained on the basis of our earlier light scattering experiments
is confirmed. In addition, the shear moduli of both colloidal gels and glasses obey
a similar frequency behavior which can be described as the sum of two power
laws. The origin of this frequency behavior, however, remains an open question.
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Samenvatting

Materialen als slurries, pasta’s, gelen, klei suspensies, schuimen, emulsies en gran-
ulaire materialen zijn alom tegenwoordig in ons dagelijkse leven. Deze mate-
rialen, hoewel op het eerste gezicht zeer verschillend, hebben bezien door de
bril van de wetenschapper vele eigenschappen gemeenschappelijk. Deze mate-
rialen vloeien niet, vertonen een grote response op een relatief kleine mechanische
kracht (zachte materie), en bezitten een wanordelijke structuur (glasachtig). Het
epitheton zachte glasachtige materialen wordt daarom gebruikt om deze zo ver-
schillende materialen te beschrijven. Herrangschikking op mesoscopische schaal
door thermische fluctuaties verloopt zeer langzaam in deze systemen. Zij ver-
tonen daarom verouderingsverschijnselen : de eigenschappen veranderen op een
tijdschaal lang ten opzichte van de natuurlijke thermische fluctuaties van de bouw-
stenen. De relaxatietijd van de dichtheidsfluctuaties wordt verlengd naarmate het
verouderingsproces voortschrijdt.

In dit proefschrift bestuderen wij het verouderingsproces van de translationele
vrijheidsgraden van Laponiet deeltjes (klei) gesuspendeerd in water met behulp
van lichtstrooiing, voor een groot aantal concentraties en enkele concentraties
toegevoegd zout. Het tempo van de evolutie blijkt in deze systemen sterk af te
hangen van de Laponiet concentratie. Hoe lager de concentratie des te langer is de
tijdsduur tot de niet-ergodische toestand. De ”trage dynamica” in deze systemen
wordt, zoals ook in glazen, toegeschreven aan het gecompliceerde vrije energie
landschap met vele locale minima gescheiden door passen met variabele hoogte.
Onze studie laat zien dat verschillende paden gevolgd kunnen worden door dit
vrije energie landschap. Deze paden leiden echter tot slechts twee niet-ergodische
toestanden, die wij identificeren als gel ( de route die voornamelijk door de lage
concentraties gevolgd wordt ) en glas (de route die die voornamelijk door de hoge
concentraties gevolgd wordt ). Voor de concentraties tussen deze limieten kan de
overgang naar de niet-ergodische toestand op twee manieren plaats vinden, deze
systemen ”aarzelen” tussen beide toestanden. Hoe ingewikkeld de weg door het
vrije energie landschap ook kan zijn, het systeem komt de niet-ergodische toestand
binnen of als glas of als gel, beiden met een karakteristiek verouderingsproces. Op
grond van de experimenten kunnen we een duidelijk experimenteel onderscheid
maken tussen gel en glas.

Gedurende het verouderingsproces van de Laponiet suspensies, verloopt het
vertagings proces van de rotationele diffusie sneller dan de translationele diffusie.
De evolutie van de rotationele vrijhiedsgraden is duidelijk verschillend in de glas
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en gel. Dit resultaat is een bevestiging van het verschil in veroudering in gel en
glas.

Vervolgens hebben wij bekeken of een statistisch mechanische beschrijving
toepasbaar is op deze niet-evenwichtssystemen. In systemen uit evenwicht is
de geldigheid van het fluctuatie-dissipatie theorema niet a priori duidelijk. Er
zijn theoretische beschouwingen dat het fluctuatie-dissipatie theorema verbroken
wordt in glazen. Introductie van een effectieve tijdsafhankelijke temperatuur zou
de geldigheid kunnen herstellen. Wij hebben op experimentele wijze getracht de
geldigheid van het theorema te toetsen. Twee onafhankelijke metingen van de
Einstein relatie in colloidale gelen en glazen van Laponiet en spherische deelt-
jes. De combinatie van actieve en passieve microrheologie stelde ons in staat om
de correlatie- en response-functies te meten in een niet-evenwichtssituatie.. In
tegenstelling tot eerdere metingen vinden wij geen afwijkingen van het fluctuatie-
dissipatie theorema in een frekwentiegebied van verscheidene decades en voor
wachttijden die zich uitstreekken tot in het niet ergodische regime. De effectieve
temperatuur blijft gelijk aan de badtemperatuur.

De geldigheid van het fluctuatie-dissipatie theorema stelt ons in staat om met
passieve microrheologie de visco-elastische eigenschappen van colloidale glazen en
gelen te meten over een groot frekwentiegebied. Omdat deze metingen lokaal
zijn , kunnen we de eventuele aanwezigheid van heterogeniteit in het systeem
op het spoor komen. In dit aspect laten de microrheologie metingen verschillen
zien tussen glas en gel. Glazen zijn homogeen op alle gemeten lengte-schalen
(l > 0.5µm). De gelen daarentegen laten een aanzienlijke inhomogeniteit zien,
die toeneemt als de gel vast wordt. Dit bevestigt het beeld dat verkregen is uit
de lichtstrooiingsmetingen. De shear moduli van glazen en gelen hebben een-
zelfde frekwentie-afhankelijkheid : de som van twee algebrasche machtswetten.
De oorsprong van deze frekwentie-afhankelijkheid is nog onduidelijk.
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