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ABSTRACT
We investigate the copolymerization behavior of a two-component system into quasilinear self-assemblies under conditions that interspecies
binding is favored over identical species binding. The theoretical framework is based on a coarse-grained self-assembled Ising model with
nearest neighbor interactions. In Ising language, such conditions correspond to the antiferromagnetic case giving rise to copolymers with
predominantly alternating configurations. In the strong coupling limit, we show that the maximum fraction of polymerized material and
the average length of strictly alternating copolymers depend on the stoichiometric ratio and the activation free energy of the more abundant
species. They are substantially reduced when the stoichiometric ratio noticeably differs from unity. Moreover, for stoichiometric ratios close to
unity, the copolymerization critical concentration is remarkably lower than the homopolymerization critical concentration of either species.
We further analyze the polymerization behavior for a finite and negative coupling constant and characterize the composition of supramolecu-
lar copolymers. Our theoretical insights rationalize experimental results of supramolecular polymerization of oppositely charged monomeric
species in aqueous solutions.

Published under license by AIP Publishing. https://doi.org/10.1063/1.5097577., s

I. INTRODUCTION

Biomolecular structures are typically formed of small build-
ing blocks that self-assemble into very complex and often sym-
metrical architectures.1–5 These building blocks have a configura-
tional functionality that allows for specific interactions between
them. Their self-assembly thus leads to a high degree of control
over the geometry of the assembled structures, which is critical for
their functionality. For instance, the conformation of a protein and
its biological functions are intrinsically linked.4–7 Further exam-
ples of self-assembled structures in nature are phospholipid mem-
branes, nucleic acid helices, and ribosomes.3,8 In order to develop
supramolecular polymers, a reversible self-assembly approach has
been employed. In this method, the monomeric building blocks

assemble through weak noncovalent bonds, i.e., interactions on the
order of the thermal energy,9–12 to yield larger polymeric struc-
tures. Typical supramolecular interactions are reversible coordina-
tion bonds, hydrogen bonds, electrostatic interactions, π–π stacking,
and van der Waals interactions.5,13–17

Among naturally occurring self-assemblies, virus particles are
prominent examples that have served as a source of inspiration
for biomimetic supramolecular polymerization. A large part of the
self-assembly into supramolecular structures and genome pack-
aging into protective capsids is driven by electrostatic contribu-
tions.8,14,18–21 A viromimetic self-assembly strategy has further been
applied to develop candidates for drug delivery vehicles, optoelec-
tronic devices, sensors, and medical diagnostics.22 The self-assembly
of monomeric building blocks through electrostatic interactions is
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thus a powerful tool to create new nanostructured materials with
tunable functionalities such as optical, electrical, or magnetic prop-
erties.23 For example, Tomba et al.24 used electrostatic interac-
tions to create self-assembled supramolecular structures of rubrene
on a gold substrate. They were able to show that a combina-
tion of long range electrostatic repulsion and short-range attrac-
tive interactions drives the self-assembly into characteristic 1D
patterns.

Recently, some of us25,26 have developed a strategy to construct
supramolecular copolymers using positively and negatively charged
monomeric building blocks with C3 symmetry, containing three
identical peptide arms. These arms contain amphiphilic oligopep-
tides, based on alternating sequences of hydrophobic phenylalanine
or methionine and charged lysine or glutamic acid residues, and
form rodlike assemblies via a combination of electrostatic interac-
tions, hydrogen bonding, and hydrophobic shielding.25 The self-
assembly is regulated via tuning the pH of the aqueous solutions.25,26

By changing the charged state of the monomeric building blocks, pH
drives the self-assembly into homopolymers of a neutral monomer
or into copolymers when both monomer species carry comple-
mentary charges. A schematic representation of the supramolecu-
lar copolymerization occurring at neutral pH ≈ 7 is presented in
Fig. 1(a).

Most recently, Ahlers et al. performed a light scattering and
electron microscopy investigation of the fidelity of the supramolec-
ular copolymer formation.27 The anionic and cationic peptide
comonomers self-assemble into AB-type heterocopolymers, with a
nanorodlike morphology and a thickness of 11 nm. At equal concen-
trations of the two species, the copolymer mean length was 66 nm
at an overall monomer concentration of 5 × 10−5M, equivalent to
a volume fraction of Φ ∼ 2 × 10−4. On the other hand, excess in
either of the monomer species up to 50 mol. % in the stoichio-
metric ratio at the same overall monomer concentration decreased
the mean copolymer length to about 42–50 nm.27 These findings
prompted us to gain a microscopic insight into the thermodynamic
effects that dictate the configuration and formation of the copoly-
mers from a theoretical perspective. Since circular dichroism and
fluorescence spectroscopy tools have so far not been able to directly
determine the composition of the supramolecular copolymers (alter-
nating, random, or blocky structures), we gain a deeper understand-
ing of the morphology and optimal stoichiometric ratio for alter-
nating copolymers using a two-component coarse-grained model.28

We further aim to fit the average length of copolymers from titration
experiments with our theoretical framework and extract parameters
that have been inherently difficult to determine using experiments
alone.

Coarse-grained models for the self-assembly of monodisperse
systems14,29–31 have played an essential role in rationalizing experi-
mental data. These models successfully describe the equilibrium self-
assembly behavior of quasilinear supramolecular homopolymers for
the so-called isodesmic, activated, and autocatalytic assembly cases.
There has been an increasing interest in a theoretical understanding
of the self-assembly behavior in multicomponent systems, and self-
assembly theories have been extended to supramolecular copoly-
mers consisting of two or more chemically distinct monomer species
to capture the physics of the system under consideration.28,32–42

In particular, a general statistical-thermodynamical treatment of
one-dimensional multicomponent self-assembly in solutions using

FIG. 1. (a) Chemical structures of the cationic dendritic peptide monomer (A,
blue) and the anionic complementary monomer (B, green), and a schematic rep-
resentation of the self-assembly into alternating supramolecular copolymers. (b) A
schematic of the free energy parameters in our coarse-grained model. The acti-
vation free energies aA and aB are associated with the conformational changes of
species A and B from the monomeric state to the self-assembled state, respec-
tively. The binding free energy parameters bij account for the free energy gain of
a monomer of species i binding to a monomer of species j. (c) A schematic repre-
sentation of a copolymer of degree of polymerization N, which can be mapped to a
1D antiferromagnetic Ising model with nearest neighbor interactions described by
a negative coupling constant given by J ≡ (bAA − 2 bAB + bBB)/4 < 0. The spin
at site 1 ≤ l ≤ N of the lattice Sl is 1 when the site is occupied by species A and
−1 when occupied by species B.

transfer matrix and sequence generating function methods has
been developed, which provides a link to experimental observable
quantities.43 The general insights obtained from these studies are
that the self-assembly behavior and especially the critical concen-
tration and critical temperature strongly depend on the relative
abundance of the self-assembling components and their interaction
strengths.28,40–42 Regarding the two-component self-assembly exper-
iments described above, the 1D self-assembly theory for bidisperse
systems in Ref. 28 is more relevant since electrostatic interactions
can be explicitly incorporated. It builds on a two-component self-
assembled Ising model where the presence of two different species
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is parameterized in terms of the strengths of binding free ener-
gies that depend on the monomer species involved in the pairing
interaction. The theory predicts the formation of different mor-
phologies of copolymer assemblies depending on the relative val-
ues of the species-dependent binding free energies, exhibiting ran-
dom, blocky, and alternating ordering of the two components in the
assemblies.

The decisive parameter determining the arrangement of
monomer species in the assemblies (i.e., the morphology) is an effec-
tive coupling constant of the Ising model J ≡ (bAA − 2 bAB + bBB)/4,
which depends on a linear combination of the binding free ener-
gies bij between two monomer species i, j ∈ {A,B}. The J > 0 case,
with favorable binding between monomers of the same species, leads
to the formation of copolymers with blocky order. For the J = 0
case, monomers of the two species are randomly distributed along
the assemblies, whereas the J < 0 case leads to copolymers with
predominantly alternating order. The above mentioned model was
thoroughly analyzed for the case of blocky ordering J > 0.28 Here,
we analyze the model for the J < 0 (antiferromagnetic coupling)
case where the binding between two distinct species is favored over
binding between those of the same type. We show that our model
can rationalize the experimental results for the copolymerization of
the two-component system with complementary charges, although
it only incorporates nearest-neighbor interactions. This approxima-
tion works well because the long range electrostatic interactions of
these 1D co-assemblies are effectively reduced to a nearest neigh-
bor contribution due to self-screening effects in an alternating charge
sequence.44,45

The remainder of this article is organized as follows. In Sec. II,
we briefly review the theoretical framework of two-component
supramolecular copolymers and discuss its main ingredients and the
resulting mass-balance equations. In Sec. III, we analyze the mass-
balance equations in the strongly negative coupling limit J ≪ −1,
where interspecies binding is predominant, and obtain the depen-
dence of the critical concentration on the stoichiometric ratio and
the free energy parameters. We investigate the copolymerization
behavior for the case of finite and negative J in Sec. IV. Finally, we
compare our theoretical insights to experimental findings in Sec. V
and our main conclusions can be found in Sec. VI.

II. REVIEW OF THEORY OF SUPRAMOLECULAR
COPOLYMERIZATION

In this section, we briefly review the supramolecular poly-
merization theory of linear assemblies for two-component systems
developed in Ref. 28. We consider two monomeric species, A and
B, with equal effective interaction volumes: νA = νB = ν. The con-
formational free energy difference between a free monomer of type
i ∈ {A, B} in the solution and one bound to an assembly is param-
eterized by an activation free energy ai > 0. The free energy gain of
bonded interactions between two species i and j is parameterized by
−bij, where i, j ∈ {A, B}. All the free energies are scaled to the ther-
mal energy kBT ≡ 1. See Fig. 1(b) for a schematic overview of the
involved free energy parameters. The semigrand potential energy of
a dilute solution of volume V containing free monomers and self-
assembled polymers can be expressed by a sum of an ideal mixing
entropy and contributions from the internal partition functions of
assemblies with varying degrees of polymerization N,

Ω
V
=
∞
∑
N=1

ρ(N)[ln ρ(N)ν − 1 − lnZN(µi, bij, ai)]. (1)

Here, ρ(N) is the number density of assemblies containing N
monomers and µi represents the chemical potential of species
i ∈ {A, B}. The semigrand canonical partition function ZN(µi, bij, ai)
accounts for the Boltzmann weighted sum of all the conformational
states of assemblies with size N.

Minimizing the grand potential energy δΩ/δρ(N) = 0 yields the
equilibrium size distribution of assemblies,

ρ(1)ν = Z1 = eµA+aA + eµB+aB ,
ρ(N)ν = ZN (N > 1).

(2)

We note that our theory is formulated in such a way that the confor-
mational free energy of an unbound monomer of species i is lower
by an amount −ai relative to that of the bonded one. Therefore, the
activation free energies ai only enter in the single monomer partition
function Z1 and ZN>1 does not depend on ai explicitly as will be seen
in the following. The partition function ZN of assemblies in a two-
component system can be obtained by mapping the Hamiltonian of
linear assemblies onto an Ising model with an effective Hamiltonian
of the form28

−HN>1 = J
N−1
∑
l=1

SlSl+1 +H
N
∑
l=1

Sl+E0(N)−(S1 +SN)(bAA−bBB)/4, (3)

where Sl = ±1 is the spin state of the site l that is 1 when the site is
occupied by species A and −1 when occupied by species B [Fig. 1(c)].
The effective coupling constant J between two neighboring sites is
given by

J ≡ (bAA − 2 bAB + bBB)/4, (4)
and

H ≡ (bAA − bBB + µA − µB)/2 (5)

describes the effective external field that couples to the spin sites. It is
directly linked to the difference in the chemical potential of the two
species ∆µ ≡ (µA − µB)/2. Furthermore, the spin-independent term

E0(N) ≡ (N − 1) b̄ + N µ̄ (6)

defines the average binding free energy b̄ = (bAA + bBB + 2bAB)/4
and the average chemical potential µ̄ = (µA + µB)/2 of the two-
component system.

The coupling parameter J is the key quantity that determines
the composition of monomers in the self-assembled polymers. For
J > 0, ferromagnetic ordering is favored, implying blocky copoly-
mers. J = 0 corresponds to paramagnetic ordering meaning ran-
dom copolymers. The J < 0 case leads to antiferromagnetic ordering
associated with alternating order in copolymers. It is of relevance
to the experiments of oppositely charged monomers and will be
thoroughly analyzed in the remainder of this article.

Using the standard transfer matrix method,46 the partition
function of an assembly of size N > 1 with open boundary conditions
becomes28

ZN>1 = (x+λN−1
+ + x−λN−1

− ) expE0(N), (7)
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where the eigenvalues of the transfer matrix λ± are given by

λ± = eJ cosh(H) ± e−J
√

e4J sinh2
(H) + 1. (8)

The coefficients x± are given by28

x± = cosh(∆µ) ±
1 + e2J sinh(∆µ) sinh(H)
√
e4J sinh2

(H) + 1
, (9)

describing the statistical weight associated with different possible
configurations at the chain ends. They arise from the open bound-
ary condition that implies either of species A or B can be located on
either end of a chain.

To determine the values of the chemical potentials, we impose
the mass conservation for the volume fraction of both species or
alternatively for the overall volume fraction and the difference
between the volume fraction of the two species. Here, we opt
for the latter case. We denote the volume fraction of species i,
monomers present in the solution either in the unbound or the self-
assembled state, by Φi. The overall volume fraction of monomers
Φ = ΦA + ΦB comprises the volume fractions of free monomers
𝜙m
i = eµi+ai and all the bonded monomers in assemblies of vary-

ing sizes. The volume fraction of all the bonded monomers con-
tributing to an assembly of size N > 1 can be obtained as Nρ(N)ν
= NZN =

∂ZN
∂µ̄ . Hence, the mass balance equation for the overall

volume fraction of monomers reads

Φ = 𝜙m
A + 𝜙m

B +
∞
∑
N=2

NZN . (10)

This sum is easily evaluated using a geometric series, noting that
the assembly partition function can be written as a sum of power
laws

ZN>1 = ∑
σ=±

xσeµ̄ΛN−1
σ , (11)

where Λ± = λ± exp(µ̄+ b̄) define effective fugacities of the bidisperse
system. Noting that 𝜙m

A +𝜙m
B = Z1, the mass balance equation for the

overall volume fraction can be written as

Φ = ∑
σ=±

xσeµ̄

(1 −Λσ)2 − (x+ + x−)eµ̄ + Z1, (12)

where (x+ + x−)eµ̄ = cosh(∆µ)eµ̄ = eµA + eµB . Similarly, the differ-
ence in the volume fraction of the two species ∆Φ ≡ΦA −ΦB includes
the difference in the volume fraction of free monomers 𝜙m

A −𝜙
m
B and

the disparity in the number of A and B monomers within chains of
size N > 1 given by ∂ZN

∂∆µ . Therefore, it can be expressed as

∆Φ = 𝜙m
A − 𝜙

m
B +

∞
∑
N=2

∂ZN

∂∆µ
. (13)

Evaluating this sum with a geometric series yields

∞
∑
N=2

∂ZN

∂∆µ
= ∑

σ=±

Λσeµ̄

1 −Λσ

∂xσ
∂∆µ

+
eµ̄xσ

(1 −Λσ)2
∂Λσ

∂∆µ
. (14)

Noting that ∂/∂∆µ = ∂/∂H, the mass balance equation for the
difference in the volume fractions reads

∆Φ = 𝜙m
A − 𝜙

m
B + ∑

σ=±

Λσeµ̄

1 −Λσ

∂xσ
∂H

+
eµ̄xσ

(1 −Λσ)2
∂Λσ

∂H
. (15)

Simplifying the mass balance equations further yields

Φ = ∑
σ=±

xσeµ̄

(1 −Λσ)2 + eµA(eaA − 1) + eµB(eaB − 1), (16)

∆Φ = eµAeaA − eµBeaB + ∑
σ=±

xσeµ̄Λσ

(1 −Λσ)2 [(1 −Λσ)
∂ ln xσ
∂H

+
∂ lnλσ
∂H

].

(17)

The coupled sets of Eqs. (16) and (17) are the central equations that
are solved throughout the rest of this paper to obtain the chemical
potentials µi.

By determining the chemical potentials from the above set of
equations, the mean degree of polymerization

N ≡ ∑
∞
N=1 Nρ(N)
∑
∞
N=1 ρ(N)

=
Φ

∑
∞
N=1 ρ(N)ν

(18)

is straightforwardly evaluated because the sum in the denominator
can be simplified to

∞
∑
N=1

ρ(N)ν = ∑
σ=±

eµ̄xσΛσ

(1 −Λσ)
+ eµA+aA + eµB+aB . (19)

Moreover, the fraction of polymerized material obeys the simple
relation

f = 1 −
ρ(1)ν
Φ
= 1 −

eµA+aA + eµB+aB

Φ
, (20)

which is, in principle, an experimentally accessible quantity. As
expected, in the limit of vanishing concentration of species j
(eµj → 0), the theoretical model recovers all governing equations of
a homopolymer system made of the other species i ≠ j. In this limit,
the effective fugacity obeys Λ+ = exp(µi + bii) and the mass balance
equation reduces to

Φ
Φ∗
= Λ++e−aiΛ2

+
2 −Λ+

(1 −Λ+)2 , (21)

in which Φ∗ = exp(ai − bii) is the so-called critical concentra-
tion.47 It demarcates the transition from a monomer-dominated to
a polymer-dominated regime.

The analytical solution of the coupled mass balance equations
(16) and (17) is not generally known. However, for the special case
of bAA = bBB, aA = aB ≡ a, and α = 1, we can solve the mass-
balance equations. In this case, Eq. (17) yields µA = µB ≡ µ and
Eq. (16) becomes identical to the monodisperse mass balance equa-
tion [Eq. (21)], in which Λ+ ≡ 2 exp(µ + beff) and Φ∗ ≡ exp(−beff + a).
Here, beff ≡ b̄ + ln[cosh(J)] is an effective binding free energy
that incorporates the effect of mixing of the two components in
the assemblies. In the following, we analyze the copolymerization
behavior for the case of a negative coupling constant J < 0.
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III. STRONGLY NEGATIVE COUPLING LIMIT: STRICTLY
ALTERNATING COPOLYMERS

In Sec. II, we gave a brief review of the self-assembly model for
the two-component systems and its central equations. This model
has been thoroughly analyzed for the case of positive coupling
( J > 0),28 which leads to copolymers with predominantly blocky
order. In this paper, we focus on analyzing the model for a negative
coupling constant ( J < 0), which gives rise to copolymers with pre-
dominantly alternating order. In this section, we first examine self-
assembly behavior in the strongly negative coupling limit J ≪ −1.
This limit corresponds to the situation that the free energy gain of
interspecies binding is much greater than that of identical species
binding, i.e., bAB ≫ bAA and bAB ≫ bBB. We consider two distinct
cases: (i) bii ≪ −1, i.e., no binding takes place between identical
species and bAB > 0 can have any finite value, and (ii) bAB≫ 1 and bii
have finite values. As can be seen from Eq. (4), either of these con-
ditions leads to J ≪−1 for which comonomers along the assemblies
predominantly presume an alternating order. We first simplify the
mass balance equations [Eqs. (16) and (17)] in the limit of J → −∞
and analyze the copolymerization behavior. Next, we inspect the
dependence of the critical concentration on the stoichiometric
ratio.

A. Mass balance equations
In the limit e J ≪ 1, the eigenvalues λ± in Eq. (8) simplify to

λ± = ±e−J + cosh(H)e J + O(e2J
). (22)

As a result, the effective fugacities reduce to

Λ± = ±eµ̄+bAB + eµ̄+(bAA+bBB)/2 cosh(H) + O(e2J
). (23)

This equation shows that in such a strongly negative coupling limit,
the leading order term of the effective fugacities depends only on bAB
and µ̄. The second leading order term is independent of bAB and only
depends on bii and µi.

Likewise, Taylor expanding Eq. (9) up to the first order in e J ,
the end cap weights x± in the strong coupling regime reduce to

x± = cosh(∆µ) ± 1 + O(e2J
). (24)

We note that in the strong coupling limit, the end cap weights are
symmetric with respect to the particle species.

Keeping only the leading order terms, we obtain the N-
dependent partition functions in the J →−∞ limit. They can be split
into partition functions for assemblies with even and odd degrees of
polymerization given by

Zeven
N = 2 exp[(N − 1)bAB + Nµ̄](1 + O(e2J

)) = 2 exp[−Heven
AB ],

(25)

Zodd
N>1 = 2 cosh(∆µ) exp[(N − 1)bAB + Nµ̄](1 + O(e2J

))

= exp[−Hodd
AB ] + exp[−Hodd

BA ]. (26)

Here, Heven
AB is the free energy of an alternating copolymer consisting

of N/2 units of AB or BA dimers. Likewise, Hodd
AB and Hodd

BA represent
the free energies of alternating copolymers of the form B(AB)(N−1)/2
and A(BA)(N−1)/2, i.e., with an excess of B or A monomers,

respectively. Thus, in the limit J → −∞, the partition functions only
depend on bAB and the chemical potentials and do not exhibit any
singularity. In other words, in this limit, our results converge to that
of a bidisperse system where only interspecies binding takes place,
i.e., bii→−∞ and bAB can have any arbitrary positive value. Notably,
for the case of equal chemical potentials, the prefactor of the par-
tition function for assemblies with an odd number of monomers,
cosh(∆µ), reaches its minimum value and Zeven

N = Zodd
N . This implies

that the free energy cost of adding another monomer to a poly-
mer with an arbitrary size is −(bAB + µ̄) and independent of N.
For unequal chemical potentials, the fraction of alternating poly-
mers with an even degree of polymerization is smaller than those
with an odd degree of polymerization because the more abundant
species, assuming to be B, can have a greater contribution to the
polymerization by forming B(AB)(N−1)/2 copolymers.

Using the leading order terms of Eqs. (22)–(24), the mass bal-
ance equation for the overall volume fraction of monomers, given by
Eq. (16), simplifies to

Φ =
(eµA + eµB)(1 + Λ2

+) + 4e−bABΛ2
+

(1 −Λ2
+)

2
+ eµA(eaA − 1) + eµB(eaB − 1),

(27)

in which Λ+ ≡ exp(µ̄ + bAB). Likewise, using ∂/∂H = ∂/∂∆µ,
Eq. (17) expressed in terms of the stoichiometric ratio α ≡ ΦA/ΦB
simplifies to

Φ
α − 1
α + 1

=
(eµA − eµB)Λ2

+

1 −Λ2
+

+ eµA+aA − eµB+aB . (28)

The first term on the right hand side of the above equation arises
from the asymmetry in the population of copolymers with odd
degrees of polymerization. For stoichiometric ratios different from
unity, odd-numbered copolymers that include a larger fraction of
the more abundant species are preferred.

Even in the strong coupling limit, we cannot analytically solve
this set of coupled equations for the chemical potentials. Only for
the special case of equal concentration of the two species, α = 1, and
identical activation energies aA = aB = a, we can obtain an analyti-
cal solution for the mass balance equations. Under such conditions,
Eq. (28) yields µA = µB, i.e., the concentration of free monomers of
the two species is equal at any Φ. The mass balance equation for the
overall concentration Eq. (27) simplifies to Φ = 2eµA[(1 − Λ+)

−2

+(eaA −1)]. It can be expressed as a third order polynomial in terms
of Λ+ ≡ exp(µ̄ + bAB) given by

Φ
Φ∗AB

= Λ+ + e−aΛ2
+

2 −Λ+

(1 −Λ+)2 , (29)

where we have introduced the critical concentration Φ∗AB ≡ 2e−bAB+a.
Notably, this equation has exactly the same form as the mass bal-
ance equation of a monodisperse system given in Eq. (21). Therefore,
alternating copolymers can be thought of as homopolymers com-
posed of (AB)-dimer building units. An identical form for the mass
balance equations in the two cases suggests that Φ∗AB can be inter-
preted as the critical concentration of alternating copolymers. In
Subsection III C, we obtain the dependence of the critical concen-
tration on α for sufficiently negative J and show that Φ∗AB is indeed
the critical concentration for the α = 1 case when bii → −∞. Before
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that, we first investigate the solution of the simplified mass-balance
equations.

B. Polymerization behavior
In this subsection, we analyze the polymerization behavior in

the strongly negative coupling limit, J → −∞, for the case that
bAA = bBB → −∞, leading to the formation of strictly alternating
copolymers. As pointed out in Subsection III A, the mass balance
equations in this limit do not exhibit any singularity and are valid for
arbitrary values of bAB. The only variables appearing in the resulting
mass balance equations are the interspecies binding energy bAB and
activation free energies ai. We fix the value of the binding free energy
between the two comonomers to bAB = 14. To reduce the number of
parameters in the mass balance equations [Eqs. (27) and (28)], we
assume equal activation free energies aA = aB = a. We investigate
the polymerization behavior of copolymers with strictly alternating
order as a function of the overall concentration and the stoichiomet-
ric ratio for different values of the activation free energy. We restrict
our analysis to 0 < α < 1, as the results for the α > 1 case can be
obtained by an α→ 1/α transformation.

Figures 2(a) and 2(b) show the fraction of polymerized material
f as a function of the total volume fraction Φ at several values of the
stoichiometric ratio for a = 0 and a = 4, respectively. In all the cases,

FIG. 2. Fraction of polymerized material f as a function of the overall volume frac-
tion Φ = ΦA + ΦB at different stoichiometric ratios α = ΦA/ΦB in the limit of
J → −∞ where no binding between identical species takes place, i.e., bAA = bBB
→−∞. The assumed binding free energy between the two distinct species is bAB
= bBA = 14, and the activation free energies in panels (a) and (b) are aA = aB = 0
and aA = aB = 4, respectively. The dotted lines show the critical concentrations
Φ∗AB = 1.66 × 10−6 and Φ∗AB = 9.08 × 10−5 for a = 0 and a = 4, respectively.

we observe a transition from a monomer-dominated to a polymer-
dominated regime for which the fraction of polymerized material
reaches a maximum value, fmax, that depends on the stoichiomet-
ric ratio and the activation free energy. Notably, fmax of copolymers
with strictly alternating order is smaller than one except for the case
of perfect stoichiometric balance α = 1. fmax smaller than one reflects
the lack of the less abundant species, i.e., type A monomers for the
α < 1 case. Copolymers with odd degrees of polymerization mainly
exist in the B(AB)(N−1)/2 form rather than the A(BA)(N−1)/2 form to
consume a larger amount of the B species. Similar to homopolymer-
ization transition,47 the sharpness of copolymerization transition
depends on the strength of the activation free energy. It becomes
steeper for larger activation free energies a. We can characterize
the transition point as the monomeric volume fraction for which
f ≈ 2/3fmax. This value shifts to a higher value for the larger activa-
tion free energy, and it roughly agrees with the critical concentration
value defined earlier as Φ∗AB ≡ 2e−bAB+a. The dotted lines in Figs. 2(a)
and 2(b) correspond to Φ∗AB = 1.66× 10−6 and Φ∗AB = 9.08× 10−5 for
a = 0 and a = 4, respectively.

At large Φ, in the saturation regime where most of the type
A monomers are consumed, we expect µA ≪ µB. We can use this
approximation to solve the mass balance equations Eqs. (27) and
(28) analytically and estimate the fraction of polymerized material as
fmax

≈ 1 − eµB+a
/Φ. Doing so, we obtain the functional dependence

of fmax on a and α as

fmax
=

4α(ea − 1) +
√

1 + 4(1 − α)α(ea − 1) − 1
2(α + 1)(ea − 1)

, (30)

which becomes independent of the binding free energies. We again
note that these results are valid for 0 < α < 1 and the results for
α > 1 can be obtained by replacing α with 1/α. Moreover, in the case
of unequal activation free energies, a represents the activation free
energy of the more abundant species. fmax can be simplified further
in two limiting cases of a→ 0 and a→∞ to

fmax
=

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

α(3 − α)
α + 1

, a→ 0,

2α
α + 1

, a→∞.
(31)

In the extreme case of a→∞ and bAB→∞ such that a − bAB is finite,
the polymerization transition corresponds to a sharp transition from
a monomeric regime to a copolymer dominated regime. In this case,
equal volume fractions of A and B monomers [α/(1 + α)Φ] are self-
assembled and the excess of B monomers remains in the solution.
The fmax values extracted from the numerical solution of the mass
balance equations are presented in Fig. 3. They show excellent agree-
ment with our theoretical predictions given by Eqs. (30) and (31) for
all values of a and α.

Likewise, we also estimate the maximum mean degree of poly-
merization Nmax in the saturation regime for J → −∞,

Nmax
=

1 + α
1 − α

, (32)

which only depends on the stoichiometric ratio and is valid for
0 < α < 1. The results for α > 1 can be obtained by the trans-
formation α → 1/α. For α ≠ 1, at large overall volume fractions,
nearly all the monomers of the minority species are polymerized into

J. Chem. Phys. 151, 014902 (2019); doi: 10.1063/1.5097577 151, 014902-6

Published under license by AIP Publishing

https://scitation.org/journal/jcp


The Journal
of Chemical Physics ARTICLE scitation.org/journal/jcp

FIG. 3. The maximum fraction of polymerized material in the saturation limit, f max,
as a function of the stoichiometric ratio α = ΦA/ΦB < 1 for different values of
the activation free energies aA = aB = a, in the limit of J → −∞, where no bind-
ing between identical species occurs, i.e., bAA = bBB → −∞. The symbols show
f max values obtained from the numerical solution of the mass balance equations
Eqs. (27) and (28) for the interspecies binding free energy bAB = bBA = 14 at high
concentrations. The lines show our theoretical predictions given by Eqs. (30) and
(31) confirming that f max is independent of bAB.

alternating copolymers that are capped at the ends by the major-
ity species. As a result, the mean degree of polymerization saturates.
Even under such conditions, due to entropic effects, the monomers
of the minority species are never completely polymerized, mean-
ing that there is always a monomeric pool. Notably, Nmax becomes
rather small when α significantly differs from unity.

We notice that Eq. (32) is identical to Carothers’ equation48

for the maximum degree of polymerization as a function of the
comonomer ratio in the context of step-growth polymerization
in the full conversion limit. However, our theoretical insights go
beyond the description of a simple isodesmic or step-growth-like
model and include cooperative supramolecular copolymerizations
with high activation energies.12 The latter are essential in rationaliz-
ing the experimental observations for the copolymerization of posi-
tively and negatively charged comonomers (Sec. V). Although Nmax

is independent of the activation free energy and only dependent
on the stoichiometric ratio, the pace at which N approaches Nmax

with increasing Φ strongly depends on a as can be observed from
Fig. 4(a).

Figure 4(a) presents the mean degree of polymerization N vs
the overall volume fraction of monomers Φ at different stoichiomet-
ric ratios α and for two different values of the activation free energy.
In perfect agreement with our theoretical estimate for α < 1, N at
high concentrations saturates to a value that is given by Eq. (32).
Only for the α = 1 case, the mean degree of polymerization grows
indefinitely with Φ and it is described by the well-known square-root
law47 at large concentrations.

The mean degree of polymerization N defined by Eq. (18) is fre-
quently used in theoretical calculations,14,47 and it is of relevance to
light scattering measurements. However, monomers are not consid-
ered in the average length of assemblies determined from transmis-
sion electron microscopy measurements. Therefore, it is useful to
calculate a mean polymerization degree where only assemblies with
N ≥ 2 are included in the averaging. We denote such an average by
Np, defined as

FIG. 4. The mean degree of polymerization defined by (a) Eq. (18) and (b) Eq. (33)
as a function of overall concentration of monomers, Φ, at different stoichiometric
ratios α = ΦA/ΦB < 1, as given in the legends. The assumed values of the binding
free energies are bAA = bBB → −∞ and bAB = bBA = 14 yielding J → −∞. The
solid and dashed lines exhibit the results for activation free energies aA = aB =
a = 0 and 4, respectively.

Np ≡
∑
∞
N=2 Nρ(N)
∑
∞
N=2 ρ(N)

. (33)

We have plotted Np as a function of Φ in Fig. 4(b). Similar to N,
it saturates to a maximum value Nmax

p for α < 1, but its value now
depends on the activation free energy. It is larger for cooperative
copolymerization a > 0. The dependence of Np on the stoichiomet-
ric ratio shows a good agreement with the experimentally reported
trend for the average length of assemblies.27 We can also find an
analytical expression for it given as

Nmax
p =

2 − α +
√

1 − 4(α − 1)α(ea − 1)
1 − α

, (34)

which is in perfect agreement with the numerical results. These
results demonstrate that at a fixed overall volume fraction of
monomers, we can control the average length of polymers by tuning
the stoichiometric ratio of the two components.

C. Critical concentration
The critical concentration describes the transition from condi-

tions of minimal assembly to those characterized by a strong poly-
merization.47,49 Different definitions for the critical concentration
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Φ∗ have been proposed in the literature.14,47 In the simplest one,
Φ∗ is defined as the concentration at which half of the material
is polymerized. In a more rigorous approach, Φ∗ is defined as the
concentration at which the volume fraction of free monomers as
a function of the overall concentration saturates.28,49 The critical
concentration of a monodisperse system defined by the latter reads
Φ∗i = exp(−bii + ai).14 In the strong-polymerization regime, i.e., at
high volume fractions Φ ≫ Φ∗, the fraction of polymerized mate-
rial f obeys the simple relation f = 1 − Φ∗/Φ.14 For small val-
ues of ai, f ≈ 0.5 at Φ∗, thus agreeing with the former definition.
Moreover, in the limit ai → ∞ and bi → ∞ such that −bii + ai
remains finite, Φ∗i demarcates a true first order phase transition
from a monomeric regime f = 0 to a fully polymerized regime f = 1.
Here, we use the latter definition to determine the critical concentra-
tion of the two-component system in the strongly negative coupling
limit. We obtain an analytical expression for the critical concen-
tration Φ∗ in the limit of J ≪ −1 for the case that bii are positive
and finite and the interspecies binding free energy is very large, i.e.,
bAB ≫ bii. Similar to what is the case in the one-component sys-
tem, at concentrations in excess of Φ∗, the volume fraction of free
monomers saturates, in other words Λ+ → 1.28,47 Φ∗ depends on the
effective binding and activation free energies and the stoichiometric
ratio.28,47

The conditions of polymerization transition for a bidisperse
system are given by the following set of equations:28

Λ+(µ∗A,µ∗B) → 1,
(35)

∂Λ+

∂H
∣µA=µ∗A
µB=µ∗B

=
α − 1
α + 1

,

where µ∗A and µ∗B are the values of the chemical potentials at the crit-
ical concentration. Hence, Φ∗ is given by the total volume fraction
of free monomers,

Φ∗(α) = eµ
∗

A+aA + eµ
∗

B +aB . (36)

Note that this definition of the critical concentration is only valid
when Λ+ → 1 in the saturation limit of copolymerization. Therefore,
it does not apply to the case of bii →−∞ and α ≠ 1 where Λ+ at large
concentrations saturates to Λmax

+ < 1.
Taking into account the first two leading order terms of eigen-

values given in Eq. (22), we can find an analytical solution for
Eq. (35) in the strongly negative coupling limit which results in

Φ∗(α) =
(Φ∗A −Φ∗B)( α−1

α+1 ) + (Φ∗A + Φ∗B)
√

e4J + ( α−1
α+1 )

2

1 +
√

e4J + ( α−1
α+1 )

2
. (37)

For equal volume fractions of the two species, α = 1, Eq. (37)
gives Φ∗(1) = (Φ∗A + Φ∗B)(1 + e−2J

)
−1. Especially, for the case of

equal activation free energies, aA = aB = a, it can be simplified to
Φ∗(1) ≈ 2e−bAB+a, which is identical to Φ∗AB defined earlier for
strictly alternating copolymers. For small and large values of α, the
critical concentration simplifies to

Φ∗ = {Φ
∗
B(1 − α), α≪ 1,

Φ∗A(1 − α−1
), α≫ 1, (38)

FIG. 5. The critical concentration, Φ∗, normalized by the critical concentration of
species B, Φ∗B , as a function of the stoichiometric ratio α = ΦA/ΦB. The numer-
ical solution of Eq. (35) is displayed by orange open circles, and the analytical
result of Eq. (37) is shown by a purple solid line. The binding and activation free
energies used are bAA = 10, bBB = 8, bAB = bBA = 14, and aA = aB = 1.5, yielding
Φ∗A = 2.03 × 10−4, Φ∗B = 1.50 × 10−3, and Φ∗AB = 7.45 × 10−6.

where Φ∗A and Φ∗B are the critical concentrations of homopolymers
composed of A and B species, respectively. These equations show
that Φ∗ approaches the critical concentration of the homopolymer
of the more abundant species in the appropriate limit.

To investigate the validity of Eq. (37), we numerically solve the
set of Eq. (35) for a sufficiently negative coupling constant J = −5/2
to obtain Φ∗(α) as plotted in Fig. 5. For all the stoichiometric values
α, we find excellent agreement between the numerical and analytical
solutions. Additionally, we find that the strong coupling limit critical
concentration, described by Eq. (37), provides a good description of
numerical results for all coupling constants J < −1.

IV. COPOLYMERIZATION BEHAVIOR PREDOMINATED
BY ALTERNATING CONFIGURATIONS

Having discussed the copolymerization with strictly alternat-
ing order, i.e., the antiferromagnetic regime in the J → −∞ limit,
we now discuss the numerical solution of the mass-balance equa-
tions for a finite and negative coupling constant. Numerical solu-
tions were obtained from a Python script where the SciPy function
scipy.optimize.fsolve50–52 was made use of (see the supplementary
material). We investigate the polymerization behavior and compo-
sition of copolymers as a function of the overall volume fraction
and stoichiometric ratio. Especially, we introduce an order param-
eter which quantifies the overall fraction of polymers with perfect
alternating order.

A. Fraction of polymerized material and mean
degree of polymerization

We fix the values of the free energies such that bAB > bAA > bBB,
and we focus on the polymerization behavior for stoichiometric
ratios 0 < α ≤ 1. We note that the labels of the species, A and B,
are a priori arbitrary and the above conditions determine the specific
labels of the two species. Therefore, the results for α > 1 can be simply
obtained through an interchange of species labels and our presented
analysis is without loss of generality. We set the binding free energy
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values to bAA = 10, bBB = 8, and bAB = bBA = 14. These values give
rise to J = −5/2, which is sufficiently negative to expect the alternat-
ing order to be the predominant morphology. Moreover, we choose
equal activation free energy values for the two species aA = aB = 1.5
to reduce the number of parameters. They are chosen small enough
to allow us to obtain accurate numerical results. As discussed in
Sec. III B, the activation free energy value affects the sharpness of the
transition from the monomeric to the polymeric dominated regime
but does not alter the overall self-assembly behavior.

We determine the chemical potentials µi by solving the mass-
balance equations Eqs. (16) and (17) numerically from which we
calculate the volume fraction of free monomers in the solution as
𝜙m
i = exp(µi +ai). In Fig. 6, we have depicted 𝜙m

i as a function of the
overall volume fraction Φ at different stoichiometric ratios 0 < α ≤ 1.
We find that at very low concentrations, Φ < 10−5, the ratio of free
monomer volume fractions αf

≡ 𝜙m
A /𝜙

m
B is almost identical to α.

However, at larger concentrations and for α < 1, the value of 𝜙m
A

drops considerably such that αf
≪ α. Even for the case of α = 1, we

notice that Φm
A < Φm

B when Φ > 10−4 because of a greater tendency
of species A to homopolymerize. We have also indicated the values
of 𝜙m

i at the associated critical concentrations for each α. Consistent
with the definition of the critical concentration in Sec. III C, at the
critical concentration, the total volume fraction of free monomers
𝜙m
A + 𝜙m

B approaches its saturation limit.
We next examine the fraction of polymerized material f as a

function of the overall volume fraction Φ presented in Fig. 7(a) for
various stoichiometric ratios 0 < α ≤ 1. Here, f A and f B represent
the fraction of polymerized material for homopolymers consisting
of A and B species, respectively. They correspond to the results for
the limiting cases of α =∞ and α = 0 that are determined from the
mass balance equation given in Eq. (21). For comparison, we have
also presented the fraction of polymerized material in the strongly
negative coupling limit, i.e., bBB = bAA → −∞, and with otherwise

FIG. 6. The volume fraction of free monomers 𝜙m for species A (closed sym-
bols) and species B (open symbols) as a function of the overall volume fraction
Φ = ΦA + ΦB at different stoichiometric ratios α = ΦA/ΦB, as given in the leg-
end. The volume fractions of the free monomers at the critical concentrations are
depicted by closed white circles. The dotted line shows the free monomer volume
fraction for B-homopolymers 𝜙m

B in the case of one-component system, and the
dashed line shows the special cases of strictly alternating AB-copolymers 𝜙m

AB.
The values of the activation energies are aA = aB = 1.5 and of the binding free
energies are bAA = 10, bBB = 8, and bAB = bBA = 14, resulting in a negative coupling
constant J = −5/2. Note that the α = 1 case loses A-B symmetry since bAA > bBB.

FIG. 7. (a) Fraction of polymerized material f and (b) mean degree of polymer-
ization N as a function of the overall volume fraction of dissolved monomers
Φ = ΦA + ΦB at different stoichiometric ratios as given in the legends. The val-
ues of f and N at the corresponding critical concentrations are depicted by closed
white circles. The filled symbols correspond to polymerization curves of two com-
ponent self-assemblies with activation free energies aA = aB = 1.5 and binding
free energies bAA = 10, bBB = 8, and bAB = bBA = 14, yielding a coupling con-
stant J = −5/2. The results for homopolymers consisting of A species (f A and NA,
dotted-dashed lines) and of B species (f B and NB, dotted lines) and the strictly
alternating copolymer consisting of repeat units of (AB) (f AB and NAB, dashed
lines) are also presented. Furthermore, the open symbols show f and N in the
strongly negative coupling limit, J → −∞ when bii → −∞, computed from the
numerical solutions of Eqs. (27) and (28), with otherwise identical parameters.

identical free energy parameters. These curves, depicted by open
symbols, are obtained by solving the mass-balance equations
[Eqs. (27) and (28)]. f AB, shown by the dashed line, depicts the
results for the special case of quasihomopolymers made of (AB)
monomers at α = 1, and it is obtained from solving Eq. (29).
Figure 7(a) shows that the fraction of polymerized material is bound
by the polymerization curves f AB and f B(f A) for α < 1 (α > 1).
The polymerization behavior of copolymers with a finite negative
coupling constant at high concentrations is notably different from
that of strictly alternating copolymers. In the latter case, f sat-
urates to a value fmax(α) < 1, unless α = 1. However, at lower
concentrations, the polymerization curves are identical to those of
strictly alternating copolymers. This agreement suggests that copoly-
mers at low volume fractions have a predominantly alternating
order.

Our conclusions are further supported by the concentration
dependence of the mean degree of polymerization presented in
Fig. 7(b). We note that at low and intermediate concentrations, N
of copolymers with a finite coupling constant (filled symbols) agrees
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with those in the strongly negative coupling limit (open symbols).
This figure further confirms that at the early stages of polymeriza-
tion, short alternating polymers are formed. At very low volume
fractions Φ ≲ Φ∗AB, the solution is mainly in a monomer-dominated
state and N ≈ 1. At the intermediate volume fractions, N mono-
tonically increases with a slope that depends on α and Φ. At high
Φ, the polymer assemblies follow the well-known square root law
found for homopolymers47 but with a coefficient that increases with
α. We have also marked the values of the fraction of polymer-
ized material and the average degree of polymerization at Φ∗(α) in
Figs. 7(a) and 7(b), respectively. As can be seen, the critical concen-
tration for the one-component system of B-homopolymers and the
two-component system with α = 1 coincides with the volume frac-
tion at which about 50% of the material is polymerized. However,
for stoichiometric ratios different from unity, the critical concen-
tration does not demarcate the concentration at which the fraction
of self-assembled material departs significantly from zero. Rather,
it determines the polymerization regime where homopolymeriza-
tion takes over the copolymerization with predominantly alternating
order. This finds its cause in our definition of the critical concentra-
tion that determines the volume fraction for which the total density
of free monomers saturates.

B. Spatial correlation function
To characterize the extent of alternating (antiferromagnetic)

order within assemblies of size N, we calculate the spatial spin corre-
lation function. The spatial correlation function ⟨SiSj⟩ describes the
correlation between spins at lattice sites i and j or, equivalently, the
correlation between the average occupancy of the two species at lat-
tice sites i and j. It is also related to the probability Pij = 1/2(1 + ⟨SiSj⟩)
that the spins at sites i and j have the same value,46 or equivalently,
the sites i and j are occupied by the same species. For a copolymer
with perfect alternating order, ⟨SiSj⟩ = (−1)|j−i |. The spatial correla-
tion function of an Ising model with open boundary conditions, in
the general case, can be obtained using the standard transfer matrix
method;46 see the Appendix for details. Assuming i ≤ j ≤ N, it is
given by

⟨SiSj⟩ =
1

1 + e4J sinh2
(H)
⎛

⎝
e4J sinh2

(H)

+
x+λN−1−j+i

+ λj−i− + x−λN−1−j+i
− λj−i+

x+λN−1
+ + x−λN−1−

+
λi−1

+ λN−i− − λi−1
− λN−i+ + λj−1

− λN−j+ − λj−1
+ λN−j−

x+λN−1
+ + x−λN−1−

× e2J sinh(H)
√
x+x−
⎞

⎠
, (39)

which is positive for spins with the same sign (identical species) and
negative for spins of the opposite sign (distinct species). We note that
in addition to a term depending on the external field H, the correla-
tion function includes terms which depend on the distance between
the two sites |j − i| and terms which depend on the specific position
of sites i and j.

In the strongly negative coupling limit such that e2J sinh(H)≪ 1,
the correlation function simplifies to

⟨SiSj⟩ =
x+λN−1−j+i

+ λj−i− + x−λN−1−j+i
− λj−i+

x+λN−1
+ + x−λN−1−

. (40)

Noting that (λ−/λ+)
N
≪ 1 for N≫ 1, the correlation function in the

thermodynamic limit becomes independent of boundary conditions
and can be further simplified to

⟨SiSj⟩ = (
λ−
λ+
)

j−i
. (41)

Particularly, in the limit J → −∞, using Eq. (22) for the eigenval-
ues, it becomes an oscillatory function as ⟨SiSj⟩ = (−1)j−i, indicat-
ing that the assemblies have perfect alternating order. Re-expressing
⟨SiSj⟩ as exp[−( j − i) ln( λ+

λ−
)], we notice that the long chain corre-

lation function decays exponentially, ⟨SiSj⟩ = exp[−( j − i)/ξ0], with
a correlation length ξ0 given by

ξ−1
0 = ln(

λ+

λ−
). (42)

Using the form of eigenvalues in the strong coupling limit −J ≫ 1,
given by Eq. (22), leads to

ξ−1
0 = ln(

cosh(H)e2J + 1
cosh(H)e2J − 1

) ≈ 2 cosh(H)e2J + iπ, (43)

where in the last expression, the identity ln(−1) = iπ is used and we
have assumed cosh(H) e2J

≪ 1. This expression further simplifies to
ξ−1

0 = ln[coth(J)] for H = 0, and it diverges for J → −∞. Conse-
quently, the correlation function in the large N and −J limits can be
written as

⟨SiSj⟩ = exp[−2(j − i) cosh[H)e2J
] cos[(j − i)π]. (44)

It is an exponentially decaying function modulated by a cosine wave
with a periodicity of 2, reflecting the alternating order of the Ising
antiferromagnet.

Having discussed the behavior of the correlation function in
the strong coupling limit, next we discuss its behavior for copoly-
mers obtained for different stoichiometric ratios at a low and a high
volume fraction. Under general conditions, the correlation function
depends on the distance between the two sites |j − i| and on the
specific positions of the two sites i and j. Setting i = 1, we have plot-
ted the correlation function as a function of the normalized distance
∣j − i∣/Np in Fig. 8 for 4 stoichiometric values α = {0.2, 0.5, 0.8, 1.0},
where Np is defined by Eq. (33). Figure 8(a) presents the correlation
function at the low volume fraction Φ = 10−4, and Fig. 8(b), at the
high volume fraction Φ = 10−2. Additionally, we have included the
exponentially decaying function exp(−ξ−1

0 ∣j − i∣/Np) from Eq. (44).
At the low volume fraction, the average polymer lengths corre-
sponding to the given stoichiometric values are Np = {5, 7, 8.5, 9.3},
respectively. For these short polymers of length Np, Fig. 8(a) demon-
strates that the spins remain correlated. Hence, the copolymers are in
predominantly strictly alternating configurations. Figure 8(b) shows
the correlation function at the high volume fraction, where the aver-
age polymer lengths are Np = {13, 19, 33, 117} for α = {0.2, 0.5, 0.8,
1.0}, respectively. We observe that the correlations decay toward the
middle of the assemblies and increase near the end. This nonmono-
tonic behavior results from the finite size of assemblies and a large
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FIG. 8. The correlation function between spins at sites i = 1 and j ≥ 1, ⟨SiSj⟩,
plotted vs the separation distance |j − i| normalized by the assembly length Np

for stoichiometric ratios α = {0.2, 0.5, 0.8, 1.0} at (a) Φ = 10−4 and (b) Φ = 0.024.
Here, Np is the average length of assemblies at each concentration and stoichio-
metric ratio. The corresponding values are Np = {5, 7, 9, 9} at Φ = 10−4 and
Np = {13, 19, 33, 117} at Φ = 0.024 for α = {0.2, 0.5, 0.8, 1.0}, respectively.
⟨SiSj⟩ for j − i even and odd are shown with closed and open symbols connected
by dotted lines, respectively. The correlation function for α = 1 and even distances
approaches to that of the thermodynamic limit N→∞ at large J and H ≈ 1 given
by Eq. (41) which is shown by solid lines.

disparity in the population of the two species, which leads to a
large ∆µ (see Fig. 6) and thus a nonzero magnetic field. Espe-
cially, for α = 0.2, with Np = 13, the spins remain correlated and
the ferromagnetic ordering seems to be prevalent for such short
assemblies. These results demonstrate that at higher volume frac-
tions, for α < 1, the copolymers of size Np are unlikely to be in
strictly alternating configurations, as in fact will be demonstrated in
Subsection IV C.

C. Composition of supramolecular copolymers
To provide a quantitative insight into the composition of

copolymers, we determine the fraction of perfectly alternating
copolymers and B-homopolymers as a function of concentration
and assembly length. For a given supramolecular polymer length N,
the fraction of strictly alternating copolymers is determined by

falt(N) =
∑config exp[−Halt(N)]

ZN
, (45)

where ZN is the copolymer partition function given by Eq. (7)
and Halt(N) is the free energy of an alternating configuration of

size N. Summing over all alternating configurations in the numer-
ator yields Zeven

N>1 and Zodd
N>1, defined by Eqs. (25) and (26), for even

and odd degrees of polymerization, respectively. From now on, we
refer to both as Zalt

N . Likewise, the fraction of B-homopolymers is
obtained as

fB-homo(N) =
exp[−HB-homo]

ZN
=

exp[µBN + (N − 1)bBB]
ZN

, (46)

where HB-homo is the free energy of a homopolymer of size N.
Figures 9(a) and 9(b) present the fraction of strictly alternat-

ing copolymers f alt(N) as a function of the assembly length N at
two concentrations Φ = 10−4 and Φ = 10−2 and for different sto-
ichiometric ratios. Two important conclusions can be drawn from
these results. First, the fraction of alternating polymers with an even
degree of polymerization is smaller than the fraction of those with
an odd degree of polymerization, except for the case of α = 1 and
Φ = 10−4. Notably, the difference between populations of odd and
even numbered alternating copolymers is larger for smaller α and
it reflects the lack of the scarcer A species. The more abundant B
species can have a greater contribution to polymerization by forming
alternating copolymers of the form B(AB)2N . Second, the fraction of
perfectly alternating copolymers decreases with N and this decrease
is stronger for smaller stoichiometric ratios. Interestingly, f alt(N) for
stoichiometric ratios α = 0.2 and 0.5 exhibits a two-step decay: an
initial rapid decay for short copolymers and a second slower expo-
nential decrease for longer assemblies. At the higher concentration,
where the fraction of polymerized material is larger, the fraction of
alternating copolymers shows a stronger decrease with N, even for
the case of equal concentrations, α = 1.

The observed behavior is consistent with the picture arising
from the Ising correlation length discussed earlier at H ≈ 0, where
we have ξ0 ≈ exp(−2J)/2 ≈ 74. At low and intermediate concen-
trations where Np < ξ0, the short assemblies have a nearly perfect
alternating order. However, upon an increase in the concentration
and growth of mean degree of polymerization, for long assem-
blies with N ≫ ξ0, the combinatorial factor can benefit from the
formation of alternating copolymers with defects. Additionally, at
sufficiently high Φ for α < 1, the excess of B species can form
homopolymers. The fraction of B-homopolymers vs N is shown
in Figs. 9(c) and 9(d) for Φ = 10−4 and Φ = 10−2, respectively.
As can be seen at the lower concentration, there exist almost no
homopolymers, whereas at the higher concentration for α < 1, a
notable fraction of homopolymers appears. Evidently, at the smaller
α with a larger excess of B species, longer homopolymers are more
probable.

Next, we calculate the total fraction of perfectly alternating
copolymers and homopolymers as a function of the overall con-
centration of monomers. The total fraction of perfectly alternating
copolymers can be obtained as

f tot
alt ≡

∑
∞
N=2 ρ(N)falt(N)
∑
∞
N=2 ρ(N)

=
∑
∞
N=2 Z

alt
N

∑
∞
N=2 ZN

. (47)

Using formulas for convergent geometric series, both sums can be
evaluated to express f tot

alt in terms of the chemical potentials µi.
Similarly, the total fraction of B-homopolymers is given by
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FIG. 9. [(a) and (b)] The fraction of
copolymers of length N with perfect alter-
nating order relative to all polymers with
the same length, f alt, as defined by
Eq. (45), and [(c) and (d)] the frac-
tion of N-mer B-homopolymers relative
to all copolymers with the same length
f B-homo(N), as defined by Eq. (48), plot-
ted against N at different stoichiometric
ratios α given in the legends. The dot-
ted and solid lines correspond to poly-
mers with odd and even degrees of
polymerization, respectively. The overall
monomer concentration is Φ = 10−4 in
panels (a) and (c) and is Φ = 10−2 in
panels (b) and (d). The values of the acti-
vation and the binding free energies are
aA = aB = 1.5 and bAA = 10, bBB = 8, and
bAB = bBA = 14, resulting in J = −5/2.

f tot
B-homo ≡

∑
∞
N=2 ρ(N)fB-homo(N)
∑
∞
N=2 ρ(N)

=
∑
∞
N=2 exp[µBN + (N − 1)bBB]

∑
∞
N=2 ZN

, (48)

which can be straightforwardly evaluated.
Figure 10 shows f tot

alt and f tot
B-homo as a function of the overall vol-

ume fraction at different stoichiometric ratios. At low volume frac-
tions Φ ≲ Φ∗AB, where most of the material is in the monomeric form
and only few short polymers are formed, f tot

alt ≈ 1 and f tot
B-homo ≈ 0.

Hence, we conclude that at low Φ, the majority of assemblies are in

FIG. 10. The total fraction of copolymers with perfect alternating order f tot
alt (closed

symbols) and the total fraction of homopolymers consisting of B species f tot
B-homo

(open symbols) as a function of the overall volume fraction of dissolved monomers
Φ = ΦA + ΦB at different stoichiometric ratios α = ΦA/ΦB as given in the legend.
The values of the activation and binding free energies are aA = aB = 1.5 and
bAA = 10, bBB = 8, and bAB = bBA = 14, resulting in J = −5/2.

an alternating configuration. For Φ > Φ∗AB, the fraction of perfectly
alternating copolymers monotonically decreases with the concen-
tration, whereas the fraction of B-homopolymers vs concentration
exhibits a maximum for α < 1. The maximum in f tot

B-homo(Φ) appears
at volume fractions where the concentration of excess B-monomers
becomes comparable to Φ∗B . At high Φ, f tot

alt +f tot
B-homo < 1 which shows

that the system contains alternating copolymer and homopolymer
configurations with defects in addition to strictly alternating copoly-
mers and pure homopolymers. The existence of such configurations
reflects that the mixing entropy overcomes the energetically unfa-
vorable compositions, particularly for long assemblies where the
combinatorial factor is larger.

V. LINK TO EXPERIMENTAL OBSERVATIONS
In this section, we rationalize the experimental observations

on the copolymerization of positively and negatively charged
comonomers25,26 on the basis of our theoretical insights. As briefly
discussed in Sec. I, the comonomer species with complementary
charges contain three identical amphiphilic oligopeptide arms that
possess C3 symmetry. Each arm has 2 charged groups, and therefore,
a monomer has at most a total charge of 6 e, depending on the pH
conditions. The oligopeptide design of each arm is based on a phenyl
alanine and methionine sequence for the hydrophobic amino acid,
alternated with a cationic lysine (blue comonomer A in Fig. 1) or
anionic glutamic acid moiety (green comonomer B in Fig. 1). The
terminal hydrophilic dendritic triethylene glycol chains are intro-
duced to guarantee a high colloidal stability of the copolymers in
a neutral buffer of physiological ionic strength. Further details on
the synthesis of the C3 symmetrical comonomers can be found
in Ref. 53.

At neutral pH values, the two species are oppositely charged
and they copolymerize into linear aggregates.54 The electrostatic
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interactions between the monomers enhance the binding between
the A and B species with complementary charges and reduce the
binding free energy between identical species. Therefore, the copoly-
merization of this system corresponds to the regime where inter-
species binding is favored over homopolymerization, leading to a
strongly negative coupling constant J in the language of our the-
ory. To make the link between the theory and the experiments more
quantitative, we provide a rough estimate of the effective coupling
constant.

Due to the similar chemical architecture of the two species, we
assume that the bare binding free energies in the uncharged state are
equal, i.e., bij = b0. In the charged state, the binding free energy val-
ues are modified due to electrostatic interactions. The magnitude of
electrostatic free energy between any two neighboring monomers is
given by bel because the two species have equal charge magnitudes.
As a result, the effective binding free energies modify to bAA = bBB
= (b0 − bel) and bAB = bBA = (b0 + bel), leading to a coupling con-
stant J = −bel; see Eq. (4). We estimate the electrostatic contribution
based on the Debye-Hückel theory55 for pair interactions between
pointlike charges in an electrolyte as bel = λBq2 exp(−ℓ/λD)/ℓ, where
q represents an effective charge valency and ℓ is the distance between
the monomers. λB ≡ e2

/(4π𝜖kBT) is the Bjerrum length in which e is
the elementary charge and 𝜖 is the solvent permittivity. λD represents
the Debye screening length, which depends on the ionic strength of
the buffer solution.55

For the system discussed above, we expect q < 6 e due to
projection from the discotic surface charge density into a point-
like charge distribution along the linear assemblies and electrostatic
screening resulting from counterion condensation.56 We estimate it
to be in the range 3 < q < 6 and the Debye screening length to be
about λD ≈ 1 nm under our experimental conditions. The Bjerrum
length at room temperature is λB ≈ 0.7 nm, and the spacing between
monomers is ℓ = 0.47 nm, on the basis of WAXS measurements.57

Using these values, we estimate the electrostatic energy to be in the
range 8.3 < bel < 33 leading to a large negative −33 < J < −8.3.
Hence, the correlation length 3.8 × 106 nm < ξ0 < 1.08 × 1028 nm
is so large that it favors strictly alternating copolymer configu-
rations. Accordingly, homopolymerization will only take place if
b0 > bel; otherwise, the electrostatic repulsion will disfavor any bind-
ing between identical species. Experimentally, we do not observe
any homopolymerization for either of the species around neu-
tral pH values where both species are charged; see Fig. S4 of the
supplementary material. Therefore, we conclude that our experi-
mental system falls into the strongly negative coupling regime where
copolymerization is favored over homopolymerization; see Sec. III.
To test this hypothesis, we have measured the fraction of self-
assembled material in the experimentally accessible range of con-
centrations. We particularly compare the maximum fraction of self-
assembled material obtained from Eq. (30) with the experimental
values.

In the experiments, the fraction of polymerized material f is
obtained by circular dichroism (CD) spectroscopy where the nor-
malized value for the molar circular dichroism ∆𝜖 is plotted as a
function of the monomer stoichiometric ratio. We have previously
shown that ∆𝜖 scales linearly with the fraction of polymerized mate-
rial.26,27,54 The feed titrations were performed in a 2 mm cuvette
using separately prepared solutions of both monomers at pH 6.0
at a total monomer concentration of 6 × 10−5M while monitoring

the maximum of the negative CD band at a wavelength of 220 nm.
The fraction of polymerized material was estimated by normaliz-
ing the intensity of the polymer specific CD band at 220 nm, where
f = 0 refers to the monomeric state and f = 1 to the fully poly-
merized state. For the monomer species used in our experiments,
the fraction of polymerized material for α = 1 at neutral pH as
well as homopolymers of species A at pH = 11.5 and species B
at pH = 3 was measured for concentrations c in the range 2 < c
< 100 µM. In all the cases, we find that f is constant in the mea-
sured concentration range, indicating that the corresponding crit-
ical concentrations are very low Φ∗ < 10−5 and below the sensi-
tivity limits of our circular dichroism setup; see Figs. S5–S10 of
the supplementary material. Recalling that in the strong coupling
regime Φ∗(1) ≈ 2e−bAB+a, these data confirm our inference that
the interspecies binding is indeed very large. Moreover, we confirm
the extraordinary high stability of the supramolecular copolymers
by performing dilution and denaturation experiments with a chem-
ical denaturant acetonitrile CH3CN as the organic solvent. We were
not able to observe disassembly into monomeric species by opti-
cal spectroscopy; see Figs. S11–S15 of the supplementary material.
Thus, we conclude that the combination of hydrophobic shield-
ing with Coulomb interactions and hydrogen bonding increases
the stability of the copolymers A and B both in water, as well
as in water-acetonitrile mixtures, compared to the homopolymers
of A or B.

As obtaining the fraction of polymerized material below the
saturation limit is experimentally challenging, we instead focus on
the maximum fraction of self-assembled material extracted from the
CD measurements. We measured the value of the CD signals as a
function of the relative volume fraction of species A with respect
to the overall volume fraction of monomers in the solution, ΦA/Φ
≡ α/(α + 1), at a fixed overall concentration 60 µM. The experi-
mentally estimated fraction of polymerized material in the satura-
tion regime is shown in Fig. 11. It clearly shows that the fraction
of polymerized material varies strongly with the feed ratio x. As
discussed in Sec. III B, in the strongly negative coupling limit, the

FIG. 11. Fraction of polymerized material in the saturation limit f max plotted against
the volume fraction of species A relative to the overall volume fraction of dissolved
monomers, denoted by ΦA/Φ ≡ α/(α + 1). The experimental data are obtained
from the CD measurements at a wavelength of 220 nm for a mixture of glutamic
acid derivatives (negatively charged) and lysine derivatives (positively charged) as
comonomers with a total concentration of 60 µM at pH 6.0. The solid lines show the
theoretical prediction for f max given by Eq. (30) at different activation free energies.
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fraction of polymerized material reaches a maximum value fmax that
depends on the stoichiometric ratio α and activation free energy a
as given by Eq. (30). In Fig. 11, we have also included the theo-
retical prediction of fmax. We find excellent agreement between the
experimental and theoretical trends for large activation free energies
4 < a < 8. These results confirm our hypothesis that the predomi-
nant configuration of assemblies is the alternating configuration and
homopolymerization is entirely suppressed due to the repulsive elec-
trostatic interactions between identical species. Another important
conclusion that can be drawn is that the supramolecular copoly-
merization is highly cooperative and takes place via a nucleation-
elongation mechanism.27 We believe these interpretations to be valid
even though our model only takes into account nearest neighbor
interactions. The electrostatic interactions in the solution are rather
short-ranged due to the screened nature of electrostatic interac-
tions, λD ≈ 2ℓ. Moreover, the effect of electrostatic interactions with
monomers beyond the adjacent neighbors could be captured by a
renormalization of the interspecies binding free energy.44

The agreement between theory and experiments can be further
tested by comparing the average length of self-assemblies extracted
from transmission electron microscopy (TEM) with our theoreti-
cal predictions in the strong coupling regime. The number average
length Ln of copolymers with stoichiometric ratios α = 0.5, 1, and
2 was obtained for solutions at a total comonomer concentration
of 5 × 10−5M (Φ ≈ 2 × 10−4)27 approaching the saturation regime.
Assuming an intermonomer distance of 0.47 nm,57 the mean length
of copolymers was estimated as summarized in Table I. Our theory
predicts that in the strong coupling limit, the mass balance equations
only depend on 3 parameters aA, aB, and bAB that can be adjusted
to fit the values of Np at the three different stoichiometric ratios.
In particular, the maximum average length of copolymers Np with
α ≠ 1 in the saturation limit only depends on α and the activation
free energy of the more abundant species, as given by Eq. (34). Fit-
ting the experimental data with our model leads to an estimate of
aA = 8.0, aB = 8.5, and bAB = 19.3. We find good agreement between
our theoretical and experimental results; see Table I. These values
of the activation free energies are in agreement with our foregoing
estimate based on the maximum fraction of polymerized material
shown in Fig. 11. At stoichiometric ratios close to 1, we expect Np to
increase indefinitely with the overall concentration. Using our esti-
mates of Φ ≈ 2 × 10−4, aA = 8.0, aB = 8.5, and choosing bAB = 19.3,
we obtain Np = 142 which is in agreement with the experimental
result.

TABLE I. The average length of copolymer assemblies Ln and average degree of
polymerization Np at Φ ≈ 2 × 10−4 for three stoichiometric ratios α obtained from
TEM measurements (experiment) and from our calculations in the strong coupling
limit at Φ = 2 × 10−4 using Eq. (33) with aA = 8.0, aB = 8.5, and bAB = 19.3 (theory).

Experiment Theory

α Ln (nm) Np Np Nmax
p

1/2 50 106 104 143
1 66 140 142 . . .
2 42 89 90 112

VI. DISCUSSION AND CONCLUSIONS
We have examined the supramolecular self-assembly behav-

ior of a two-component system under the conditions that inter-
species binding is favored over binding between identical species.
Our theoretical framework is based on the self-assembled nearest
neighbor Ising model with a negative (antiferromagnetic) coupling
constant. In the strongly negative coupling limit, i.e., J ≪ −1, our
model reduces to that of strictly alternating copolymers. The poly-
merization is maximal for equal volume fractions of the two species
(α = 1). For unequal volume fractions, the maximum fraction of
polymerized material, fmax, is smaller than unity because an excess
of the more abundant species remains in the monomeric form. fmax

and the maximum mean length of copolymers depend not only on
the stoichiometric ratio α but also on the activation free energies.
Hence, at a fixed overall monomer volume fraction, the mean degree
of polymerization can be controlled by changing the stoichiomet-
ric ratio. We have also obtained the functional dependence of the
critical concentration, Φ∗, on the stoichiometric ratio in this limit.
The critical concentration of copolymers with sufficiently negative
J scales as Φ∗ ∼ exp(2J) at stoichiometric ratios close to one, and
it is strikingly smaller than the critical concentration of either of
the homopolymers. The stoichiometric dependence of the critical
concentration of predominantly alternating copolymers is notably
different from the case of self-assembly predominated by blocky
ordering J ≫ 1. In the latter case, the critical concentration is bound
by the critical concentration of the two species and monotonically
changes from one to the other Φ∗B < Φ∗ < Φ∗A.28

Investigating the copolymerization behavior for a finite and
sufficiently negative coupling constant, we find that the numerically
obtained critical concentration shows good agreement with our ana-
lytical results in the strong coupling limit. Moreover, the copolymer-
ization behavior up to moderate volume fractions is similar to that
of strictly alternating copolymer configurations. However, at larger
volume fractions well beyond Φ∗, the copolymers lose their strict
alternating order and copolymer and homopolymer configurations
with defects become predominant, even for the case of equal vol-
ume fractions. We have only presented results for the stoichiometric
ratios α ≤ 1. However, “all situations” are accounted for as our model
is symmetric with respect to the particle species.

Our theoretical results shed light on the experimental findings
of oppositely charged comonomers that self-assemble into linear
aggregates in aqueous solutions.27,54 Especially, they rationalize the
dependence of fraction of polymerized material in the saturation
limit on the stoichiometric ratio. We find a very good agreement
between our theoretical predictions and the experimental results.
Even though our approach is restricted to nearest neighbor inter-
actions, our model provides a good description of the experimental
trends due to the strong negative coupling constant J < −8.3 and
the strong self-screening of electrostatic interactions in alternating
copolymers with complementary charges. Under these conditions,
assemblies with nonperfect alternating order mainly comprise large
blocks of alternating order and small blocks of ferromagnetic order.
The assemblies can be regarded as alternating copolymers with
defects where small blocks of the same species are bound together.
For weaker negative coupling constants, the sections of alternat-
ing order become smaller relative to the sections of blocky order.
Therefore, the electrostatic interactions on the assemblies will be
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less screened and long-range interactions become important. Under
such conditions, especially for stoichiometric ratios different from
unity, restricting the electrostatic interactions to nearest-neighbor
interactions is not accurate. An extension of our two-component
model to an Ising model with longer range interactions is then
required. Nonetheless, our results are relevant for the description of
self-assembly behavior of any two-component system with strongly
favorable interspecies binding as long as the interactions between
the identical species are much weaker or repulsive. Other examples
include chelating supramolecular polymers and chiral amplification
in supramolecular polymers.

SUPPLEMENTARY MATERIAL

More details on the circular dichroism spectroscopy measure-
ments characterizing the homopolymerization and copolymeriza-
tion of glutamic acid and lysine derivatives are provided in the
supplementary material. Additionally, a Python script for the
numerical solution of the mass balance equations is included.
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NOMENCLATURE

bij the magnitude of the bonded
interaction free energies between
two monomers of type i ∈ {A, B}
and j ∈ {A, B}, in units of the
thermal energy kBT

ai the activation free energy of
species i ∈ {A, B} in units of kBT

ZN the partition function of an
assembly of length N

ρ(N) the number density of assem-
blies with the degree of polymer-
ization N

N the number-averaged degree of
polymerization including the
monomers

Np the number-averaged degree of
polymerization excluding the
monomers

J ≡ 1
4(bAA − 2bAB + bBB) the effective coupling constant

in the Ising model
H ≡ 1

2 [(bAA − bBB) + (µA − µB)] the magnetic field in the Ising
model

b̄ ≡ 1
4(bAA + bBB + 2bAB) the average binding free energy

µi the chemical potential of species
i ∈ {A, B}

µ̄ ≡ 1/2(µA + µB) the average chemical potential

∆µ ≡ 1/2(µA − µB) the difference in chemical poten-
tials

λ± the eigenvalues of a transfer
matrix of the Ising model

Λ± ≡ λ± exp(b̄ + µ̄) the effective fugacities of the
bidisperse system

Φi volume fraction of molecules of
species i ∈ {A, B}

α = ΦA/ΦB the ratio of volume fraction of
the two species, the so-called
stoichiometric ratio

f the mean fraction of polymer-
ized material

f i the mean fraction of homopoly-
mers composed of monomers of
type i ∈ {A, B}

f AB the mean fraction of strictly
alternating copolymers com-
posed of equal concentration of
A and B monomers

Φ∗i = exp(−bi + ai) the critical volume fraction asso-
ciated with species i, demarcat-
ing the transition from minimal
assembly to assembly predomi-
nated regime

Φ∗AB = 2 exp(−bAB + a) the critical volume fraction of
alternating copolymers com-
posed of equal concentrations of
A and B species

Φ∗(α) the critical volume fraction of
a bidisperse system at stoichio-
metric ratio α

𝜙m
i the volume fraction of free

monomers of species i
ξ0 the correlation length of an anti-

ferromagnetic chain in the limit
J ≪−1

f alt(N) the fraction of copolymers of
size N with perfect alternating
order relative to all the assem-
blies of the same length

f B-homo(N) the fraction of homopolymers
consisting of B species with size
N relative to all the assemblies of
the same length

f tot
alt the total fraction of alternating

copolymers of any length
f tot
B-homo the total fraction of B-homo-

polymers of any length
q the effective charge valency per

monomer
bel the magnitude of electrostatic

interactions between two neigh-
boring charged monomers

λB ≡ e2
/(4π𝜖kBT) the Bjerrum length in which e

is the elementary charge and 𝜖
is the dielectric constant of the
solvent
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λD the Debye screening length
ℓ the average spatial distance

between two monomers in a
copolymer

APPENDIX: CALCULATIONS OF THE SPIN
CORRELATION FUNCTION WITH OPEN
BOUNDARY CONDITIONS

Here, we outline the calculation of the spin correlation function
of the Ising model with open boundary conditions by means of the
standard transfer matrix method. The partition function of Eq. (7)
can be rewritten in terms of a transfer matrix W as

ZN = eE0(N)
∑
S1 ,SN

exp[
H − ∆b

2
S1]

N−1
∏
i=1

exp[JSiSi+1 +
H
2
(Si + Si+1)]

× exp[
H − ∆b

2
SN] (A1)

= eE0(N)uWN−1uT, (A2)

where ∆b ≡ 1/2(bAA − bBB) and ∆µ ≡ 1/2(µA − µB). The vectors
u = (exp[∆µ/2] exp[−∆µ/2]) and uT are associated with the free ends
of the aggregates, and the transfer matrix is given by

W = (e
J+H e−J

e−J eJ−H). (A3)

We can diagonalize W using the rotation matrix58

P = (cos𝜙 − sin𝜙
sin𝜙 cos𝜙 ), (A4)

where 𝜙 satisfies

cot(2𝜙) = exp(2J) sinh(H), 0 < 𝜙 <
π
2

. (A5)

The resulting diagonal matrix T reads

T = P−1WP = (λ+ 0
0 λ−

), (A6)

where the eigenvalues λ± are given by Eq. (8). Therefore, the parti-
tion function yields

ZN = eE0(N)uPTN−1P−1uT. (A7)

The expectation value of a spin at site i to be in state Si and a spin at
site j to be in state Sj can be computed with respect to the partition
function. Setting 1 ≤ i ≤ j ≤ N and expressing the spin matrix as58

C = (1 0
0 −1), (A8)

the correlation function obeys58

⟨SiSj⟩ = Z−1
N eE0(N)uWi−1CWj−iCWN−juT. (A9)

Using the rotation matrix P, the rotated spin matrix R becomes

R = P−1CP = (cos 2𝜙 − sin 2𝜙
− sin 2𝜙 − cos 2𝜙), (A10)

which yields

⟨SiSj⟩ = Z−1
N uPTi−1RTj−iRTN−jP−1uT. (A11)

Hence, the correlation function reduces to

⟨SiSj⟩ = cos2
(2𝜙) +

x+λN−1−j+i
+ λj−i− + x−λN−1−j+i

− λj−i+

x+λN−1
+ + x−λN−1−

sin2
(2𝜙)

+
λi−1

+ λN−i− − λi−1
− λN−i+ + λj−1

− λN−j+ − λj−1
+ λN−j−

x+λN−1
+ + x−λN−1−

×
√
x+x− cos(2𝜙) sin(2𝜙). (A12)
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