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Abstract
We study collective self-organization of weakly magnetic active suspensions in a uniform external
field by analyzing a mesoscopic continuum model that we have recently developed. Our model is
based on a Smoluchowski equation for a particle probability density function in an alignment field
coupled to a mean-field description of the flow arising from the activity and the alignment torque.
Performing linear stability analysis of the Smoluchowski equation and the resulting orientational
moment equations combined with non-linear 3D simulations, we provide a comprehensive
picture of instability patterns as a function of strengths of activity and magnetic field. For
sufficiently high activity and moderate magnetic field strengths, the competition between the
activity-induced flow and external magnetic torque renders a homogeneous polar steady state
unstable. As a result, four distinct dynamical patterns of collective motion emerge. The instability
patterns for pushers include traveling sheets governed by bend-twist instabilities and dynamical
aggregates. For pullers, finite-sized and system spanning pillar-like concentrated regions
predominated by splay deformations emerge which migrate in the field direction. Notably, at very
strong magnetic fields, we observe a reentrant hydrodynamic stability of the polar steady state.

1. Introduction

Self-propelled systems such as birds, fire ants and bacteria exhibit fascinating patterns of collective motion.
Unraveling the physical principles governing collective self-organization of such autonomous systems have
attracted tremendous attention in recent years. The efforts to understand the collective effects in
self-propelled systems have led to emergence of the interdisciplinary field of active matter, see for example
[1–3]. Active matter is a fundamentally non-equilibrium class of materials which consist of particles
transforming the ambient energy to some form of mechanical motion at the individual level. Many studies
have focused on elucidating the influence of inter-particle interactions on the collective behavior of active
systems. It is found that the interplay between self-propulsion alone with simple short-ranged interactions
in minimal models such as active Brownian particles with steric interactions [4–6] or Vicsek model with
alignment interactions [1, 7] leads to a rich phase behavior. Novel patterns of collective dynamics like
dynamical clusters and traveling stripes have been identified [1, 6] which have no counterparts in
equilibrium systems.

Microswimmers, such as bacteria, algae and active colloids, belong to a special class of active systems,
which generate flows upon self-propulsion in their suspending medium. As a result, long-ranged
hydrodynamic interactions induced by the self-generated flows affect their collective behavior significantly.
Additionally, microswimmers display new patterns of coordinated motion in response to external fields
such as chemical gradients [8–10], light [11, 12], gravitational [13–18], electric [19, 20], and magnetic
fields [21–24]. For instance, magnetotactic bacteria driven by a sufficiently strong magnetic field migrate
collectively in bands, which are perpendicular to the field direction [21, 22].
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The control of collective dynamics of microswimmers via an external field offers a promising route for
high-tech applications such as micro-scale cargo transport, targeted drug delivery, and microfluidic devices
[25–28]. For instance, external magnetic field has been employed to control the rheological properties of
magnetic swimmers [29, 30]. The collective dynamics of microswimmers in an external field is nonetheless
poorly understood. Specifically, the effect of interplay between long-range hydrodynamic interactions and
external fields on the pattern formation, with exception of few cases [30–34], has been little explored.

To make further progress in this direction, we focus on the large-scale collective dynamics of weakly
magnetic microswimmers in a uniform magnetic field. Employing a continuum approach allows us to
overcome the size limitations of particle-resolved simulations and to capture the large-scale patterns of
collective motion over length scales much larger than the particle size. To this end, various continuum
models ranging from mesoscopic theories based on microscopic models [34–38] to purely
phenomenological field theories based on symmetry arguments [1, 2, 39] have been developed. The
mesoscopic approaches, founded on a particle-scale statistical theory, provide a particularly good
compromise between costly particle-based simulations and purely phenomenological continuum theories.
Depending on the question of interest and density of microswimmers, mesoscopic theories involve different
levels of approximation to obtain a mean-field single-particle Smoluchowski equation from many-body
probability density function (PDF) of active suspensions. Here, we are interested in the interplay between
alignment by an external field and activity for relatively dilute suspensions. Therefore, we ignore the effect
of short-ranged alignment interactions and correlations and only take far field hydrodynamic interactions
into account, similar to the framework outlined in reference [35], in contrast to mesoscopic theories in
references [34, 36–38, 40], which focus on rather dense active suspensions and incorporate these effects.

We provide an in-depth analysis of a kinetic continuum model that we have recently developed for
dilute suspension of spherical microswimmers in an alignment field [33]. Although our focus is on weakly
magnetic swimmers, the model is in principle also applicable to bottom-heavy microswimmers in a
gravitational field. The kinetic model couples the Smoluchowski equation for PDF of fairly dilute active
spherical suspensions in an alignment field to mean far field hydrodynamic interactions mainly generated by
the swimmers motion. The hydrodynamic interactions are incorporated using the leading order flow field of
a force-free microswimmer that is described by a force dipole. It decays as 1/r2, where r is the distance from
the swimmer. Independent of the details of motility mechanism, e.g. flagellar propulsion or surface
distortions, the majority of microswimmers can be divided according to their far field flow into pusher
(extensile) and puller (contractile) swimmers, respectively. A pusher swimmer uses its tail to push fluid
outward along its swimming axis whereas a puller swimmer employs its front appendages to pull the fluid
towards its body in the direction of swimming. These two types of swimmers produce qualitatively different
hydrodynamic flows and hence are expected to produce distinct spatio-temporal patterns.

We study the dynamics of both puller and pusher swimmers in a magnetic field by combining linear
stability analysis and full numerical solution of 3D non-linear kinetic equations. Our linear stability analysis
consists of investigating the stability of the PDF of polar steady state as well as that of its orientational
moments described by uniform density and polarization fields. Combining the two approaches we obtain
complementary insights into the nature of instabilities. At low magnetic fields, a homogeneous weakly
polarized state is stable, akin to an isotropic suspension of spherical swimmers. However, for sufficiently
high activity strengths and moderately strong magnetic fields, a homogeneous polar state becomes unstable
for both pushers and pullers. As we vary magnetic field and activity strengths, distinct spatio-temporal
patterns emerge. At moderate field and activity strengths, pushers are driven by bend-twist hydrodynamic
instabilities and form traveling sheets perpendicular to the magnetic field. At stronger activity and field
strengths, the density-driven hydrodynamic instabilities predominate pusher suspensions leading to
formation of dynamical aggregates. Pullers at moderate field and activity strengths form system spanning
pillars parallel to the field which are predominated by splay deformations. However, at stronger field and
activity strengths, they form finite-sized pillar-like concentrated regions. Interestingly for very strong
magnetic fields a homogenous polar state becomes stable again for both pushers and pullers. Hence, we
observe a re-entrant hydrodynamic stability; a hallmark of competition between alignment and
hydrodynamic torques.

The remainder of this article is organized as follows. In section 2, we discuss the main ingredients of the
kinetic model for a dilute suspension of polar active particles in an alignment field. In section 3, we analyze
the linear stability of homogenous polar steady state to plane-wave perturbations for active polar
suspensions aligned by an external field using a spectral method. Then, we calculate the stability diagram as
a function of strengths of activity and magnetic field. In section 4, we first derive equations of motion for
the orientational moments, density, polarization and nematic fields, using suitable closure approximations.
Then, we analyze the linear stability of moment equations. In section 5, we focus on numerical solution of
the Smoluchowski equation coupled to the Stokes flow to explore the non-linear dynamics. We first outline
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our simulation method based on stochastic sampling method. Next, we investigate the emergent
spatio-temporal pattern formation varying strengths of activity and magnetic field. We particularly discuss
the distinguishing features of patterns observed at different instability regimes. Finally, our main
conclusions and a discussion on comparison of linear stability analysis and non-linear dynamics solution
can be found in section 6.

2. Kinetic theory for active suspensions in an alignment field

2.1. Model system description
We consider a dilute suspension of N spherical magnetic microswimmers with a hydrodynamic radius a
immersed in a fluid of volume V at a number density �m = N

V . We assume that the self-propulsion is
generated by a force-free mechanism of hydrodynamic origin such that its far field flow, averaged over
swimmer’s beat cycle, is well represented by that of a point-force dipole with an effective dipolar strength
Seff [41–43]. Seff depends on the geometrical parameters of the model swimmer [44–47], for instance on
the body size a and the flagellum length � [47]. The translational and rotational friction coefficients of the
swimmer are given by ξr and ξt. Each swimmer carries a weak magnetic dipole moment μ = μn along its
body axis specified by the unit orientation vector n ≡ n̂ and has a self-propulsion velocity U0n as depicted
schematically in figure 1. The suspension is exposed to a uniform magnetic field B that exerts an alignment
torque on each swimmer. We assume that μ is sufficiently small such that the dipole-dipole magnetic
interactions at average inter-particle distance dint � 3a are negligible relative to the thermal energy scale and
no instabilities occur due to magnetic interactions. Therefore, for volume fractions Φm � 0.15 the dynamics
of the system is governed by the interplay between the hydrodynamic interactions and the field-induced
alignment torque.

2.2. Conservation equation: the Smoluchowski equation
For sufficiently low �m, the mean-field configuration of an ensemble of swimmers at a time T can be
described by a single-particle distribution function Ψ(X, n, T), i.e., the degrees of freedom of other particles
have been traced out by integration. The function is normalized as

1

V

∫
V

dX

∫
S2

dn Ψ(X, n, T) = N/V = �m. (1)

As such Ψ(X, n, T)/N describes the probability density of finding a particle with the center of mass position
X and the orientation vector n at time T. Therefore, a uniform and isotropic state can be described by the
constant distribution function Ψ = �m/4π.

The kinetic model for hydrodynamically interacting swimmers in an external field [33] is based on an
evolution equation for the distribution function Ψ(X, n, T) coupled to an equation for the mean-field fluid
velocity U. The Smoluchowski equation for hydrodynamically interacting active particles carrying a weak
magnetic dipole moment in an external field is given by

∂TΨ+∇ · [vxΨ] +∇◦
n · [vnΨ] − DΨ = 0, (2)

in which ∇◦
n ≡ (𝟙− nn) · ∇n with dyadic product defined as (nn)ij = ninj denotes the angular gradient

operator and vx and vn are the translational and rotational flux velocities resulting from a swimmer’s drift.
D = Dt∇2 + Dr∇◦2

n is the diffusion operator in which Dt and Dr describe the effective long-time
translational Dt and rotational diffusion coefficients, respectively. The diffusion coefficients can result from
thermal or biological fluctuations, e.g., due to tumbling of bacteria in the case of rotational diffusion and
set the long-term time scales for a swimmer’s translational and rotational motion. The translational flux
velocity

vx = U0n + U, (3)

includes the drift contributions from the self-propulsion U0n and an advection due to the local flow field U.
The rotational flux velocity vn ≡ ṅ is modeled as

vn = P⊥
n ·

(
μ

ξr
B − W · n

)
, (4)

in which P⊥
n = 𝟙− nn, describes the projection operator to the space orthogonal to the orientation vector

and W = 1
2 (∇U − (∇U)�), with (∇U)ij = ∂iUj, is the vorticity tensor. The flux velocity vn includes the

rotational drift contributions resulting from the torque due to the magnetic field and vorticity of the local
flow. Using the relation between the angular velocity ω and rate of change of orientation vector ṅ = ω × n,
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Figure 1. A schematics of a spherical microswimmer with unit orientation vector n and swimming speed U0n, carrying a
magnetic dipole moment μ. The dynamics of the swimmer is influenced by the local flow U and its vorticity Ω = ∇× U, and an
external magnetic flux density B which creates a magnetic torque MB = μ× B.

the first term P⊥
n · μ

ξr
B on the right-hand side is obtained from the balance between the magnetic torque

τ = μn × B and the frictional hydrodynamic torque −ξrω in the overdamped and low Reynold’s number
limits. The second term models the interaction of a spherical swimmer with the local flow vorticity based on
the second Faxen’s law [48].

From the distribution function, we define the local density field ρ(X, T), polarization field p(X, T), and
the nematic order parameter field Q(X, T), as the symmetric and traceless parts of the zeroth, first, and
second order orientational moments of Ψ(X, n, T) with respect to n, respectively,

ρ(X, T) = 〈1〉n =

∫
S2

dn Ψ1 (5)

p(X, T) = 〈n〉n =

∫
S2

dn Ψn (6)

Q(X, T) = 〈nn − 𝟙/3〉n

=

∫
S2

dn Ψ

(
nn − 1

3
𝟙
)
. (7)

These moments will be used throughout the paper in the following sections.

2.3. Mean-field flow
The flow field U in equations (3) and (4) may result from an imposed external flow or from hydrodynamic
interactions. In this work, we consider the case that there is no external flow and U solely represents the
self-generated flow due to motion of swimmers. In the limit of vanishing Reynolds number, applicable to
microswimmers, the fluid reacts in good approximation instantaneously to changes in the particle
configuration. The mean-field flow U[Ψ] resulting from the hydrodynamic interactions between the
swimmers is well captured by the incompressible Stokes equation

η∇2U −∇P +∇ ·Σ[Ψ] = 0 (8)

∇ · U = 0, (9)

in which P and η denote the isotropic pressure and the viscosity of the suspending fluid and
∇ ·Σ = ∂XiΣijêj. The mean-field stress Σ[Ψ] depends on the instantaneous suspension configuration
encoded by Ψ. Although the Stokes flow is not explicitly time-dependent, the coarse-grained stress profile
Σ[Ψ] produced by the collective motion of swimmers depends on the time via the distribution function
Ψ(X, T). In the case of microswimmers, it can be decomposed into the sum of several contributions, arising
from the self-propulsion, Brownian rotations, resistance to stretching and compression by the local flow
field and steric and magnetic torques. For dilute suspensions of spherical microswimmers, we neglect
stresses arising from Brownian rotations (can be incorporated into the active stress by modifying the
prefactor), inextensibility of the particles and steric torques because of their small contributions. We only
consider active stress Σa[Ψ], generated by the self-propulsion of swimmers, [42, 43] and a magnetic stress
Σe[Ψ], caused by reorientation of swimmers in the external field. Hence, the stress in our model is given by
Σ[Ψ] = Σa[Ψ] +Σe[Ψ].

In a dilute suspension, for which the average ratio of inter-particle distance to the swimmer size is large,
the active stress of a force-free microswimmer Σa[Ψ] can be modeled as that of a point-force dipole—the
leading order non-zero singularity of the Stokes flow [43, 49, 50]. The active stress of a suspension of

4



New J. Phys. 22 (2020) 103007 F R Koessel and S Jabbari-Farouji

dipolar microswimmers is proportional to the nematic order tensor field [35, 51] as defined by
equation (7):

Σa(X, T) = ΣaQ(X, T). (10)

It can be interpreted as a superposition of stress contributions of all possible swimmer orientations at
position X. The strength of the active stress is determined by the amplitude Σa = −�mSeff . The sign of Σa

determines the nature of the swimmers, being a puller Σa > 0 or a pusher Σa < 0.
The torque due to external field MB = μn × B leads to rotation of swimmers that in turn exerts a

rotational stress on the fluid while dragging the surrounding fluid layers. This results in an antisymmetric
stress contribution of the form

Σe =

〈
1

2
ε · �mMB(n)

〉
n

=

〈
�mμB

2

(
nB̂ − B̂n

)〉
n

=
Σe

2

(
pB̂ − B̂p

)
, (11)

in which B̂ = B/B, Σe ≡ �mμB, and ε is the Levi-Cevita symbol. This stress contribution is identical to that
of passive magnetic suspensions. Note that the symmetric part of the magnetic stress is zero for spherical
particles [52, 53].

2.4. Non-dimensionalization
To facilitate the analysis of the model, we render the equations dimensionless, using the following
characteristic velocity, length, and time scales: uc = U0, tc = 1/Dr and xc = U0/Dr. Note that our choice of
characteristic time and length scales are different from our previous work [33]. We rescale distribution
function with the number density such that ψ(x, n, t) ≡ Ψ(xxc, n, ttc)/�m, is dimensionless and ψ/v
represents a probability density normalized to unity:

1

v

∫
v
dx

∫
S2

dn ψ(x, n, t) = 1. (12)

where v = V/x3
c . The form of Smoluchowski equation for ψ(x, n, t) remains unchanged

∂tψ +∇ · [vxψ] +∇◦
n · [vnψ] − Dψ = 0, (13)

where the gradient operator ∇ ≡ ∂/∂xi êi is now with respect to the reduced coordinates. The dimensionless
spatial and rotational flux-velocities reduce to

vx = n + u (14)

vn = P⊥
n ·

(
αeB̂ − W · n

)
, (15)

in which αe =
μB
ξrDr

defines the alignment parameter. Likewise, the dimensionless diffusion operator
simplifies to

D = dt∇2 +∇2. (16)

where dt = DtDr/U2
0 is the reduced translational diffusion coefficient. The equation for the flow-field

transforms into

∇2u −∇p +∇ · σ[ψ] = 0

∇ · u = 0, (17)

with the dimensionless stress tensor σ given by

σ =
Σ

Drη
=

1

Drη
(Σa +Σe) . (18)

As such, two additional independent dimensionless parameters, the active stress amplitude σa =
Σa
Drη

and

the external field-induced stress amplitude σe =
Σe
Drη

appear in our model.
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3. Linear stability analysis of homogeneous polar steady state

The set of equations (13) and (17) forms a closed system that can be solved for the evolution of the
distribution function ψ and the flow field u in the suspension. However, it is not presently feasible to solve
these coupled equations analytically. Therefore, we resort to the linear stability analysis that provides us
with some degree of predictive insight into the dynamics of the equations with respect to a suitable base
state. This kind of analysis allows us to divide the parameter space into a stable region described by the base
state and an unstable region with yet unknown dynamics departing from the base state. Furthermore, the
linear stability analysis offers some valuable insight into the dynamics at the onset of instability.

3.1. Homogeneous and steady solution as a base state
The external field breaks the rotational symmetry of the system but preserves translational invariance. Thus,
we first seek for spatially-uniform ∂xψ0 = 0 and steady ∂tψ0 = 0 solutions of the Smoluchowski
equation (13). Solutions of the form ψ0(αe, n) will serve as base states for the linear stability analysis. For a
homogenous steady state, all spatial and time derivatives in equation (13) vanish. The same holds for the
flow field, because a homogeneous distribution gives rise to a gradient free and homogeneous stress
(∇ · σ = 0 ⇒ u0 = 0, which follows from equation (17)). Only the rotational flux velocity terms remain.
Hence, ψ0(αe, n) can be obtained by setting the total rotational flux velocity including both drift and
diffusive contributions to zero, i. e.,

αeP⊥
n · B̂ +∇◦

n ln ψ0 = 0. (19)

Solving this equation yields

ψ0(αe, n) =
αe

4π sinh αe
eαen·B̂ (20)

with the normalization
∫
S2 dn ψ0(αe, n) = 1. This steady-state is identical to that of passive magnetic

dipoles in an external field [52]. For passive systems at the thermal equilibrium, the Einstein–Stokes–Debye
relation Dr =

kBT
ξr

[48] holds and the alignment parameter becomes αe =
μB

kBT which is equal to ratio
between magnetic and thermal energy scales. More generally, it describes the ratio between two
characteristic reorientation time scales αe = τ e/τ r. The time τr =

1
Dr

represents the average decorrelation

time of a diffusive particle from its initial orientation and τe =
ξr

mB is a measure of the typical alignment
time of a non-diffusive dipole with the external field. The competition between alignment (order) and the
randomization of orientation (disorder) determines the degree of alignment quantified by the mean
polarization p0. It is given by the magnitude of the polarization vector p0:

p0 =

∫
S2

dn nψ0(n) = p0B̂

p0(αe) = coth αe −
1

αe
. (21)

The function p0(αe) is identical to the well-known Langevin function appearing in the context of
paramagnetism or force-extension relation of a freely jointed chain [54].

Assuming a magnetic field parallel to the z-axis, i.e. B = Bẑ, without loss of generality, the homogeneous
polar state with axial symmetry takes the simple form of ψ0(αe, n) = ψ0(αe, θ), where θ denotes the angle
between the orientation vector and the magnetic field and it coincides with the polar angle in spherical
coordinates for the orientation n(θ,φ) = (sin θ cosφ, sin θ sinφ, cosφ). The angular dependency of the
homogeneous polar steady state for different values of αe is shown in figure 2(a). A strong external
magnetic field (large αe) results in a focused angular distribution around the magnetic field axis
corresponding to θ = 0 and thus a large mean polarization p0. The functional dependency of polarization
magnitude on the alignment parameter αe is plotted in figure 2(b). The mean polarization continuously
increases with increasing αe ∝ B. It asymptotically approaches a perfectly aligned state with p0 = 1 in the
limit of very large αe described by limαe→∞ψ0 = δ(n − B̂). In the other extreme of very low magnetic field
strengths, fluctuations will increasingly decorrelate the orientation of a swimmer, leading to a flat profile in
the angular distribution, i. e., limαe→0ψ0 = 1/4π, which corresponds to an isotropic suspension with
p0 = 0.

3.2. Linearized equations and eigenvalue problem
3.2.1. Linear perturbation of the base state
We now proceed to analyze the linear stability of the homogeneous polar steady state presented in
section 3.1. We consider a small disturbance of the distribution function ψ with respect to ψ0.
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Figure 2. (a) Angular distribution of the homogeneous steady state ψ0(θ) for different values of the external alignment
parameter αe =

μB
ξrDr

. (b) The total polarization p0 of the steady state ψ0 as a function of αe ∝ B.

ψ = ψ0(n) + εψp(x, n, t)

where |ε| � 1 and |ψp| ∼ O(1). Likewise, the flow-field of the suspending medium is perturbed by,
u = u0 + εup, in which up is the flow-field caused by the perturbation ψp. The corresponding flow field of
the steady state is u0 = 0, because all the spatial derivatives on the right-hand side of Stokes equation (17)
vanish for ψ0(n).

After neglecting terms of O(ε2) in the governing equations, we obtain the following linearized evolution
equation for ψp

∂tψp = −n · ∇ψp + 2n · B̂ψp − (P⊥
n · B̂) · ∇◦

nψp + (P⊥
n · W[up] · n) · ∇◦

nψ0 − 3ψ0 nn : W[up] + Dψp,
(22)

where the double contraction: is defined as (ab : C) = aibjCij. In our derivation, we have used
antisymmetric property and tracelessness of the vorticity tensor W and the following identities:

P⊥
n · (A · n) = Tr A − 3nn : A

∇◦
n · (P⊥

n · a) = −2n · a,

which hold for any arbitrary tensor A and vector a. The flow field resulting from the perturbation up

satisfies the same momentum equation as u, but forced by the linearized stress tensor given by

σp(x, t) = σaQ[ψp] + σe(p[ψp]B̂ − B̂p[ψp]])/2, (23)

where the time-dependence of the stress tensor stems from that of ψp(x, n, t).
To progress further, we Fourier-transform the linearized Smoluchowski equation, equation (22) where

the Fourier transform of ψp is defined as ψF
p =

∫
dx ψp eik·x and we use the factorization ansatz

ψF
p (k, n, t) = ψ̃(k, n)eλ(k)t . This ansatz decomposes the contribution of Fourier mode of the perturbation

ψF
p to a time-independent amplitude ψ̃(k, n), also known as mode shape, and an exponential growth factor

with a complex growth rate given by λ(k). This ansatz, which arises from linearity of perturbation
equations, implies that the Fourier transform of the stress tensor due to perturbation given by equation (23)
can be written as σF

p = σ̃p(k)eλ(k)t , where

σ̃p[ψ̃](k) = σaQ[ψ̃] + σe(p[ψ̃]B̂ − B̂p[ψ̃])/2. (24)

Consequently, the Fourier transform of the flow field up can be obtained as

uF
p (k) = O

F · (ik · σF
p ) = i(OF · σ̃p · k)eλ(k)t (25)

in which OF = 1
k2 (𝟙− k̂k̂) is the Fourier transform of the Oseen tensor and k̂ = k−1k is the normalized

wavevector. From above, we can see that the Fourier transform of the flow field can also be decomposed as
uF

p (k) = ũ(k)eλ(k)t where its amplitude is explicitly given by

ũ[ψ̃](k) =
i

k
(𝟙− k̂k̂) · σ̃p[ψ̃] · k̂. (26)

After some algebraic manipulation, the governing equation for ψ̃(k, n) transforms into an eigenvalue
problem of the form

L[ψ̃] = λψ̃, (27)
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in which L represents a linear differentio-integro-operator and ψ̃(k, n) is the associated eigenvector
encoding the form of the orientational perturbation for a given k. The explicit form of L is given by

L[ψ̃] = −in · kψ̃ + 2n · B̂ψ̃ − (P⊥
n · B̂) · ∇◦

nψ̃ + (P⊥
n · W̃[ũ[ψ̃]] · n) · ∇◦

nψ0 − 3ψ0 nn : W̃[ũ[ψ̃]]

+Δ
◦
nψ̃ − dtk

2ψ̃, (28)

in which W̃[ũ] = i
2 (kũ − ũk). Based on the form of equation (28), we note that the stability is governed by

four dimensionless parameters dt, αe, σa and σe. To determine the complex growth rate λ(k) and hence
stability of the active suspension in external field for a given set of the parameters, we need to solve the
eigenvalue problem defined by equation (27). We discuss our methodology for this problem in the
following subsection.

3.2.2. Spectral method for solving the eigenvalue problem
The above analysis shows that it is sufficient to consider plane wave perturbations of the form:
ψp(x, n, t) = ψ̃(k, n)eik·x+λ(k)t and up(x, t) = ũ(k)eik·x+λ(k)t to investigate the linear stability of the steady
state. Here, Reλ determines growth rate and Imλ gives the frequency of a travelling wave with wavevector
k. To solve the eigenvalue problem of (27), we employ a spectral method where we also expand the
orientational dependency of the eigenfunction ψ̃(k, n) as well as ψ0 in the basis of spherical harmonics. We
choose a spherical coordinate system in which B is aligned with the polar axis. Denoting the polar and
azimuthal angles by θ ∈ [0,π] and φ ∈ [0, 2π), respectively, we have

n = (sin θ cosφ, sin θ sinφ, cos θ) (29)

In this coordinate system, the spherical harmonic function of degree l and order m = −l, . . . , l is defined as

Ym
l (n) =

√
(2l + 1)(l + m)!

4π(l − m)!
Pm

l (cos θ) exp(imφ) (30)

where Pm
l (cos θ) is the associated Legendre polynomial. The spherical harmonics satisfy the orthogonality

condition:
〈Ym

l |Ym′
l′ 〉 = δll′δmm′ (31)

where the scalar product is defined by

〈 f |g〉 =
∫
S2

dn f ∗(n) g(n),

with the star operator •∗ representing the complex conjugation. These functions form a complete basis on
the unit sphere, on which we expand the mode shape ψ̃(k, n) as

ψ̃(k, n, t) =
∞∑

l=0

l∑
m=−l

Ym
l (n)ψm

l (k, t) (32)

⇔ |ψ̃〉 =
∞∑

l=0

l∑
m=−l

|Ym
l 〉〈Ym

l |ψ̃〉, (33)

where
ψm

l (k, t) = 〈Ym
l |ψ̃〉

is the coefficient corresponding to spherical harmonics Ym
l .

After substituting equation (33) into equation (27) and applying the orthogonality condition
equation (31), the eigenvalue problem for the mode shape ψ̃(k, n) reduces into an algebraic eigenvalue
problem for the vector |ψ̃〉 whose components are given by the harmonic amplitudes ψh

l :

∞∑
j=0

j∑
m=−j

Lmh
jl ψm

j = λψh
l (34)

in which Lmh
jl ≡ 〈Yh

l |L(Ym
j )〉. Expanding the operator L defined by equation (28) on the spherical

harmonics basis generates terms which are products of two spherical harmonics. The product can in general

8
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Figure 3. (a) Magnitude of change of the corresponding eigenvectors (in the basis of spherical harmonics) with respect to a
truncation order jmax, diff(ψ̃, jmax) = ‖ψ̃[jmax] − ψ̃[jmax − 1]‖. The remaining parameters are fixed to σe = 0.4αe,
dt = 3 × 10−6. (b) Change of the largest eigenvalues diff(λ, jmax) = |λ[jmax] − λ[jmax − 1]| as a function of the number of
included modes jmax on a logarithmic scale. (c) The largest growth rate Reλmax[jmax] as a function of truncation order jmax.

be written as the following linear combination of spherical harmonics

Ym1
j1

(θ,φ)Ym2
j2

(θ,φ) =
∑
j3,m3

√
(2j1 + 1)(2j2 + 1)

4π(2j3 + 1)
〈 j1, 0, j2, 0|j3, 0〉〈 j1, m1, j2, m2|j3, m3〉Ym3

j3
(35)

in which 〈 j1, m1, j2, m2|j3, m3〉 are known as the Clebsch–Gordan coefficients and their values are tabulated
[55, 56] and included in common software packages and computer algebra applications such as
Mathematica. The tensor L in equation (34) is of infinite size, hampering further analytical progress. We
solve the algebraic eigenvalue problem by truncating the sum at sufficiently large j = jmax such that the
convergence of the dominant eigenvalues and eigenvectors are ensured. The number of angular modes that
have to be included for convergence depends on αe partly because of the growing number of modes needed
to accurately represent the steady state for large αe. Truncating the coefficient tensor L introduces an error
in the calculation of the eigensystem. However, the error gets progressively smaller and has rapid
convergence when adding further modes. The changes in eigenvectors diff(ψ̃, jmax) = ‖ψ̃[jmax] −
ψ̃[jmax − 1]‖ and eigenvalues diff(λ, jmax) = |λ[jmax] − λ[jmax − 1]| corresponding to the largest growth
rate λmax as well as Reλmax[jmax] are plotted in figure 3 for two different values of αe = 4 and 20 as a
function of jmax. For αe = 4, we find that jmax = 5 (55 angular modes) is sufficient to obtain a good
convergence whereas for αe = 20, at least jmax = 10 (210 angular modes) is required for a reasonable
convergence. These quantities are calculated for wave vector at which the growth rate is maximal, see
figure 5.

3.3. Linear stability of homogeneous polar steady state
As discussed earlier, the linear stability of the homogeneous steady state ψ0 in equation (20) depends on
four dimensionless parameters dt, αe ∝ μB, σa and σe. Additionally, the eigenvalue problem defined by
equations (27) and (28) and thus the stability of the steady state depends on the direction of the wavevector
k̂ with respect to the field direction as the external field breaks the rotational symmetry. However, the
system still holds an axial symmetry around the B axis. Hence, the direction of wavevector can be
characterized by a single angle between the magnetic field and the wavevector ΘB = cos−1(k̂ · B̂). For a
given solvent viscosity and density of active particles, the experimentally tuneable parameters are the
strengths of activity and magnetic field. Therefore, we construct a stability diagram as a function of
αe ∝ μB and σa. We have chosen the remaining parameters to be comparable to those relevant for
magnetotactic bacteria [23]. We set dt = 3 × 10−6 and fix the swimmer’s magnetic dipole moment to
μ = 1 × 10−16 Am2 similar to that of magnetotactic bacteria [23, 29], whereas we vary the magnetic stress
σe ≡ ρmξr/ηαe concomitantly with αe. Assuming a spherical shape and a volume fraction of
Φm = 4π/3a3�m ≈ 0.06, this results in σe = 0.4αe.

For a given set of parameters, ψ0 is unstable if the maximum growth rate is positive for at least one
mode parametrized by (k,ΘB). Based on the results of linear stability analysis, we divide the parameter
space spanned by (σa,α) into stable and unstable regimes with respect to the steady state ψ0 [33]. In the
stable regime, the system evolves towards the steady state ψ0 and becomes stationary. In the unstable
regime, even small fluctuations make the system depart from ψ0 towards a non-trivial dynamics. A line of
neutral stability, i.e., Reλmax = 0 divides the two regimes. In stability diagram of figure 4, the red
dashed-dotted lines represent the lines of neutral stability for pushers σa < 0 and pullers σa > 0. On the

9



New J. Phys. 22 (2020) 103007 F R Koessel and S Jabbari-Farouji

Figure 4. Stability diagram of the steady state ψ0(αe) given by equation (20) as a function of the dimensionless active stress σa

and alignment parameter αe ∝ B; while setting σe = 0.4αe and dt = 3 × 10−6. The borderline of neutral stability (red
dash-dotted line) is calculated by finding Re λmax(k) = 0, enveloping all possible unstable modes. The dashed amber lines
correspond to the cases where Re λmax(k‖) = 0 for pushers and Re λmax(k⊥) = 0 for pullers. These amber lines separate the areas
where finite wavelength perturbations predominate from the regions for which the long wavelength instabilities parallel and
perpendicular to the field prevail pusher (σa < 0) and puller (σa > 0) suspensions, respectively. The solid blue lines represent
Re λmax(k) = 0 based on the linear stability analysis of density and polarization fields from truncated moment equations for
wavevectors parallel and perpendicular to the magnetic field. On the right side, the corresponding polarization p0 of the steady
state ψ0(αe) is plotted. For the points marked by crosses, the behavior of growth rate and pattern formation are further discussed
in the paper.

Figure 5. Growth rate Re λmax and oscillation frequency Im λmax for different perturbation angle ΘB. For (a) pusher at
σa = −30,αe = 4, (b) puller at σa = 30,αe = 4,σa = 30, and (c) pusher at σa = −40,αe = 19. (d) Puller at σa = 40,αe = 19.

right panel, the mean polarization p0(αe) given by equation (21) is plotted, highlighting the dependency of
the steady state ψ0 on αe. The steady state ψ0 is stable for either of small activity |σa| � 20 or a low external
magnetic field αe � 0.5. In the case of small σa, hydrodynamic interactions are too weak to destabilize the
steady state. For a small αe, the polarization p0(αe � 0.5) � 0.3 is rather weak and our system akin to an
isotropic suspension of spherical swimmers remains stable. For a sufficiently large active stress σa � 20 and
a moderate external magnetic field strength, the homogeneous polar steady state becomes unstable. In this
regime, the combined effect of sufficiently strong hydrodynamic interactions ∝σa and orientation
fluctuations drive the system away from a uniformly aligned state. Interestingly, by further increasing the
external magnetic field strength, the steady state becomes stable again, and we observe a reentrant
hydrodynamic stability. Reentrant stability at strong external fields is a consequence of magnetic torque
overcoming the hydrodynamic torque. For given active stress amplitude σa, the active force fa = σa∇ · Q
and its resulting hydrodynamic torque has an upper bound that can be overcome by the alignment torque
for sufficiently strong magnetic fields. As a result, the steady state becomes stable again.
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Analyzing the nature of instability in the unstable regions, we recognize four distinct types of instability.
To demonstrate their distinct nature, four representative points, corresponding to each type are picked out
from the stability diagram. These points are marked by crosses in figure 4 and correspond to
(σa,αe) = (−30, 4), (30, 4), (−40, 20) and (40, 20) in the parameter space. Figure 5 shows the real and
imaginary parts of the complex growth-rate with the largest real part, the so-called maximum growth rate
(Reλmax) and its oscillation frequency Im λmax, as a function of k = |k| at various perturbation angles ΘB

for each of the points. We note that the maximum growth rate strongly depends on the direction of the
perturbation wavevector, i. e., ΘB. For puller and pusher swimmers with equal strengths of activity
|σa| = 30 and magnetic field αe = 4, long-wavelength perturbations k → 0 dominate the instabilities and
destabilize the homogeneous polar state ψ0. However, for pushers σa = −30, fluctuations in the direction of
magnetic field grow fastest, whereas for pullers σa = 30 both perturbation directions parallel and
perpendicular to B predominate the system. Therefore, we expect distinct patterns of instabilities for
pushers and pullers as confirmed by our non-linear simulations presented in section 5. Notably, in both
cases Im λmax(k → 0) → 0 which implies that the large wavelength fluctuations grow monotonically with
time. Interestingly, for pushers and pullers with stronger activity σa = ∓40 and much larger magnetic field
αe = 20 but still in the unstable regime, the wavenumber corresponding to the maximum growth-rate
kmax ≈ 2.5 is finite and it occurs at ΘB ≈ 30◦ for pushers and ΘB ≈ 60◦ for puller, featuring clearly different
instability regimes. In the case (d), Im λ(kmax) of the wavevector with the maximum growth-rate is
non-zero pointing to the oscillatory behavior of the predominant growth mode. These examples represent
the four distinct types of instabilities observed: parallel and perpendicular orientational instabilities for
pushers and pullers at moderate external field strengths, and more complex perturbation structures at
higher field strength featuring a finite characteristic wavenumber for the largest growth rate at an
activity-dependent angle intermediate between parallel and perpendicular directions.

4. Linear stability of orientational moment equations

In this section, we take an alternative approach for investigating the linear stability of the homogeneous
polar steady state. Instead of expanding the orientational part of the single particle distribution ψ in terms
of spherical harmonics, as done in equation (32), it equivalently can be expanded in terms of dyadic
products of the orientation vector n [57, 58],

ψ(x, n, t) =
∑

j

M(j, x, n)�jn⊗j, (36)

where the l-fold dyadic product is denoted by

n⊗l = n ⊗ . . .⊗ n︸ ︷︷ ︸
l times

, (37)

and �l denotes the l-fold contraction of two tensors,

(A�lB)i1,...,in−l kl+1,...km ,= Ai1,...,in−l ,j1,...jl Bj1,...,jl ,kl+1,...km ,

for tensors A ∈ Tn
0 (R3) and B ∈ T0

m(R3) using Einstein summation convention. As shown in reference [57],
the coefficients M(j, x, n) are proportional to the orientational expectation values of the symmetric and
traceless (irreducible) part of n⊗j, where the orientational expectation value is defined as 〈•〉n =

∫
S2 dn ψ•.

They are called the orientational moments of ψ. Especially, the zeroth, first and second moments coincide
with the density, the polarization, and the nematic fields defined in equations (5)–(7). Hence, the
distribution ψ expanded in terms of the orientational moments reads

ψ(x, n, t) =
1

4π

[
ρ(x, t) + 3n · p(x, t) +

15

2
nn : Q(x, t) + · · ·

]
.

Truncating the moment expansion allows us to manipulate the resulting terms algebraically and to find
approximate analytical expressions for the linear stability analysis. Evolution equations for each of the
orientational moments can be directly derived by taking moments of the Smoluchowski equation (13). The
dynamical moment equations for the first three moments are presented in the subsequent subsection.
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4.1. Equations of moments
The time evolution of the density field ρ(x, t) = 〈1〉n can be derived by tracing out the angular dependency
in equation (13). Using the identity

∫
S2 dn Δ

◦
nψ = 0, its time evolution is given by

Dtρ = −∇ · p + dtΔρ, (38)

where Dt ≡ ∂t + u · ∇ represents the material derivative. This represents a convection–diffusion type of
equation with a source term which originates from the divergence of polarization field. Likewise, the time
evolution of the polarization field p(x, t) = 〈n〉n can be obtained by taking the first moment of
equation (13) and using the following identities.∫

S2
dn nΔ

◦
nψ = −2p (39)

and ∫
S2

dn n∇◦
n · (vtψ) = −

∫
S2

dn vtψ, (40)

in which vt represents any tangential vector field on a sphere fulfilling vt · n = 0, and in our context, it is
given by the rotational drift velocity vn defined by equation (15)). Consequently, the evolution equation for
the polarization field is given by

Dtp = −∇ · Q − 1

3
∇ρ−

(
Q − 2

3
ρ𝟙

)
· αeB̂ + W · p − W : 〈nnn〉n + dtΔp − 2p, (41)

which is again a convection–diffusion type of equation with a more complex source term including
contributions from density gradient, polarization and the divergence of the nematic tensor field and terms
arising from the interaction of the active particles with the local flow vorticity and the magnetic field.

Lastly, we obtain the time evolution of the nematic tensor field Q(x, t) = 〈nn − 𝟙/3〉n by integrating
equation (13) with

∫
S2 dn nn• and using the following identities:

∇◦
nn = eϑeϑ + eϕeϕ = 𝟙− nn (42)∫

S2
dn nn∇◦

n · vr = −
∫
S2

dn [nvr + vrn] (43)∫
S2

dn nnΔ
◦
nψ = −2

∫
S2

dn nψΔ
◦
nn + 2

∫
S2

dn ψ∇◦
nn

= −6Q, (44)

Additionally, the moment equation for Q is eventually given by

DtQ =
1

3
𝟙∇ · p + αe(pB̂ + B̂p) − W · Q + Q · W − 6Q + dtΔQ −∇ · 〈nnn〉n − 2αeB̂ · 〈nnn〉n, (45)

in which we have used the antisymmetric property of the vorticity tensor W to further simplify the
equation. The dynamics of nematic tensor is directly affected by source terms stemming from the
divergence of polarization. Similar to nematodynamics equation of active nematics [59], the dynamics of Q
is strongly coupled to the flow velocity through the advection and vorticity terms. Moreover, additional
terms appear due to coupling to the external field.

As can be seen from the equations of moments equations (38), (41), and (45), they constitute a
hierarchy of equations where each moment equation depends on higher moments. In order to proceed
further, we break this hierarchy by introducing the following closure relations which are compatible with a
polar steady state:

Q̄ = pp − 1

3
𝟙,

〈nnn〉n = 0.

(46)

All higher order moments are neglected. This closure approximation is sometimes referred to as
Hand-closure [60]. Imposing these closure relations, the nematic field is coerced by the polarization field
and the dynamic equation for the nematic tensor equation (45) is not needed anymore. We will see in the
next subsection that it generates perturbations that are structurally consistent with the results of linear
stability analysis of steady distribution function ψ0 in section 3.2.1.
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4.2. Stability of moments
After establishing the moment equations of the system, reduced to the density and polarization field, we
proceed with their respective linear stability analysis employing the above closure relations. The
homogeneous steady state solution of moment equations, equations (38) and (41), is given by (ρ0, p0)
where

ρ0 = 1 (47)

p0 =

√
4α2

e + 9 − 3

2αe
B̂. (48)

These solutions become equivalent to 〈1〉ψ0
n and 〈n〉ψ0

n = αe coth αe−1
αe

(see equation (21)) for sufficiently
small αe. Using the first closure relation given in equation (45), we can express the nematic tensor of the
steady state Q0 in terms of p0, i.e., Q0 = p0p0 − 1

3𝟙.
Next, we linearly disturb the steady state by small perturbations of the form

ρ = ρ0 + ερp (49)

p = p0 + εpp (50)

Q̄ = Q̄0 + εQ̄p =

(
p0p0 −

1

3
𝟙
)
+ ε(p0pp + ppp0) (51)

u = u0 + εup, (52)

in which 0 < ε � 1 and u0 = 0, and substituting them into equations (38) and (41) the dynamics of the
linearized perturbations in O(ε) can be formulated as

∂tρp = −∇ · pp + dtΔρp (53)

∂tpp =
2

3
ρpαeB̂ − 1

3
∇ρp + Wp · p0 + dtΔpp − 2pp −∇ · Q̄p − Q̄p · αeB̂. (54)

Analogous to section 3.2.1, we make an eigenmode ansatz for the perturbations of the moments as
below:

ρp(k; x, t) = ρ̃(k) eik·x+λt (55)

pp(k; x, t) = p̃(k) eik·x+λt (56)

Qp(k; x, t) = Q̃(k) eik·x+λt ≡ (p0p̃(k) + p̃(k)p0) eik·x+λt (57)

up(k; x, t) = ũ(k) eik·x+λt . (58)

Here, the flow field perturbation ũ is mainly driven by Q̃ as

ũ =
i

k2

(
𝟙− k̂k̂

)
· σaQ̃ · k, (59)

in which k̂ = k−1k and Q̃ ≡ p0p̃ + p̃p0. Here, we have neglected the contribution of magnetic stress due to
its small effect. Substituting the eigenmode ansatz for perturbations back into the density and polarization
equations, they transform into

λρ̃ = −ik · p̃ − dtk
2ρ̃ (60)

λp̃ =
2

3
ρ̃ αeB̂ − i

3
kρ̃+ W̃ · p0 − dtk

2 p̃ − 2p̃ − ik ·
(

p0p̃ + p̃p0

)
−
(

p0p̃ + p̃p0

)
· αeB̂, (61)

where again W̃ = i
2 (ũk − kũ).

To analyze these equations, we consider perturbations of polarization which are perpendicular to the
external field B = Bẑ and polarization p0 ≡ p0ẑ. Without loss of generality, we assume the perturbation to
be in the x-direction i.e., p̃ ≡ p̃(k)x̂. This assumption reduces the problem to 2D and moreover, p̃ · p0 = 0.
It also implies that small linear perturbations perpendicular to p0 practically influence the orientation but
not the magnitude of the polarization and allows us to investigate hydrodynamically induced orientational
instabilities. Moreover, it naturally generates a nematic perturbation of the form p̃p0 + p0p̃ which is
compatible with the closure approximation given by equation (46). Physically, a polarization perturbation
of this form corresponds to bend (for pushers) and splay (for pullers) deformations of the polarization field
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Figure 6. The growth rates Reλ against the alignment parameter αe of a linear perturbation of the polarization field,
equation (64). This illustrates the re-entrant stability upon increase of magnetic field. The blue line is the eigenvalue of a mode
crossing over from negative to positive and back to negative growth rate. It is constructed from the eigenvalues λ1,2 defined in
equation (63).

[39], to be discussed in the following section. Setting p̃ · p0 = 0 and thus focusing on ρ̃ and p̃⊥, the
equations (60) and (61) can be written in the reduced form of

λ

(
ρ̃

p̃⊥

)
= T ·

(
ρ̃

p̃⊥

)
, (62)

with the operator T ≡
( −dtk

2 −ik sin ΘB

−1

3
ik sin ΘB −2 − dtk

2 − ip0 k cos ΘB − αep0 −
1

2
p2

0σa cos 2ΘB

)
. Here,

k = k sin(ΘB)êx + kcos(ΘB)êz was used, where ΘB denotes the angle of the direction of the perturbation
with respect to the external field axis pointing in the z-direction, ΘB = ∠(k, B). The eigenvalues can be
found analytically3.

Solving this eigenvalue problem, we find that the largest eigenvalue can be found at k → 0, in agreement
with the findings of section 3.3 for the cases (a) and (b) in figure 5. Therefore, for stability regimes (a) and
(b), it is sufficient to restrict the analysis to parallel and perpendicular modes of truncated moment
equations to assess the stability of a uniform polarization field. The k → 0 eigenvalues read

λ1,2 =
1

4
(a ± |a|) (63)

with a = −4 − 2αep0 − p2
0σa cos 2ΘB. The largest eigenvalue is given by λmax = max(0, a/2) (and the

smallest by min(0, a/2)). However, simulations show that the perturbation associated with the λ = 0 can be
considered stable. On the other hand, the eigenvalue corresponding to the mode that becomes unstable, i.e.,
the one having a change of sign in its growth rate, can be constructed by combining the non-zero parts of
eigenvalues into one, yielding

λ =
a

2
= −2 − αep0 −

1

2
p2

0σa cos 2ΘB. (64)

The dependence of the non-zero eigenvalue λ on the alignment parameter αe is plotted in figure 6.
This result demonstrates that the simplified approach is sufficient to recover the re-entrant stability
obtained earlier based on the full linear stability analysis of the steady state.

The line of neutral stability can be found by solving λ = 0 for σa:

σ0
a (αe) = − 2p0(αe)αe + 4

p0(αe)2 cos 2 ΘB
. (65)

It is shown in figure 4 in direct comparison to the result of linear stability analysis of the steady state
distribution function ψ0. The line of neutral stability based on the stability of the first two moments (blue
solid line) nearly coincides with the results of the parallel and perpendicular perturbations obtained from
the linear stability analysis of ψ0 discussed in section 3.3 (red dashed line). For larger external field
strengths, the full analysis reveals additional unstable modes that do not fall into the same scheme. For the
regions between the red dash-dotted lines and dashed amber lines in figure 4), a wider spectrum of

3 If in doubt regarding dropping the parallel component of p̃ in the calculation, it should be noted the same result is obtained at
k = 0 when including it.
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orientational modes contribute to the instability that are not captured by the closure approximation of
equation (46). Additional moments would be required to obtain a complete description.

5. Nonlinear dynamics simulations

The linear stability analysis predicts the stability of a given steady state and provides us with a qualitative
insight into the dynamics near it. However, as the system departs from the initial steady state,
non-linearities prevail the dynamics and the linearized equations fail to describe the dynamics correctly.
Therefore, it is necessary to investigate solution of the full non-linear equation (13). Below, we first outline
our methodology for solving the full non-linear Smoluchowski equations coupled to the Stokes flow. Then,
we discuss the pattern formation emerging from the long-time dynamics of active magnetic swimmers in
the external field.

5.1. Numerical simulation method
There exist various numerical methods to solve the Smoluchowski equation depending on both position
and orientation. The common methods such as finite-difference and finite-volume methods discretize the
partial differential equation on a grid. However, such computations become quickly costly on a
five-dimensional grid for large system size and additional care has to be taken to conserve the probability
density. Instead, here we follow a different physically motivated approach, based on the equivalency between
the Smoluchowski and overdamped Langevin equations, which we dub as stochastic sampling method. This
method is based on a Brownian dynamics integrator for the coupled translational and rotational Langevin
equations with periodic boundary conditions, which are the counterpart of the Smoluchowski equation.
They are given by:

ẋ = vx(ψ(x, n, t), x, n, t) +
√

2dtΓ(t) (66)

ṅ = vn(ψ(x, n, t), x, n, t) +
√

2Λ(t) × n, (67)

where vx and vn are defined by equations (3) and (4). Γ and Λ represent the stochastic force and torques
with the following statistical properties:

〈Γ(t)〉 = 0, 〈Γi(t)Γj(t′)〉 = δijδ(t − t′), (68)

〈Λ(t)〉 = 0, 〈Λi(t)Λj(t′)〉 = δijδ(t − t′) (69)

Within our theory, direct inter-particle dependencies are replaced by mean-field interactions.
Consequently, once the mean-field stress profile and the resulting flow is computed from the distribution
function, different initial value problems for a given particle can be simulated independently of each other,
and therefore in parallel. This realization is the basis of our ‘stochastic sampling’ method.

To solve these equations numerically, we employ the Euler forward integration scheme based on the Itô
interpretation of noise. For every time step, we integrate the corresponding Langevin stochastic differential
equations for the positions and orientations of a large number (order of 108) of independent and randomly
initialized test particles with a time step Δt = 0.01tc. These sample configurations provide us with sufficient
statistics to infer the distribution function ψ(x, n, t) by using a kernel density estimation method. From the
estimated distribution function, we compute the stress profile in the fluid. We use a spectral method based
on the decomposition of u into the Fourier modes for solving the Stokes equation. In the Fourier domain,
the flow field is obtained as uF

p (k) = 1
k2 (𝟙− k̂k̂) · (ik · σF

p ), in which σF
p is the Fourier transform of the

stress tensor. Given the stress profile, the flow field in terms of its Fourier modes on a periodic lattice is
obtained. By an inverse Fourier transformation the flow in real space can be calculated. Eventually, u(x, t) is
fed back into the next integration time step for the Langevin equations. Figure 7 summarizes the flow
diagram of our method for which further details can be found in reference [61].

This method intrinsically conserves the probability density, because the number of particle realizations
is preserved, and leads to a good numerical stability. Furthermore, by sampling regions with high density,
and high impact on the dynamics, more intensely, while sampling low impact regions more sparsely, a
rather fast simulation time can be achieved. On a production run, it takes a couple of days to run
10 000 time steps for 200 million simulation particles on a typical 2017th HPC cluster node, providing
sufficient statistics for the observed patterns.

In the reported numerical simulations, we use a grid of 100 lattice points with box dimensions of 5xc for
each of the spatial coordinates, and 24 and 16 points for the spherical polar and azimuthal orientational
coordinates θ and φ in n(θ,φ). This choice of box dimension ensures that the initial perturbation spans
both unstable and stable modes for all the four instability regimes presented in figure 5. The simulations,
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Figure 7. Flow diagram illustrating the algorithm of Stochastic Sampling method used to solve full non-linear Smoluchowski
equation coupled to the mean-field Stokes flow. Given a PDF Ψ, the mean flow field can be calculated by evaluating the stress
profile based on equation (18). Then, the PDF can be sampled to obtain particles which are integrated using the interaction field.
Employing the updated sample configuration the PDF can be estimated by a kernel density estimation. By iterating the process,
the Smoluchowski equation describing the dynamics of the PDF can be integrated in time.

conducted in a box size of Vsim = (5xc)3, are initialized with the homogeneous polar steady state ψ0, given
by equation (20) for different system parameters. As in the previous sections, the translational diffusion is
fixed to dt = 3 × 10−6, the alignment stress magnitude is set to σe = 0.4αe, while the external magnetic
field and the active stress magnitude are varied through the alignment parameter αe and the active stress
amplitude σa.

5.2. Pattern formation and nature of instabilities
Starting from a spatially homogeneous polar state ψ0(αe) given by equation (20), we evolve ψ and u for
each state point characterized by the (αe,σa) pair by employing the method outlined above. For the
unstable state points, ψ departs from ψ0 significantly whereas for the stable points the system converges
towards ψ0 even starting from an initial uniform isotropic state. The snapshots of figure 8 depict the time
evolution of density field, projected to 2D by averaging along the y-axis, for (αe,σa) values corresponding to
the points marked by crosses in figure 4. We observe a general trend that a uniform density profile becomes
unstable towards density fluctuations. Over time, small-scale fluctuations disappear and the field profiles
become smoother owing to diffusion. Only predominant fluctuations at wavelengths of the order of the box
size persist. As a consequence, smooth non-uniform density, polarization and flow fields develop. At long
times, the configuration of the active suspensions is not steady but constantly fluctuates in time. The
distribution of swimmer orientation appears to converge towards a dynamical steady state which depends
on αe and σa, leading to a constant average polarization in time [33]. In contrast, the density fields exhibit
distinct spatial patterns for different instability regimes which keep evolving and reorganizing.

Using the results from the non-linear dynamics simulations, we assess the validity of the phase diagram
of figure 4 predicted by the linear stability of ψ0(αe). Figure 9 presents an overview of density field
projections into the x–z-plane, at a late time t = 1800, after the instability has already established itself, for
different values of the active stress σa and the alignment parameter αe. To compare with the linear stability
analysis predictions, we have plotted the lines of neutral stability (red lines), for which the largest growth
rate is zero, i.e., Reλmax = 0. Additionally, the dashed amber lines depict the borderlines beyond which
instability is governed by parallel and perpendicular perturbations for negative (pusher) and positive
(puller) σa, respectively. Comparing the predictions of the linear stability analysis with results of
simulations for different activity and magnetic field strengths, we find excellent agreement. ψ0(αe) is stable
for the (σa, αe) values where density profile remains homogenous, whereas ψ evolves towards an
inhomogeneous time-dependent density profile for the regions that are unstable according to the linear
stability analysis.

For moderate external magnetic field strengths ∝ αe and moderate activities ∝ σa, corresponding to the
unstable regions beyond the amber lines, patterns with the most distinct characteristics appear. The higher
the external field, the patterns display finer structures (of higher wavenumbers) in the density profile
suggesting the predominance of the characteristic length scale associated with the external field varying
inversely with magnetic field strength. Indeed, based on dimensional analysis, one can identify a length scale
�e ∝

√
Dtη/�mμB ≡

√
Dtη/Σe. In these regions, the basic characteristics seem to be conserved, with a

sheet-like structure for pushers and a pillar-like structure for pullers. In the intermediate regions between
the red and amber lines, the perturbative mode structure of the instabilities differs from the region beyond
the amber line, as discussed in section 3.3 and particularly in figure 4. For pushers, we observe sheet-like
density structures which are not perpendicular to the magnetic field. Pullers in the intermediate region
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Figure 8. Representative snapshots of density field projections averaged along the y-axis from 3D non-linear simulations at
different times t, as shown on the snapshots, for magnetic swimmers with activity strength and alignment parameter values (a)
σa = −30 (pusher) and αe = 4 (b) σa = 30 (puller) and αe = 4, (c) σa = −40 (pusher) and αe = 19 and (d) σa = 40 (puller)
and αe = 19. The colors encode the probability density integrated in the y-direction ρ̄(x, z) = Δy

∑
y ρ(x, y, z). In all

simulations, the translational diffusion is fixed to dt = 3 × 10−6 and the alignment stress is varied along the external field as
σe = 0.4αe.

mainly produce a similar density profile as in the region beyond amber line but with finer density
structures. Notably, at higher magnetic fields, i.e., larger αe, we observe hatch-like patterns of density with
finite width, which are not parallel to the magnetic field. In general, as expected, the instabilities near the
line of neutral stability are rather weak and the resulting dynamics only depart very slowly from the steady
state. Consistent with the linear stability analysis prediction, we observe distinct patterns for pushers and
pullers. More insight into instabilities and their underlying mechanism can be gained by investigating the
polarization and self-generated flow fields. In the following, we discuss the prominent features of the
long-time density, polarization and flow fields of each of the representative points discussed in figures 5 and
8 corresponding to four distinct instability regimes.

5.2.1. Instability regime (a): traveling sheets
The snapshots in figure 8(a) present pattern formation for pushers with dimensionless active stress
σa = −30 and alignment parameter αe = 4. They correspond to the panels (a.1) and (a.2) of figure 5,
where the linear stability analysis predicts the prevalence of the long wavelength instabilities of wavevectors
parallel to the magnetic field. At late stages of the simulations, we observe density modulations in the
direction parallel to B, confirming the development of such long wavelength instabilities. The swimmers
concentrate in sheets perpendicular to the magnetic field spanning the whole transverse dimension of the
box while traveling collectively in the field direction. To better understand the origin of these hydrodynamic
instabilities, we investigate the corresponding polarization and flow fields. We first focus on a 2D slice of the
sample. Figure 10(a) displays the polarization field superimposed by the density field at a late stage
t = 1800. In figure 10(b), the corresponding flow and vorticity fields are presented. We note that
concomitant with density modulations, the polarization and flow fields also become non-uniform. The
polarization streamlines begin to deflect from straight lines forming bend-like deformations. Such
distortions can be understood in terms of bend instability of polarization field similar to those observed in
liquid crystals.

Bend fluctuations consist of small polarization perturbations which are perpendicular to p0 while their
magnitude is modulated in the direction parallel to p0‖B̂ ≡ ẑ, i. e., pp = p̃⊥ exp(ikzz) [39, 62]; see the
appendix for illustration of an idealized bend deformation. Such distortions increase the density in volumes
of negative divergence ∇ · p < 0, as expected based on time evolution of density given by equation (38). As
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Figure 9. Density projections for different (αe,σa) values superposed by the lines of neutral stability from linear stability
analysis. Pushers are on the left (σa < 0) and pullers on the right (σa < 0). The red lines marks the onset of instability calculated
by the linear stability analysis probing all possible orientations of wavevector. The amber dashed lines correspond to predictions
for neutral stability (Reλmax(k) = 0) when considering only perturbations parallel k‖ (pushers) and perpendicular k⊥ (pullers)
to the external field. The translational diffusion coefficient is fixed to dt = 3 × 10−6 and the alignment stress is varied with the
external field as σe = 0.4αe.

Figure 10. (a) Streamlines of the polarization field (py, pz) of a slice in the y–z-plane at x = 0.75, demonstrating the
characteristic bend fluctuations for a suspension of pushers with dimensionless active stress σa = −30 and alignment parameter
αe = 4 in a magnetic field pointing in z-direction. The color encoded local density ρ/V × 106 is shown in the background.
(b) The corresponding flow field (uy, uz) is represented as vector arrows where the length of the vector is weighted by its
magnitude. The flow vorticity, responsible for the hydrodynamically induced particle rotation, is color encoded in the
background. Red colors correspond to a vorticity vector pointing out of the plane (counter clockwise rotation). Lines of constant
density are overlaid as contour lines on top to guide the eyes.

a result, pushers form dense layers perpendicular to B̂ that migrate parallel to the magnetic field. Bend-like
distortions also generate a position-dependent active stress ∝ Q that results in a net active force density in
the fluid given by fa ≈ σa∇ ·

(
pp − 1

3𝟙
)
. The active force density leads to alternating flow layers

perpendicular to the magnetic field as can be observed from figure 10(b). The ensuing vorticity field,
encoded by background color, is also modulated in a similar fashion. According to the Faxen’s second law
[48], the spherical microswimmers is affected by the hydrodynamically induced torque MHD ∝ 1

2∇× u due
to the flow vorticity, which rotates the swimmers further away from the magnetic field axis. Thus, the
self-generated flow amplifies the bend distortions and renders a uniform homogenous polar state unstable.
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Figure 11. 3D volumetric visualizations of the density field of (a) σa = −30 (pusher) and αe = 4; (b) σa = 30 (puller) and
αe = 4; (c) σa = −40 (pusher) and αe = 19; (d) σa = 40 (puller) and αe = 19, at t = 1800 corresponding to the last time step
presented in panels (a)–(d) in figure 8, respectively. Reproduced with permission from [33]. © 2019 EPL.

Figure 12. 3D representation of the radial component of the mean orientation 〈p/ρ)〉x,y revolving around the magnetic field axis
in a helical twist pattern. The red and blue lines at the wall represent the respective projections in the x–z- and y–z-planes are
plotted, the black lines mark the positions of the density sheets.

This self-amplification would lead to a highly unstable feedback loop if the external torque MB ∝ αep × B̂
would not eventually counterbalance the hydrodynamic torque. The competition between the alignment
and hydrodynamic torques continues until they almost balance each other, hindering further growth of
instabilities. As a result, fairly stable patterns at dynamic equilibrium are established at long times.

The emerging picture from a 2D slice of instability snapshot, provides the ground for discussion of 3D
patterns. The 3D visualization of the density field shown in figure 11(a) is consistent with the picture drawn
from a 2D slice. It clearly shows that the pushers concentrate in sheet-like structures perpendicular to the
magnetic field that migrate in the field direction B̂ ≡ ẑ. Now, if we plot the variation of the perpendicular
component of the polarization field averaged in the x–y plane along the z-axis i.e. 〈p⊥(z)〉x,y =

〈(px(z), py(z))〉x,y, shown in figure 12, we observe a helical-like evolution of 〈p⊥(z)〉x,y. For clarity, each of
the perpendicular components of polarization, 〈px(z)〉x,y and 〈py(z)〉x,y are also shown in the px –z and py –z
planes by red and blue lines, respectively. We note that each of the perpendicular components exhibit a
bend-like instability. Therefore, the resultant 〈p⊥(z)〉x,y can be interpreted as a superposition of phase
shifted bend deformations of the orientation. The observed behavior is reminiscent of the bend-twist phase
predicted for passive chiral or bent-shape liquid crystalline mesogens [63, 64] and observed experimentally
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Figure 13. (a) Mean azimuthal angles around the magnetic field axis for the orientation field φp = φ (〈p/ρ)〉x,y and the flow field
φu = φ(〈u〉x,y). and (b) mean density along the magnetic field axis marking the position of two sheets perpendicular to the
magnetic field (compare with figure 8(a)) for a representative snapshot of pushers with a dimensionless active stress σa = −30
and alignment parameter αe = 4 at t = 1800. The magnetic field points along the z-axis.

in achiral molecules [65]. Moreover, in hydrodynamic theory of vectorially ordered suspensions of
self-propelled particles it was predicted that the coupling between polar order and self-generated flow
vorticity can lead to formation of bend-twist waves [66]. The observed twist is a result of a spontaneous
symmetry breaking and it depends on the initial conditions of the simulations. Conducting a number of
simulations with same parameters but different random initial conditions, we find an equal number of
configurations with left and right handed helices within a sensible statistical error stemming from a finite
number of simulations.

In a bend-twist phase, the polarization orientation vector draws an oblique helicoid, maintaining a
constant oblique angle 0 < θ0 < π/2 with the helix axis z: p̂ = (sin θ0 cos φ, sin θ0 sin φ, cos θ0), in
which the azimuthal angle varies as φ = 2πz/�p with �p being the pitch of the helicoid. To evaluate if the
observed helicoidal pattern is associated with a bend-twist instability, we have extracted the values of the
mean polar angle θp(z) = θ (〈p/ρ〉x,y) and the azimuthal angle of the mean polarization φp(z) = φ (〈p/ρ〉x,y)
averaged in the x–y plane. We find that the mean polarization angle is almost independent of z,
〈θp(z)〉 ≈ 01π – 0.2π (apart from small density dependent variations), whereas φp shown in figure 13(a)
varies nearly linearly with z. These results confirm that polar pushers in an alignment field are prevailed by
a bend-twist instability. Moreover, we have also calculated the azimuthal angle of the flow field averaged in
the x–y plane φu = φ(〈u〉x,y), in figure 13(a). φu also varies almost linearly with z, but shows a clear π/2
phase shift relative to φp. For comparison, we have also plotted the variation of density averaged over the
x–y plane along the magnetic field axis in figure 13(b), which clearly shows the modulation of density as a
result of sheet formation.

5.2.2. Instability regime (b): moving pillars
The time series snapshots for pullers at the same alignment parameter αe = 4 and activity strength σa = 30
are presented in figure 8(b). At late stages, pullers tend to form dynamic pillar-like structures parallel to the
external field axis. A 3D rendering of density field is shown in figure 11(b). Pullers exhibit a more complex
density pattern relative to pushers with the same activity and magnetic field strength. This can be
understood in light of the linear stability analysis of homogeneous polar steady state, presented in panels
(b1) and (b2) of figure 5, which predicts the predominance of long wavelength instabilities with wavevectors
both parallel and perpendicular to the magnetic field. Although, our non-linear dynamics simulations
display some density undulations in the direction parallel to the magnetic field, we observe that pattern
formation is primarily prevailed by the perpendicular perturbations as predicted by the linear stability of
the moment equations, equations (38) and (41).

Next, we examine the corresponding polarization and flow fields on a 2D slice of the sample in the y–z
plane. Figure 14(a) displays the polarization field superimposed by the density field at a late stage t = 1800
and the corresponding flow and vorticity fields are presented in figure 14(b). We observe that the
polarization streamlines significantly deviate from straight lines. The distortions of polarization field can be
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Figure 14. (a) Streamlines of the polarization field (py, pz) of a slice in the y–z-plane at x = 0.75, demonstrating a characteristic
splay pattern for a suspension of pullers with dimensionless active stress σa = 30 and alignment parameter αe = 4 in a magnetic
field pointing in z-direction. The color encoded local density ρ/V × 106 is shown in the background. (b): the corresponding flow
field (uy, uz) is represented as vector arrows, where the length of the vector is weighted by its magnitude. The flow vorticity,
leading to hydrodynamically induced particle rotation, is color encoded in the background. Red colors correspond to a vorticity
vector pointing out of the plane (counter clockwise rotation). Lines of constant density are overlaid as contour lines on top to
guide the eyes.

Figure 15. (a): streamlines of the polarization field (px, py) of a slice in the x–y-plane at z = 0.75, where the size of arrows shows
the relative magnitude of polarization for a suspension of pullers with dimensionless active stress σa = 30 and alignment
parameter αe = 4 for a magnetic field pointing in z-direction. The color encoded local density ρ/V × 106 is superimposed in the
background. (b): the flow field in the plane (ux, uy) is represented as black arrows, where the length of the vector is weighted by
its magnitude. The z-component of flow field, uz is color encoded, where a red color denotes a flow in the direction of the
external magnetic field and a blue color opposed to it. Lines of constant density are overlaid as contour lines on top to guide the
eyes.

understood in terms of splay instabilities in the language of liquid crystals [62], see also the appendix for an
idealized description of bend and splay distortions.

Splay deformations, similar to bend fluctuations, consist of small polarization perturbations which are
perpendicular to p0‖B̂ ≡ ẑ but in this case their magnitude is modulated in directions perpendicular to it, i.
e., pp = p̃⊥ exp(ik⊥ · x⊥), where k⊥ ≡ (kx, ky, 0) and x⊥ ≡ (x, y, 0) [39, 62]. Again based on equation (38)
for the density moment, splay fluctuations increase the density in volumes of negative divergence ∇ · p < 0
and generate alternating pillar-like flow regions along B̂ as shown in figure 14(a); see also the appendix for
illustration of an idealized splay distortion. Splay distortions also generate a position-dependent active force
density fa ≈ σa∇ ·

(
pp − 1

3𝟙
)

in the fluid that result in alternating flow layers parallel and anti-parallel to
the magnetic field, see figure 14(b). The vorticity field also become heterogenous and induces a
hydrodynamic torque MHD ∝ 1

2∇× u. This torque rotates the swimmers further away from the magnetic
field axis and renders a uniform homogenous polar state unstable. The more concentrated regions of
pullers, where ∇ · p < 0 coincide with regions carrying a flow anti-parallel to B̂ and high self-generated
flow vorticity. They result in a net convection anti-parallel to the magnetic field and reduce the mean
transport speed [33]. Furthermore, we have also shown the polarization field superimposed by the density
field and the corresponding flow and vorticity fields of a x–y slice perpendicular to the magnetic field at
z = 0.75 in figure 15. We note that the perpendicular component of polarization is largest in denser regions.
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Figure 16. (a) Streamlines of the polarization field (py, pz) of a slice in the y–z-plane at x = 0.75, for a suspension of pullers with
dimensionless active stress σa = −40 and alignment parameter αe = 19 in a magnetic field pointing in z-direction. The color
encoded local density ρ/V × 106 is shown in the background. (b): the corresponding flow field (uy, uz) is represented as vector
arrows, where the length of the vector is weighted by its magnitude. The flow vorticity, leading to hydrodynamically induced
particle rotation, is color encoded in the background. Red colors correspond to a vorticity vector pointing out of the plane
(counter clockwise rotation). Lines of constant density are overlaid as contour lines on top to guide the eyes.

Consistent with our picture from a y–z slice, the regions of large vorticity are correlated with the
concentrated regions of swimmers.

5.2.3. Instability regimes (c) and (d): finite-sized concentrated regions
The snapshots in figures 8(c) and (d) show the evolution of density profiles of pullers and pushers with
αe = 19 and |σa| = 40. They correspond to the panels (c) and (d) of figure 5, where the linear stability
analysis of homogeneous polar steady state predicts predominance of perturbations with a finite
wavelength. In both cases, the length scale associated with concentrated regions is finite, kmax ≈ 2.5, and
smaller than the box size as opposed to cases (a) and (b), where the maximum growth rate occurs at the
limit k → 0. However, the angle of wavevector relative to the magnetic field ΘB, for which the maximum
growth rate occurs is different for pushers Θmax

B ≈ 30◦ and pullers Θmax
B ≈ 60◦. In both cases, we see

fluctuating concentrated regions which on the average migrate in the direction of magnetic field suggesting
that some kind of dynamical aggregates are formed. Consistent with the stability analysis prediction, the
morphology of the aggregates are different for pushers and pullers with the identical activity and magnetic
field strengths. To gain more insight into similarities and differences between pushers and pullers, we look
into the polarization and flow fields in each case.

For pushers prevailed by finite wavelength instabilities corresponding to panels (c) of figures 5, 8 and 11,
concentrated regions form aggregates of finite size. These patterns are distinct from those of pushers
dominated by long wavelength bend instabilities in case (a), where sheets perpendicular to the magnetic
field span the whole lateral dimension of the box; see figure 11(a). Looking into the polarization field in a
y–z slice shown in figure 16(a), we observe very weak deviations from a uniform polarization, whereas the
density is notably heterogenous. The generated flow field and its associated vorticity are shown in
figure 16(b) and they are weaker than the flow and vorticity created in the traveling sheet regime of case (a)
presented in figure 10(b), which is predominated by the bend-twist instability. Examining the polarization
field superimposed by density in a x–y slice perpendicular to the magnetic field shown in figure 17(a), we
find that the deviations of polarization field from the B̂ ≡ ẑ occur at concentrated regions. In other words,
the finite wavelength instabilities are dominantly density driven and the polarization distortions merely
stem from density perturbations. In the language of linear stability analysis, the predominant mode of
perturbation is given by the mode shape ψ0

0(kmax)eikmax·x+λt ∝ ρp(kmax, x, t), where kmax corresponds to the
wavevector with the largest growth rate shown in figure 5(c). Likewise, from figure 17(b), we note that the
self-generated flow velocity component perpendicular to the magnetic field (ux, uy) is rather weak and it
only becomes considerable in concentrated regions. Unlike the case (a), the flow field has an appreciable
component along the magnetic field (parallel or anti-parallel) as encoded by red and blue colors in
figure 17(b).

For the pullers predominated by finite wavelength instabilities corresponding to panels (d) of figures 5, 8
and 11, the long-time density pattern resembles that of pullers with moderate strengths of the activity and
magnetic field in case (b) predominated by splay instabilities. However, concentrated regions consist of
finite-sized pillar-like aggregates in contrast to the splay regime, where pillar-like dense regions span the
whole box dimension in the field direction, verifying the predominance of smaller wavelength density
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Figure 17. (a): streamlines of the polarization field (px, py) of a slice in the x–y-plane at z = 0.75, where the size of arrows shows
the relative magnitude of polarization for a suspension of pushers with dimensionless active stress σa = −40 and alignment
parameter αe = 20 for a magnetic field pointing in z-direction. The color encoded local density ρ/V × 106 is superimposed in
the background. (b): the flow field in the plane (ux, uy) is represented as black arrows, where the length of the vector is weighted
by its magnitude. The z-component of flow field, uz, is color encoded with a red color denoting a flow in the direction of the
external magnetic field and a blue color opposed to it. Lines of constant density are overlaid as contour lines on top to guide the
eyes.

Figure 18. (a) Streamlines of the polarization field (py, pz) of a slice in the y–z-plane at x = 0.75, exhibiting weak splay
distortions for a suspension of pullers with dimensionless active stress σa = 40 and alignment parameter αe = 19 in a magnetic
field pointing in z-direction. The color encoded local density ρ/V × 106 is shown in the background. (b): the corresponding flow
field (uy, uz) is represented as vector arrows, where the length of the vector is weighted by its magnitude. The flow vorticity,
leading to hydrodynamically induced particle rotation, is color encoded in the background. Red colors correspond to a vorticity
vector pointing out of the plane (counter clockwise rotation). Lines of constant density are overlaid as contour lines on top to
guide the eyes.

fluctuations. Inspecting the polarization field superimposed by the density field in a y–z slice perpendicular
to the magnetic field shown in figure 18(a), we notice that the polarization field displays some splay-like
deformations. However, these distortions are weaker in comparison to the pullers of case (b) for which splay
deformations are the most dominant perturbation mode. Likewise, the self-generated flow field shown in
figure 18(b) is very similar to the pullers of case (b) and we observe a notable vorticity field in concentrated
regions. Looking into the polarization and velocity fields in a x–y slice perpendicular to B̂ ≡ ẑ, (see figure
19) we find that similar to pusher aggregates in case (c), the deviations from a uniform polarization occurs
at concentrated regions, which lead to a very heterogenous flow field as shown in figure 18(b). Despite the
similarities of polarization and flow field with pullers of case (b) predominated by splay deformations, the
predominant mode of perturbation in the linear stability is the density mode similar to the aggregate
forming pushers of case (c). It is given by ψ0

0(kmax)eikmax·x+λt ∝ ρp(kmax, x, t), where kmax corresponds to the
wavevector with the largest growth rate shown in figure 5(d).

6. Discussion and concluding remarks

We have presented a continuum kinetic model for active suspensions of weakly magnetic spherical particles
in an external field. The model is based on first principles, namely, a conservation equation for the particle
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configuration distribution in an alignment field, coupled to the Stokes equation for the fluid flow which
incorporates coarse-grained stress contributions stemming from activity and alignment torque. It is
applicable to moderately dilute suspensions of magnetotactic bacteria or artificial magnetic microswimmers
with a small magnetic moment and focuses on the interplay between hydrodynamic interactions arising
from self-generated flow and external alignment torque. We investigated the nature of hydrodynamic
instabilities and emergent pattern formation by combining linear stability analysis and the full numerical
solution of kinetic model equations.

We first performed a linear stability analysis of steady state solution of the model, which corresponds to
a homogenous polar distribution function ψ0. The stability analysis of steady state as a function of activity
and magnetic field strengths reveals that a uniformly polarized suspension becomes unstable for moderate
magnetic field and sufficiently large activity strengths for both pushers and pullers. Based on the dispersion
relation of the maximum growth rate, we have drawn a non-equilibrium phase diagram as presented in
figure 4. We recognize four distinct instability regimes. For moderate activity and field strengths, the long
wavelength instabilities dominate both pusher and puller suspensions. However, the nature of instabilities
are different for the two types of swimmers. Pushers are dominated by wave perturbations parallel to the
field, whereas pullers are unstable with respect to both parallel and perpendicular wave perturbations. For
stronger activities and magnetic fields, the wavevector with the largest growth rate has a finite wavelength
and its angle with the field differs for pushers and pullers with the same activity and field strengths. These
instability regimes are driven by density fluctuations as opposed to long wavelength instabilities which are
driven by the orientational fluctuations. Increasing the magnetic field strength further, the alignment torque
is strong enough to overcome the hydrodynamically induced torque. As a consequence, the homogenous
polar state becomes stable again and we observe a reentrant hydrodynamic stability.

Next, we obtained the dynamical equations for the first three orientational moments, i.e., density,
polarization and nematic field, imposing suitable closure approximations. Moment equations, although less
accurate, provide us with new insights into the nature of instabilities. As can be seen from the moment
equations, equations (38), (41) and (45), density, polarization and nematic fields are coupled to each other.
This implies that any heterogeneity in one of them generates a heterogeneity in the other fields leading to a
feedback loop until a new dynamical equilibrium is reached. Linear stability analysis of moment equations
for uniform density and polarization fields predicts the predominance of long wavelength instabilities with
wavevectors parallel to the alignment field for pushers and wavevectors perpendicular for pullers at
moderate magnetic fields. Based on these results, we deduce that pushers are prevailed by bend
deformations, whereas pullers are predominated by splay distortions. These findings are in agreement the
linear stability analysis of the steady distribution function ψ0 for a large region of stability diagram, where
long wavelength instabilities prevail the system, although perturbation of ψ0, equivalent to considering the
full hierarchy of moments, predicts the predominance of both long wavelength parallel and perpendicular
perturbations for pullers. Moreover, the coarse-grained approximate moment equations do not capture the
finite wavelength instability regimes at higher magnetic fields and activity strengths.

To evaluate the accuracy of predictions of the linear stability analysis, we investigated the numerical
solution of kinetic model equations. Numerical simulations show very good agreement with predictions of
linear stability analysis for the borderlines of instability. Although linearly unstable modes do not capture
the full non-linear dynamics, many aspects of the dynamics observed in simulations can be understood in
the light of the stability analysis. According to figure 4, for a large region in the parameter space the most
unstable mode for pushers is parallel to the external field, whereas for pullers perpendicular unstable modes
dominate the system. Simulations show that indeed in a large part of the unstable region predominant
modes of instability for pushers are bend-twist distortions of the polarization field. Although figure 5(b.1)
suggests that pullers also exhibit parallel instabilities at small wavenumbers, simulations show that for
pullers splay deformations prevail the pattern formation and perpendicular perturbations are predominant.
As a consequence, we observe distinct patterns for the two kinds of swimmers: traveling sheets
perpendicular to the magnetic field for pushers and pillar-like concentrated regions parallel to the field for
pullers. As discussed in our prior work [33], the deflections of polarization field lead to a reduction of the
average polarization and mean transport speed. In the regions of stability diagram of figure 4, where the
maximum growth rate occurs at finite wavelengths, we observe finite-sized concentrated regions suggesting
formation of dynamical aggregates in external field. However, the morphology of these regions is different
for pushers and pullers in agreement with predictions of linear stability analysis.

We conclude by pointing out a few limitations of the present model and future directions. Our results
are obtained in the limit of negligible magnetic interactions and only consider the interaction of a single
particle with a mean-field flow. This limits the validity of our model to moderately dilute suspensions of
magnetic swimmers with weak dipole moments such as magnetotactic bacteria. Nevertheless, we believe
that the present model captures most salient features of interplay between hydrodynamic interactions and
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Figure 19. (a): streamlines of the polarization field (px, py) of a slice in the x–y-plane at z = 0.75, where the size of arrows shows
the relative magnitude of polarization for a suspension of pullers with dimensionless active stress σa = 40 and alignment
parameter αe = 20 for a magnetic field pointing in z-direction. The color encoded local density ρ/V × 106 is superimposed in
the background. (b): the flow field in the plane (ux, uy) is represented as black arrows, where the length of the vector is weighted
by its magnitude. The z-component of flow field, uz, is color encoded with a red color denoting a flow in the direction of the
external magnetic field and a blue color opposed to it. Lines of constant density are overlaid as contour lines on top to guide the
eyes.

external field in not so concentrated active suspensions. For instance, sheet formation observed for
pushers are in agreement with experimentally observed magnetotactic bands at moderate field strengths
B ∼ 3 mT [21]. For synthetic magnetic microswimmers with larger magnetic dipole moments or dense
suspensions, the magnetic dipolar interactions alone can lead to clustering instabilities [67] and the
interplay between long-range magnetic and hydrodynamic interactions on development of instabilities
merits further investigations. Moreover, the role of swimmer-swimmer correlations [68], and near-field
hydrodynamic interactions in more concentrated suspensions remains an open question. Finally, our
results show that a sufficiently strong alignment field can overcome hydrodynamic instabilities calling for
further exploration of controlling the collective behavior and transport of active matter in various external
fields.
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Appendix A. Idealized bend and splay instabilities

To illustrate better the underlying mechanism of the pattern formation for pushers and pullers in an
external field, we present here the idealized 2D bend and splay deformations. Hence, we restrict the
discussion to a plane with components parallel and perpendicular to the external field, x‖ ≡ ẑ and x⊥,
respectively. We approximate the polarization field of a bend-deformation by

pbend(x‖) =

(
p̃⊥ cos(kx‖),

√
1 − p̃2

⊥ cos2(kx‖)

)
,

assuming that the magnitude of polarization is constant everywhere and its perpendicular component
varies as a cosine function of a wavenumber k along the field direction with an amplitude p̃⊥. Likewise, we
approximate a splay deformation by a polarization field of constant magnitude where the perpendicular
component varies as a cosine function of amplitude p̃⊥ and wavenumber k modulated in the direction
perpendicular to the field:

psplay(x⊥) =

(
p̃⊥ cos(kx⊥),

√
1 − p̃2

⊥ cos2(kx⊥)

)
.
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Figure 20. An idealized (static) bend deformation for polarized pushers (in x‖-direction). (a) Shows the streamlines of the
polarization field p with its divergence ∇ · p color coded in the background. Swimmers accumulate eventually in volumes of
negative divergence (red). (b) Created flow field perpendicular to polarization axis. (c) The resulting flow vorticity field enhances
the bend perturbation further (red color CCW rotation, blue color CW).

Figure 21. An idealized (static) splay deformation for polarized pullers (in x‖-direction) analogous to figure 20.

The active force density resulting from such a polarization field can then be estimated as

fa ≈ σa∇ ·
(

pp − 1

3
𝟙
)
.

For simplicity, we assume σa = ±1. Given the force density field, the Stokes equation

Δu −∇p + fa = 0

can be solved using the Oseen tensor and a spectral method. The flow velocity is perpendicular to the
external field for pushers u = u⊥(x‖)x̂⊥ and parallel to the field for pullers u = u‖(x⊥)x̂‖. To very good
approximation, it can be described by

u{⊥,‖}({x‖, x⊥}) ≈ c1 sin{x‖, x⊥}+ c2 sin 3{x‖, x⊥},

in which the braces {} evaluate to the first entry for pushers, the second entry for pullers, and c1, c2 ∈ R are
some numerical prefactors.

The polarization field and the associated flow and vorticity fields of pushers with bend deformations and
pullers with splay distortions in the alignment field are shown in figures 20 and 21, respectively. The
subplots (a) shows the streamlines of the polarization field p with its divergence color encoded in the
background. The swimmers concentrate in the red areas where the divergence is negative. As a consequence,
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Figure 22. Illustration of the competition between a hydrodynamic torque MHD ∝ 1
2 ‖∇ × u‖ and an external magnetic torque

MB ∝ αe‖n × B̂e‖ for bend and splay instabilities in arbitrary units. The instabilities cause the flow vorticity to grow while
rotating the particles, until the rotation is compensated by the external torque (amber).

pushers form sheet-like regions perpendicular to the field, whereas pullers concentrate in pillar-like dense
regions parallel to the field. The subplots (b) depict a vector plot of the self-generated flow fields as a result
of the bend and splay deformations of the polarization fields of pushers and pullers, respectively. In both
cases, we observe alternating flow layers modulated in the direction perpendicular to field. For the pushers,
the flow velocities with alternating directions are perpendicular to the alignment field, while for pullers the
alternating flow velocities are parallel and anti-parallel to the field. In subplots (c), the vorticity of the flow
in the x–y plane [∇× u]z is shown, where the red color encodes a counter clockwise rotation and the blue
color a clockwise rotation. We observe the alternating clockwise and anticlockwise vorticity fields are also
modulated in directions parallel and perpendicular to the field for pushers and pullers, respectively.
According to the Faxen’s law, the flow vorticity induces effectively a hydrodynamic torque MHD ∝ 1

2∇× u,
which rotates the particles away from the magnetic field direction and competes with the magnetic torque.
A homogenous polar steady state becomes unstable due to these competing torques.

In the idealized case, both torques are easy to calculate and are plotted in arbitrary units in figure 22 for
a bend-deformation (it is qualitatively the similar for splay-deformations). The mean, dimensionless
external torque, given by MB = αep × B̂ nearly fully balances the MHD hindering further growth of bend
deformation. As a result, a stable dynamical pattern is established. The competition between the two
torques becomes apparent looking into the rotational drift velocity given by equation (15) which can be
equivalently written as

ṅ =

(
αen × B̂ +

1

2
(∇× u)

)
× n. (A1)

Under conditions that both terms compensate each other, the bracket vanishes and the orientation n does
not change any more.
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