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As a first step to understand the role of molecular or chemical polydispersity in self-assembly, we
put forward a coarse-grained model that describes the spontaneous formation of quasi-linear poly-
mers in solutions containing two self-assembling species. Our theoretical framework is based on a
two-component self-assembled Ising model in which the chemical bidispersity, i.e., the presence of
two distinct chemical entities, is parameterized in terms of the strengths of the binding free ener-
gies that depend on the monomer species involved in the pairing interaction. Depending upon the
relative values of the binding free energies involved, different morphologies of assemblies that in-
clude both components are formed, exhibiting random, blocky or alternating ordering of the two
components in the assemblies. Analyzing the model for the case of blocky ordering, which is of
most practical interest, we find that the transition from conditions of minimal assembly to those
characterized by strong polymerization can be described by a critical concentration that depends on
the concentration ratio of the two species. Interestingly, the distribution of monomers in the assem-
blies is different from that in the original distribution, i.e., the ratio of the concentrations of the two
components put into the system. The monomers with a smaller binding free energy are more abun-
dant in short assemblies and monomers with a larger binding affinity are more abundant in longer
assemblies. Under certain conditions the two components congregate into separate supramolecular
polymeric species and in that sense phase separate. We find strong deviations from the expected
growth law for supramolecular polymers even for modest amounts of a second component, pro-
vided it is chemically sufficiently distinct from the main one. © 2012 American Institute of Physics.
[http://dx.doi.org/10.1063/1.4742192]

I. INTRODUCTION

Self-assembly processes play a key role in the con-
struction of biological structures and materials including the
cell skeleton, viruses, bone, protein complexes, and amy-
loid fibrils.1–6 These natural supramolecular structures have
inspired scientists to exploit supramolecular self-assembly
principles as a tool in order to design and build biomimetic
molecular structures from synthetic molecular compounds for
purposes such as drug delivery and biomedical diagnostic
technologies such as dental, cosmetic surgery, and orthope-
dic applications.7–16

Application of bio-inspired materials requires mass pro-
duction of their molecular building blocks with efficient meth-
ods, which are not necessarily as accurate as the ones em-
ployed in research laboratories, or, for that matter, biology.
Indeed, industrially produced self-assembling molecular units
tend not to be identical, i.e., consist only of a single com-
pound, but often consist of a large number of similar
molecules with varying size, charge, chemical composition,
and so on. Molecules not chemically identical to the target
molecule are sometimes called impurities, but the whole col-
lection may also be seen in some generalized sense as a poly-
disperse one, meaning that they contain particles with proper-

ties depending continuously on one or several attributes such
as size, charge, etc.17–19

Taking as an example beta-sheet forming peptides, vary-
ing the amino acid sequence or the number of amino acids
that make up a peptide may lead to inter-molecular binding
affinities that vary as a function of their chemical composi-
tion or, in other words, the polydispersity attribute.12 All of
this may have a large impact on the solution properties of the
assemblies and on the structure of the assemblies themselves.
Therefore, understanding the role of chemical polydispersity
on the nature of order-disorder transitions and morphologies
of spontaneously formed supramolecular structures is very
important from both a fundamental and an applied scientific
point of view.

Despite the fact that self-assembling molecular blocks
are always to some degree chemically polydisperse, this issue,
apart from contexts of self-assembling block copolymers,20–23

and chiral amplification in supramolecular polymers,24–26 has
received little attention in the literature. In the case of chiral
amplification, the net observed chirality of a solution is stud-
ied by varying the composition in mixtures of enantiomers
of self-assembling compounds and in mixtures of achiral and
chiral species that co-assemble.25, 27 Such type of coassembly
has been also studied theoretically based on a two component
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Ising model; assuming the binding free energies between the
two components are identical,24, 26 the entire focus has been
on the net macroscopic helicity. Therefore, very little infor-
mation is available on the structure and composition of the
assemblies.

The aim of the present work is to get an insight into
the role of chemical polydispersity in the simplest case of
self-assembly, i.e., that of quasi-linear self-assemblies, also
called equilibrium polymers or EPs. In EPs all the monomers
are able to bond reversibly with each other with a binding
free energy and form quasi-linear self-assemblies of vary-
ing length.28–30 The growth of these assemblies usually takes
place in the form of nucleated assembly in which, due to a
required change of conformation of monomers in the bound
state, an activation free energy barrier must be overcome in
order to form assemblies. Here, we consider the cases that
self-assembly process is ergodic and is described by equilib-
rium statistical thermodynamics.6, 7, 12, 26

As a first step towards understanding the influence of
chemical polydispersity in linear self-assemblies, we focus
our theoretical study on a bidisperse (two-component) self-
assembling system, schematically illustrated in Fig. 1.

To model linear self-assembly in such systems, we pro-
pose a two-component lattice-gas model. The chemical bidis-
persity is incorporated through the species-dependent free en-
ergy parameters describing the binding and nucleation pro-
cesses; see Fig. 1. Mapping the problem onto a 1D Ising
model and invoking the standard transfer matrix method, we
explore the ordering of the two components in assemblies of
arbitrary length. This allows us to probe the composition of
assemblies of all sizes as function of concentration and in-
teraction strengths between bound monomers. We note that,
in spirit at least, our approach is similar to that found in
other works in the wider context of polymer physics, includ-
ing the helix-coil transition of polypeptides and the melting
transition of DNA,31–33 as well as structural transformations

FIG. 1. A schematic of the linearly self-assembling system under study and
the morphology of the structures formed. The two species of self assembler
give rise to two activated states with associated free energies a1 and a2, ac-
counting for conformational changes necessary for binding, and three binding
free energy gains b11, b12 = b21, and b22. Depending on the relative values of
binding free energies, the two species arrange themselves in blocky, random,
or alternating ordering.

in two-component copolymers,34 where transfer matrix meth-
ods have been employed.

Our aim is to answer the following three central
questions:

(1) What happens to the mean size of the assemblies if we
mix two distinct self-assembling species that are able to
co-assemble?

(2) Do the two components actually co-assemble into lin-
ear aggregates, or do they form chemically pure linear
assemblies consisting of one species only?

(3) What physical principles regulate the composition of the
assemblies?

We find that the relevant quantity determining the arrange-
ment of monomer species in the assemblies (the mor-
phology) is an effective “coupling constant” J ≡ 1

4 (b11

+ b22 − 2b12) in the parlance of the Ising model, which de-
pends on a linear combination of the binding free energies
bij between two monomers of type i, j = 1, 2. Depending
on the value of this effective coupling constant J, three dif-
ferent morphologies can be envisaged. For J > 0, the two
types of monomer are organized in linear self-assemblies
in a blocky, “ferromagnetic-like” order. The “paramagnetic”
J = 0 case corresponds to a self-averaging system with ran-
dom distribution of monomers in the assemblies, whereas
J < 0 leads to “anti-ferromagnetic-like”, alternating ordering
of the monomers along the assemblies. In the limit J � −1,
the latter would represent co-ordination polymers.39

The coupling constant J appearing in our model is not
unlike the Flory-Huggins interaction parameter χ35 describ-
ing the phase behavior of homopolymer solutions, binary ho-
mopolymer melts of copolymer melts.36–38 The difference, of
course, is that in Flory-Huggins theory the interaction param-
eter describes non-bonded interactions, whereas our coupling
parameter pertains to bonded interactions. Interestingly, non-
bonded interactions have been predicted to lead to similar
type of correlations between monomeric species that we find,
i.e., random, block, and alternating structure, except that in
this case they occur on different, not the same, polymers.

The case occurs when the binding-free energy between
the two distinct species is less than the average binding free
energy of the two species. although case J > 0 does obviously
not cover all possible circumstances, the blocky (ferromag-
netic) case is relevant to those situations we are interested. For
instance, for the beta-sheet forming oligopeptides discussed
earlier, and reported on by Aggeli and collaborators, binding
takes place through hydrogen bonding.12 When a short pep-
tide binds to a longer one, the number of hydrogen bonds is
equal to that formed between two short ones, suggesting that
b12 = b22 and J = (b11 − b22)/4 > 0, so this would indeed
correspond to the blocky copolymeric case. In the following,
for completeness we present our results for arbitrary values of
J throughout the paper although we do analyze our model and
discuss the consequences of chemical bidispersity only for the
blocky case.

According to our findings, the bidisperse system behaves
in many ways similar to the monodisperse one, and exhibits a
transition from a regime with minimal assembly to one where
self-assembly predominates. If sufficiently co-operative, the
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polymerization transition is sharp and is demarcated by a crit-
ical concentration. The precise value of the critical concentra-
tion depends on the stoichiometric ratio of the concentrations
of the two components involved. Furthermore, for large asym-
metries between the two species, i.e., large J values, and for
sufficiently low concentrations, a “demixing” region appears
where pure self-assemblies, composed mainly of one species,
coexist. Note that there is no demixing here on macroscopic
scale, only on the scale of the individual assemblies. Consid-
ering the distribution of the two species along the assemblies,
we find that the distribution of the two species in the assem-
blies differs from that of the parent distribution as the size of
the assemblies grows. In short assemblies the population of
species with less binding affinity is dominant, while in longer
assemblies monomers with a bigger binding affinity are more
abundant.

The remainder of this paper is organized as follows. In
Sec. II, we first outline a theoretical framework that is based
on a two-component self-assembled lattice-gas model. In
Sec. III, we show that mapping our model onto an Ising model
allows us to explore and predict the “phase” behavior of
bidisperse monomers forming quasi-linear self-assemblies. In
Sec. IV, we explore the self-assembly behavior in the low-
and high-concentration limits. Sections V and VI are devoted
to a comprehensive analysis of our model, focusing in partic-
ular on a bidisperse system with ferromagnetic-like (blocky
copolymeric) ordering. We discuss and compare the results
for the cases of small and large J. Of particular interest is the
relative fraction of the two species in the assemblies as their
size varies. Finally, we conclude our work in Sec. VII, where
we summarize our main findings and discuss and compare the
influence of chemical bidispersity in self-assembling systems
with other thermodynamical systems.

II. EQUILIBRIUM STATISTICS OF BIDISPERSE
SELF-ASSEMBLING MONOMERS

We consider a model system consisting of two self-
assembling species that can form linear self-assemblies of any
length N = 1, 2, . . . , ∞. Each monomer in a typical linear
self-assembly can be either of species 1 or 2. The difference
between the two species arise either from their size, chemical
structure, and so on. We parameterize this difference between
the species by invoking effective activation and binding free
energies that depend on the type of species. Again, let bij > 0
denote the free energy gain of the bonded interaction between
two monomers of type i, j = 1, 2 in a self-assembly, and ai > 0
the activation free energy of a monomer of type i. In principle,
the value of the former depends on the next neighbors of the
two binding molecules but we ignore this complication here.
In our model, bij = bji and ai > 0, where for definiteness we
suppose b11 > b22. All free energies are scaled to the thermal
energy kBT ≡ 1. Here, kB denotes the Boltzmann constant and
T the absolute temperature.

More generally, these effective free energies can origi-
nate from different types of interactions such as electrostatic,
hydrogen bonding, hydrophobic, and van der Waals interac-
tions. For instance, for the pertinent system of Aggeli et al.
mentioned earlier,12 involving peptides of L amino-acids as

monomers, the binding free energy gains bij result from hy-
drogen bonds between the oxygen atoms in the backbone
of one peptide and the nitrogen atoms in the backbone of
the other peptide. This gives rise to two hydrogen bonds per
residue and 2L hydrogen bonds in total, suggesting that bii

= b0L, with b0 a proportionality constant. Similarly, b12 re-
sults from the hydrogen bonding between the backbones of
two peptides of different length, and the number of hydrogen
bonds in this case is equal to twice the number of residues of
the shorter peptide, so b12 = b22.

The transformation free energies ai result from loss of
conformational entropy due to a change of configuration of
peptides from a single, coil-like monomer to a rod-like ex-
tended and a bound state in the assembly. As a first order ap-
proximation, one would expect them to depend linearly on the
size of oligopeptides, i.e., ai = a0Li.

The (dimensionless) grand potential energy of a system
consisting of free monomers and self-assembled polymers can
be written as the sum of an ideal entropy of mixing and the
contribution of the internal partition functions of all the as-
semblies of varying size N, giving

�

V
=

∞∑
N=1

ρ(N )[ln(ρ(N )ν) − 1 − ln ZN (μi, bij , ai)], (1)

where V is the volume of the system, ZN the (semi-grand par-
tition) function of an assembly consisting of N monomers.
Here ν denotes the interaction volume equal roughly to an ef-
fective volume of a solvent molecule,30 which we assume to
be independent of the type of species, and ρ(N) the number
density of self-assemblies of size N. The semi-grand parti-
tion function ZN counts the number of configurational states
of linear assemblies of size N, composed of the two species of
monomer and described by their relevant binding and trans-
formation free energies, and dimensionless chemical poten-
tials μi (i = 1, 2). The latter are fixed by the total concen-
tration of the monomers in the solution. Our grand potential
tacitly assumes the assemblies to be in the dilute limit, i.e., in-
teractions between assemblies are presumed to be negligible.

The equilibrium size distribution minimizes the grand po-
tential Eq. (1). Setting δ�/δρ(N) = 0 yields

ρ(N ) = ν−1ZN (μi, bij , ai). (2)

Therefore, our task of finding the equilibrium size distribu-
tion reduces to the calculation of the semi-grand partition
function of a polymer with N degrees of polymerization,
whose monomers can be either of the two species. To do
this, we model a linear self-assembly of length N as an one-
dimensional interacting two-component lattice gas of size N
each site of which is occupied by either of species 1 or 2. Each
site numbered l = 1, . . . , N can be identified by the occupation
numbers n

(1)
l = 0, 1 and n

(2)
l = 1 − n

(1)
l describing the num-

ber of monomers of species 1 and 2 at position l along the
lattice, respectively. These occupation numbers automatically
obey the constraint �N

l=1(n(1)
l + n

(2)
l ) = N .

The mutual exclusivity of occupation of each site by ei-
ther of the species gives us the possibility of mapping the two
occupation numbers to a single “spin” variable of the Ising
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model of ferromagnetism by a simple transformation

n
(1)
l = 1

2
(1 + Sl), (3)

n
(2)
l = 1

2
(1 − Sl), (4)

where Sl are the “spin” variables that take ±1 values. In or-
der to calculate the semi-grand partition function ZN, we first
express the Gibbs free energy of a self-assembly of length N
in terms of the spin variables and then we obtain the grand
partition function.The partition function for monomers in the
unbound, solution state has the simple form of Z1 = exp (μ1

+ a1) + exp (μ2 + a2). For all cases N > 1, we find, by car-
rying out the sum over the spin values and simplifying the
semi-grand partition function by collecting terms of equal or-
der, that it is equivalent to the partition function of an Ising
chain of size N. Its Hamiltonian reads

HN>1({Sl}) = −J

N−1∑
l=1

SlSl+1 − H

N∑
l=1

Sl − ε0(N )

+ 1

4
(b11 − b22)(S1 + SN ), (5)

with the effective coupling constant J, magnetic field strength
H, and an energy term ε0(N) that is an invariant of the spin
states, defined as

J ≡ 1

4
(b11 + b22 − 2b12), (6)

H ≡ 1

2
[(b11 − b22) + (μ1 − μ2)], (7)

ε0(N ) ≡ (N − 1)

4
(b11 + b22 + 2b12) + N

2
(μ1 + μ2). (8)

In the special case of b22 = b12, relevant for the oligopep-
tides of Aggeli et al.12 discussed earlier, we obtain J = 1

4 (b11

− b22) and ε0(N) = (N − 1)(b11 + 3b22)/4 + N(μ1 + μ2)/2.
If we introduce the renormalized chemical poten-

tials μ′
i ≡ μi + bii , this gives H = (μ′

1 − μ′
2) and ε0(N )

= N (−J + (μ′
1 + μ′

2)/2) − b̄, where b̄ = (b11 + b22 +
2b12)/4 is as before the mean binding free energy. We con-
clude that there are only two relevant energetic parameters, J
and b̄. The average binding free energy does not couple to the
spin states, is independent of N, and plays a role similar to that
of the binding free energy in the monodisperse case. The pa-
rameter J does couple to the spin states of the lattice and deter-
mines in the end the composition of an arbitrary assembly. In
Sec. III, we describe how to calculate the partition function
of our model and other relevant quantities such as fraction
of self-assemblies by exploiting the mapping onto the Ising
model.

III. MAPPING ONTO THE ISING MODEL

Mapping our problem onto the one-dimensional Ising
model already provides us with a direct insight into the gen-
eral “phase behavior” of the system at hand – here “phase
behavior” does not refer to phase separation on the macro-
scopic scale but rather on the microscopic scale, that is, be-
tween assemblies. As already advertised in Sec. I, depending
on the value of the coupling constant J, associated with the
spin (or occupation) states of two neighboring sites, different
types of ordering may appear in the assemblies. For J > 0
ferromagnetic ordering is favored, implying blocky copoly-
mers, for J = 0 the paramagnetic case is favored, meaning
random copolymers, and for J < 0 anti-ferromagnetic order-
ing, associated with alternating, copolymeric ordering. See
Fig. 1.

Exploiting the standard method of the transfer matrix,40

the resulting partition function for free boundary conditions
(implying no preference for any monomer to sit at the ends of
the assemblies) takes the form,

ZN>1 = [x+λN−1
+ + x−λN−1

− ] exp(ε0(N )), (9)

λ± = (1 + e2H )e2J ±
√

4e2H + (e2H − 1)2e4J

2eH+J
, (10)

x± = (−eH + e2J (z1/z2)1/2 − eH+J
√

z1/z2λ±)(e2J + eH (z1/z2)1/2 − eH+J λ∓)

e2H+J (z1/z2)1/2(λ∓ − λ±)
, (11)

in which zi are defined as the fugacity of species i, that is,
zi ≡ exp (μi), and λ± the eigenvalues of the transfer ma-
trix. Note that our choice of (free) boundary conditions is ex-
pressed by the last term of Eq. (5), through the values of x±.

Our next step is to determine the size distribution of lin-
ear chains of assemblies ρ(N) from Eq. (2) in terms of the
concentrations of the two species involved. To do so, we
need to eliminate the chemical potentials μ1 and μ2 from
Eqs. (2) and (9). The values of the chemical potentials can
be established from the conservation of mass for either of

the two species,

∞∑
N=1

Nρ(N )ν = �1 + �2 ≡ �, (12)

∞∑
N=1

Nρ(N )ν〈S(N )〉 = �1 − �2, (13)

where �1 and �2 are the molar fractions of species 1 and
2, respectively, and 〈S〉 is the average spin value, which
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can be calculated from the partition function as 〈S(N)〉
= (1/N)∂ln ZN/∂H. Here, we have for convenience introduced
the overall molar fraction of both species �. Note that the low
density approximation used in Eq. (1) implies that our results
are only valid as long as �i � 1.

To calculate the above sums, we rephrase the partition
function ZN(μi, bij, ai) in terms of intensive and extensive
parts for the case N > 1. Equation (2) can be rewritten
as

ρ(1)ν = z1 exp(a1) + z2 exp(a2), (14)

ρ(N > 1)ν = ZN (zi, bij , ai) =
∑

i=+,−
xie

−b̄
N
i /λi, (15)

where 
i ≡ λi exp(b̄)
√

z1z2 with b̄ = (b11 + b22 + 2b12)/4.
Obtaining a convergent sum requires that 
i < 1, which re-
stricts the possible values of the chemical potentials. The two
sums in Eq. (12) can now be calculated as a geometrical series
and be simplified to

� = z1 exp(a1) + z2 exp(a2) +
∑

i=+,−
xie

−b̄
2
i

2 − 
i

λi(1 − 
i)2
,

(16)

�1 −�2 = z1 exp(a1)−z2 exp(a2)+
∑

i=+,−
xie

−b̄ 
i

λi(1 − 
i)2

×
[
−
i(1 − 
i)

∂ ln(xi/λi)

∂H
+ (2 − 
i)

∂
i

∂H

]
.

(17)

Equations (16) and (17) should be solved simultaneously to
determine zi and the relevant quantities of interest such as the
fraction of self-assemblies, the average degree of polymer-
ization and so on. Therefore, these equations are the central
equations that are used throughout the rest of this paper, when
analyzing the model for different free energy parameters and
concentrations of species.

To find the simultaneous solution of these two equations
for known concentrations of both species, we need to look for
solutions that satisfy the conditions 0 < zi < z∗

i < 1, where
the z∗

i are the maximum value for the fugacity of species i to
be discussed in Sec. IV. However, to explore the dependence
of phase behavior on the concentration of the two species,
our strategy is to vary 0 < zi < z∗

i and calculate the corre-
sponding molar fractions. Once the chemical potentials from
Eqs. (16) and (17) are determined, it is straightforward to cal-
culate the relevant quantities of interest, such as the number-
averaged size of assemblies defined as

〈N〉 =
∑∞

N=1 Nρ(N )∑∞
N=1 ρ(N )

= �∑∞
N=1 ρ(N )ν

, (18)

where the sum in the denominator can be easily calculated as
a geometrical series,

∞∑
N=1

ρ(N )ν = z1 exp(a1) + z2 exp(a2)

+
∑

i=+,−
xie

−b̄ 
2
i

λi(1 − 
i)
. (19)

Likewise, one can obtain the fraction of self-aggregates f, de-
fined as

f = 1 − ρ(1)ν

�
= 1 − z1 exp(a1) + z2 exp(a2)

�
. (20)

Having set up our model for the linear self-assembly of
bidisperse monomers, we have all the tools in hand for a cal-
culation of the quantities of interest. To gain insight into the
phase behavior of the system, we first look at a few limit-
ing cases, where analytical progress is possible. Therefore,
Sec. IV is devoted to the investigation of the self-assembly
behavior in the low and high concentration limits, and a thor-
ough numerical investigation of our model is postponed to in
Sec. V.

IV. LIMITING CASES

A. The monodisperse case

It is instructive to explore the behavior of system in the
limiting case where one can simplify the equations and ob-
tain analytical results. The results obtained in these cases shed
some light on the general “phase” behavior of the system at
hand. Before we go into details it is important to notice that
we recover the results for the monodisperse case28 from the
present theory in the limit z2 → 0, i.e., in the limit of zero
concentration of second species. In this limit, H → ∞, λ+
→ eJ+H, and λ− → 0 yielding 
+ → z1exp (b11). It is im-
portant to point out that the second eigenvalue of the trans-
fer matrix becomes identically zero due to the vanishing con-
centration of the second species. This is different from the
usual ground-state approximation valid in the limit of large
N, where the contribution of the second eigenvalue to the par-
tition function becomes negligible relative to the first.

We find that the number density of monomers and assem-
blies are

ρ(1)ν = z1 exp(a1), (21)

ρ(N > 1)ν = exp(−b11)
N
+,

where 
+ is the solution of the cubic equation of the form

+Ka1 + exp(b11)
2

+(2 − 
+)/(1 − 
+)2 = � with Ka1

≡ exp (–a1) the activation constant. This is identical to what
was already known for monodisperse systems, confirming the
consistency of our model.28, 30 The number-averaged length
of assemblies for sufficiently high concentrations �1 � �∗

1
can be written as

〈N〉 = 2 − 
+
1 − 
+

, (22)
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which can be expressed in terms of the molar fraction of
monomers in the simple form of

〈N〉 
 √
(�1/�∗

1 − 1)/Ka1. (23)

Here, �∗
1 ≡ exp(−b11 + a1) is a critical concentration be-

yond which one can consider the system in the assembly-
dominated regime.28, 30 Provided that a1 � 1, this leads to a
very sharp cooperative polymerization transition demarcated
by �∗

1. Equation (23), and produces the well-known square-
root growth law of self-assembled polymers.29

The fraction of materials in assemblies in the low and
high concentration regions in that case obey

f 
 2Ka1�1/�∗
1 if �1 � �∗

1, (24)

f 
 1 − �∗
1/�1 if �1 � �∗

1. (25)

This shows that for low concentrations the fraction of assem-
blies grows linearly with concentration, with a slope propor-
tional to the activation constant. If a1 � 1 then Ka1 � 1 and
f → 0 for � < �∗. On the other hand, for high concentra-
tions the fraction of self-assemblies differs from unity by the
amount equal to the ratio of the critical concentration to the
total concentration of monomers. We refer to a recent review
by one of us for a more detailed discussion of activated equi-
librium polymerization.30 Next we consider the limiting be-
havior of bidisperse systems.

B. The bidisperse case for � � �∗

If the total concentration of monomers is large enough
so that 〈N〉 � 1, which is the case for � > �∗ when the
activation constants ai are sufficiently large, we can apply
the ground-state approximation for the partition function of
the Ising model and, therefore, ignore the smaller eigenvalue.
As a result, the number average length of tapes takes the sim-
ple form of

〈N〉n 
 2 − 
+
1 − 
+

. (26)

Furthermore, this leads to a number of simplifications and al-
lows us to get an insight into the high-concentration behav-
ior of self-assembly. Particularly, we can find an analytical
expression for the fraction of self-assemblies. In this limit,
the concentration of monomers contributing to the assem-
blies becomes dominant relative to that of free monomers and


+ = λ+ exp(b̄)
√

z1z2 approaches its limiting value, i.e., 
+
→ 1. As before, b̄ denotes the average of the binding free en-
ergies. Therefore, the concentration of free monomers reaches
its critical value z∗

1 exp(a1) + z∗
2 exp(a2) ≡ �∗, which corre-

sponds to the maximum molar fraction of free monomers.
In some specific cases, this maximum molar fraction of free
monomers characterizes the transition from minimal assem-
bly to an assembly-dominated regime. Again, provided that
ai � 1, this leads to a sharp cooperative polymerization tran-
sition.

The critical concentration depends, in principle, on the
stoichiometric ratio of the two components, α = �1/�2, in
addition to the various free energy parameters that describe

the model. Relatively straightforward algebra gives for the
fraction of self-assemblies a universal curve for high concen-
trations and of the simple form

f 
 1 − �∗(α)

�
if

�

�∗(α)
� 1, (27)

where �∗(α) denotes the critical concentration that now de-
pends explicitly on the stoichiometric ratio α. We can obtain
the molar fraction of free monomers for each of the species,
hence, the critical concentration as a function of α, by solving
the two following equations simultaneously:


+(z∗
1, z

∗
2) = 1, (28)

∂
+
∂H

|
+=1 = α − 1

α + 1
,

where the second equation results from simplifying
�1(z∗

1, z
∗
2)/�2(z∗

1, z
∗
2) = α in the ground-state approxi-

mation.
We were not able to find an exact analytical expression

for the free monomer molar fractions and critical concentra-
tion for arbitrary values of α. However, for the special case of
J � 1, we did obtain asymptotic expressions for z∗

1 and z∗
2.

The case J � 1 occurs either if there is a large asymmetry
between the two species, or if the two species do not have a
large affinity to bond to each other. In this limit, one can sim-
plify the above equations to obtain an asymptotic solution for
the fugacities and therefore, the density of free monomers,

�
f

1 
 �∗
1

2e4J (1 + α) − α −
√

α2 + 4(1 + α)e4J

2(1 + α)e4J
(29)

and

�
f

2 
 �∗
2

(2 + 2e4J (1 + α) − 2
√

α2 + 4e4J (1 + α) + α(2 + α −
√

α2 + 4e4J (1 + α)))

2e4J (1 + α)
. (30)

Here, �∗
i ≡ exp(−bii + ai) are critical concentrations already

defined for the individual species.
For an arbitrary value of J > 0, we can find expressions

only in the limits of small and large α, corresponding to the
respective limits e−H � 1 and eH � 1 in the Ising model. The

molar fraction of free monomers of either of species in the
high concentration regime are

�
f

1 
 α�∗
1e

4J �
f

2 
 (1 − α)�∗
2 α � e−4J , (31)
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�
f

1 
 �∗
1

(
1 − 1

α

)
�

f

2 
 1

α
�∗

2e
4J α � e4J , (32)

which agrees with the small and large α limits of
Eqs. (29) and (30), as they should.

An interesting conclusion can be drawn if we compare
the ratio of molar fraction of free monomers of the two
species, i.e., αf ≡ �

f

1 /�
f

2 with α,

αf /α 
 e4J �∗
1/�∗

2 α � e−4J , (33)

αf /α 
 e−4J �∗
1/�∗

2 α � e4J . (34)

These results show that, for both small and large α val-
ues, the ratio of molar fraction of free monomers is dif-
ferent from α, pointing to fractionation effects even in the
“high-concentration” regime, that is, concentration very much
higher than the critical one. We will discuss this issue further
in Sec. V, where we investigate numerically the full concen-
tration behavior of self-assembly.

As a result, we obtain the following expressions for the
critical concentration of the bidisperse system:

�∗ 
 �∗
2 + α(�∗

1e
4J − �∗

2) α � e−4J , (35)

�∗ 
 �∗
1 + 1

α
(�∗

2e
4J − �∗

1) α � e4J .

These functional forms clearly demonstrate that the critical
concentration not only depends on the critical concentration
values of the two species, and their ratio α, but is also strongly
influenced by the value of coupling constant exp (4J). Notice
that in the limits α → 0 and α → ∞, we recover the critical
concentrations of species 2 and 1, respectively, verifying the
self-consistency of our calculation.

From the above discussion, we recognize four different
regimes: α � e−4J and α � e4J, and for both of these, the
cases e4J � 1 and e4J � 1. If α � e−4J and e4J � �∗

2/�∗
1, the

critical concentration decreases linearly upon increase of α

with a slope proportional to �∗
2, i.e., �∗ ≈ �∗

2 − α�∗
2. How-

ever, for α � e4J and e4J � �∗
2/�∗

1, the slope is determined
by e4J, i.e., �∗ ≈ �∗

2 + α�∗
1e

4J . This leads to an initial in-
crease of the critical concentration for sufficiently small val-
ues of α.

In the other extreme of α � e4J, we can also make a dis-
tinction between the cases e4J � �∗

1/�∗
2 and e4J � �∗

1/�∗
2.

In the case e4J � �∗
1/�∗

2, we expect a decrease of the criti-
cal concentration for small values of 1/α. On the other hand,
if e4J � �∗

1/�∗
2, the critical concentration increases upon a

relative increase of the species 2 population.

C. Bidisperse case for � � �∗

If the total number density of monomers is sufficiently
small, only monomers and dimers are present in the so-
lution, and this corresponds to investigating the limit zi

= exp (μi) � 1. In this case, we can make a Taylor expan-
sion of Eqs. (16) and (17) in terms of fugacities zi up to the
second order, i.e., considering only the contribution of free

monomers and dimers. This gives

�1 + �2 
 z1 exp(a1) + z2 exp(a2) + 4 exp(b12)z1z2

+ 2 exp(b11)z2
1 + 2 exp(b22)z2

2, (36)

in which the first two terms are the contribution of monomers,
while the three other terms present the contribution of dimers
of type 12, 11, and 22. Furthermore we have

�1 − �2 
 z1 exp(a1) − z2 exp(a2)

+ exp(b11)z2
1 − exp(b22)z2

2. (37)

Combining Eqs. (36) and (37), we find that α ≈ αf. The rea-
son, of course, is that in the low concentration regime, the
assemblies are mainly in the monomeric regime.

With these approximations, we can solve for z1 and z2

and calculate the fraction of self-assemblies f up to the lowest
order in terms of total concentration as well as the ratio of the
two components α = �1/�2,

f 
 2α�

(1 + α)2
[2 exp(b12 − a1 − a2) + α exp(b11 − 2a1)

+α−1 exp(b22 − 2a2)]. (38)

Again, we find that the first dominant term is linear in the total
concentration. Its slope, however, depends on the stoichiomet-
ric ratio of the two components as well as on the free-energy
parameters involved in the system, where f → 0 if the acti-
vation energies ai are large. Equation (38) demonstrates that
even at the level of dimer formation, the coupling between
the two components cannot be ignored. As before, we obtain
similar results as those for the monodisperse case in the limits
α → ∞ and α → 0, as one would expect. If α is large then f
should be proportional to �1 and if it is small then it should
be proportional to �2.

Now that we understand the behavior of our system in the
limits of low and high concentrations, in Sec. V, we examine
numerically the full concentration behavior of self-assembly
in the case of “ferromagnetic” or blocky copolymeric order-
ing, J > 0.

V. FRACTION OF SELF-ASSEMBLIES AND CRITICAL
CONCENTRATION

We first focus on the dependence on the total concen-
tration of the fraction of dissolved material present in self-
assemblies, as we vary the ratio of the concentrations of
the two components. In Fig. 2, we have plotted the fraction
of self-assemblies f as a function of the total molar frac-
tion � for the particular case where we have assumed that
b12 = b22. Results for two cases are shown. In the first case,
the binding and activation free energies for the two species are
slightly different (corresponding to weak chemical bidisper-
sity) and in the second the binding and activation free energies
for the two species are considerably different (corresponding
to strong chemical bidispersity). The chosen values of the ac-
tivation and binding free energies in the first case correspond
to oligopeptides consisting of 4 and 5 monomers and are suf-
ficiently small to result in a relatively gradual self-assembly
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(a)

(c) (d)

(b)

FIG. 2. The fraction of self-assemblies f as a function of the overall molar fraction of dissolved material � = �1 + �2 at different stoichiometric ratios
α = �1/�2 of the two components 1 and 2. (a) and (b) show the results for weak chemical bidispersity (b11 = 10, b12 = b22 = 8, a1 = 2.3 and a2 = 1.6). The
squares on the curves in (a) signify the fraction of self-assemblies at the critical concentration, associated with each α, as discussed in the main text. (c) and (d)
graphs show the case of a strong degree of chemical bidispersity (b11 = 20, b12 = b22 = 8, a1 = 6, and a2 = 1.6). The squares on each α curve in (c) present
the fraction of self-assemblies at their respective critical concentrations. The solid lines show the slopes for each α calculated based on the Eq. (38) and show a
good agreement with numerical results at sufficiently low values of �. In the insets, we depict the slope of f at low concentrations as a function of α according
to Eq. (38).

transition, while in the second case the free energy parameters
of the first species chosen are typical values for an 11-mer.12

First, we discuss the case of weak chemical bidisper-
sity depicted in Figures 2(a) and 2(b). In this case, the frac-
tion of self-assemblies increases gradually from zero to 1
for all ratios of the two components, α, as one increases
the total concentration of monomers. The bidisperse assem-
bly curves are in between those corresponding to the two
monodisperse cases. We find that for all the curves a crossover
from an increasing slope for relatively low concentrations to
a decreasing slope for very high concentrations can be ob-
served, demonstrating a transition from minimal assembly to
self-assembly dominated regime. The activation free energies
were chosen not to be very large, so we do not observe a
sharp polymerization transition from 0 to a non-zero value. In
Fig. 2(b), we have shown the fraction of self-assemblies at low
concentrations. To verify the validity of the low-concentration
expansion, for each stoichiometry α, we have also plotted the
lines corresponding to Eq. (38). As can be seen, in this regime
the fraction of assemblies f grow linearly as a function of con-

centration with the same slope predicted by Eq. (38). A care-
ful look at this figure shows that the slope of f versus α is
non-monotonic. To highlight this, we have plotted the slope
of f versus α in the inset of Fig. 2(b). The curves demonstrate
the highly nonlinear effects that are the result of mixing dif-
ferent kinds of assembler units.

Now, we turn to the case of strong chemical bidisper-
sity (large J) as depicted in Figs. 2(c) and 2(d). Here, we
also observe that the self-assembly curves for f are between
the curves of the pure species as we vary the ratio of the two
components. However, the behavior of the mixed material as
shown in the curves for the intermediate concentrations is dis-
similar to that of the monodisperse solutions. We notice that
the fraction of self-assemblies grows at low concentrations
with a slope that depends on α. Importantly, it grows linearly
at very low � and in accord with our estimates for � � �∗

in Eq. (38), as shown in Fig. 2(d).
However, after an initial relatively steep growth stage,

an intermediate stage emerges for which the fraction of self-
assemblies shows little variation with �. Finally, for large
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(a) (b)

FIG. 3. The critical molar fraction �* as a function of ratio of the two components α = �1/�2 plotted for (a) weak chemical bidispersity: b11 = 10, b12
= b22 = 8, a1 = 2.3, and a2 = 1.6, corresponding to J = 0.5, �∗

1 = 4.528 × 10−4 and �∗
2 = 0.00166. The lines show the approximate functions valid for very

low and very high α values according to Eq. (35); (b) strong chemical bidispersity: b11 = 20, b12 = b22 = 8, a1 = 6 and a2 = 1.6 corresponding to a large
value of J = 3, �∗

1 = 8.315 × 10−7, and �∗
2 = 0.00166. The line shows the analytical results obtained for the critical concentration in the large J limit based on

Eqs. (29) and (30).

enough concentrations the fraction of self-assemblies enters
into a third regime of growth that follows the behavior pre-
dicted for high concentration region � � �∗, i.e., deviating
from unity inversely proportional to �.

As discussed in Sec. IV, in an assembly consisting of a
single species of type i, the transition from mainly monomeric
regime to an assembly-predominated regime can be demar-
cated by a critical concentration �∗

i ≡ exp(−bii + ai), which
is equal to the maximum molar fraction of free monomers
reached in the high-concentration regime. Indeed, for large
enough activation free energies ai, this corresponds to a
sharp transition where the critical concentration identifies a
transition from no assembly to an assembly-dominated state
and f(�∗) ≈ 0. For small values of the activation free en-
ergy, where the transition is not sharp, the critical concen-
tration signifies the crossover from the low concentration
regime to the high concentration regime, and f(�∗) has a
non-zero value close to 0.5 represented by the squares in
Fig. 2(a), for the f curves of pure assemblies of type 1
and 2. It would be interesting to see if this critical con-
centration can also characterize the transition from min-
imal assembly to self-assembly dominated region in the
mixture of two species and, if so, how it depends on the
stoichiometry α.

In Figs. 2(a) and 2(c), we have marked on each curve
the points that correspond to the critical concentrations cal-
culated according to Eqs. (28). We notice that in the weakly
bidisperse curve, the value of f at the critical concentration is
around 0.5, therefore, one can think of �∗ as demarcating the
polymerization transition. However, in the strongly bidisperse
case, the value of f at �∗ can have any value depending on α.
Particularly for large values of α, we find f to be close to 1. In
these cases, the critical concentration seems to mark the on-
set of the transition from the plateau region in f curves to the
high-concentration regime, where f 
 1 − �∗/�.

Therefore, it would be interesting to obtain the full func-
tional dependence of �∗ on α and compare it to the results
obtained in the limiting cases of J � 1, and α � e−4J and
α � e4J for any J. Here, we extract the full α-dependence
of �∗ by solving the Eqs. (28) numerically for two sets of
values of free energy parameters corresponding to small and
large J values as presented in Fig. 3(a) (for J = 0.5 kBT) and
Fig. 3(b) (for J = 3 kBT). For the case of small J in Fig. 3(a),
we have shown the results of our estimates of �∗ for α � e−4J

and α � e4J. We find very good agreement with Eqs. (35) for
sufficiently small and large α values.

In Fig. 3(b), on the other hand, we have depicted the
full functional dependence of the critical concentration on α

obtained in the limit of large J based on Eqs. (29) and (30).
Again we find very good agreement. The general trend that we
find is that the critical concentration value agrees with that of
species 2 at small ratios α = �1/�2, and approaches the value
of the critical concentration of species 1 for large enough α

values, as it should be. For the small J case, the crossover is
not quite monotonic in α, as is clear from Fig. 3(a). The rea-
son is that if α � 1 and e4J > �∗

2/�∗
1, as is the case here, we

initially observe a slight increase of critical concentration as
discussed in Sec. IV.

The shown curves demonstrate that the width of the re-
gion where the critical concentration deviates from that of ei-
ther of the two species is a strong function of J, and the larger
the asymmetry between the two species is, the wider is this
region. More interestingly, for the case of strong asymmetry
the critical value is identical to that of species 2 up to α ≈ 102.
This probably means that in this case the mixing of the two
species in assemblies is not preferred in some intermediate
regions, as we will discuss in Sec. VI.

We can get an estimate of the width of the critical con-
centration curve from the limiting formulas of Eq. (35) for
the critical concentration. We can expect the deviation of the
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critical concentration from that of species 1 or 2, when the
contributions of the terms proportional to �∗

1 and �∗
2 become

equal. This gives us two onsets for low and high α values,
αL = �∗

2/�∗
1e

−4J and αH = �∗
2/�∗

1e
4J , leading to a width

2�∗
2/�∗

1 sinh(4J ). Inserting the values of the free energy pa-
rameters for the curves shown in Fig. 3, we find good agree-
ment for the estimated width (results not shown).

In conclusion, both the fraction of assemblies and the
critical concentration not only depend on the free energetic
parameters and total concentration, but are also sensitive func-
tions of the relative abundance of the two components. This
implies that even mild contamination with a chemically dis-
tinct species potentially has a large effect on the degree of
polymerization. In particular, having a critical concentration
that depends on α, the interesting question that arises is how
the fraction of the two components in the assemblies differs
from α. This is the subject of Sec. VI.

VI. DISTRIBUTION OF MONOMERS IN THE
ASSEMBLIES

Having a clear picture of the α-dependence of the critical
concentration, �∗, and the fraction of material in assemblies,
f, our aim is to get a deeper insight into the composition of the
self-assemblies that are formed. We would like to know how
the two species are distributed in the assemblies, and whether
the relative population of the two species in each assembly is
the same as that in bulk solution, i.e., α. Of particular inter-
est is whether or not each assembly is formed of one type of
species or if both species contribute to the formation of each
assembly.

First, let us see if the ratio of the densities of the free
monomers is conserved, as we increase the total concentra-
tion of monomers and assemblies begin to form. In Fig. 4
we have depicted the relative abundance of free monomers
as a function of total concentration for different values of α.

We find that for very low concentrations the density ratio of
free monomers is the same as α. However, for larger � values
the density ratio of free monomers drops and is considerably
lower than α. This implies that a larger fraction of species of
type 1 monomers (the species with greater tendency to self-
assemble) contribute to the formation of self-assemblies.

The ratio of free and bound monomers keeps on de-
creasing with increasing concentration, until the total popu-
lation of free monomers saturates, i.e., when � � �∗. In-
deed, calculating the density of free monomers ρ

f

i in the large
α limit, we find that ρ

f

1 /ρ
f

2 = �∗
1/�∗

2 exp(−4J ). For large
αs, we observe an initial increase of the ratio of bound and
free monomers in the vicinity of �∗, followed by a subse-
quent decrease, i.e., the dependence on α is non-monotonic.
We note that αf = (�f

1 )/(�f

2 ) will grow if �
f

2 decreases. For
α > 1, especially if α is considerably larger than one, there is
a lack of monomers of the second species in the system and if
� ≈ �∗

1, the second species also contributes to the assemblies
made mainly of the first kind. This effect is stronger if the dif-
ference in binding energies, and hence, J, is small. Therefore,
in such a situation (�2) f can become small and lead to an in-
crease of αf around � ≈ �∗

1.
We can also determine the average fraction of monomers

of each species along assemblies of arbitrary length N. The
fraction of monomers of species j in a specific assembly
of length N is defined as θj = (1/N)

∑N
i=1 n

(j )
i . Note that

θ j in an assembly of length N varies from one assembly to
another according to PN(θ j). However, we can calculate its
average value 〈θ j〉N as a function of N from the partition
function ZN, i.e., 〈θ j〉N = (1/N)∂ln ZN/∂ln zj. The constraint∑N

i=1(n(1)
i + n

(2)
i ) = N for each assembly of arbitrary length

implies that 〈θ2〉N = 1 − 〈θ1〉N, therefore, from now on we
focus on 〈θ1〉N.

In Fig. 5, we have plotted 〈θ1〉N for the special case of
�1 = �2, for both small and large J values at several concen-
trations. This case is particularly illustrative, as deviations of

FIG. 4. (a) Ratio of the concentrations of the free monomer of species 1 and 2 αf divided by the ratio of total density of monomers present in the solution
α, as a function of total concentration shown for different values of α = �1/�2. The corresponding α values are depicted in the legends. (a) Weak chemical
bidispersity, with an equivalent J = 0.5. (b) strong chemical bidispersity corresponding to J = 3. The dotted lines correspond to concentrations � = �∗

1 and
� = �∗

2, as indicated in the figure. The free energy parameters used here are the same as those of Figures 2 and 3.

Downloaded 03 Jan 2013 to 193.48.255.141. Redistribution subject to AIP license or copyright; see http://jcp.aip.org/about/rights_and_permissions



064906-11 S. Jabbari-Farouji and P. van der Schoot J. Chem. Phys. 137, 064906 (2012)

1 2 5 10 20 50 100
0.0

0.2

0.4

0.6

0.8

1.0

N

1
N

1

10

2

1 2

1 5 10 50 100 500
0.0

0.2

0.4

0.6

0.8

1.0

N

1
N

1

10

2

1 2

FIG. 5. The average fraction of monomers of type 1 for a composition
of α = 1 as a function of N shown for different concentrations. The up-
per graphs shows a weakly bidisperse case, with an equivalent J = 0.5,
while the lower graph shows a strongly bidisperse case, corresponding to
J = 3. The free energy parameters used here are the same as those of
Figures 2 and 3.

the fraction of the two species from 0.5 reflects the deviation
of the distribution of the species from the original distribu-
tion, i.e., �1 = �2. As Fig. 5 indicates, for both small and
large J cases, the fraction of the species 1, and hence that of
species 2, differs from one half. This figure clearly demon-
strates that short assemblies are made mainly of species 2, i.e.,
the one with less tendency to self-assemble while the domi-
nant population of long assemblies are species 1 (the species
with a greater tendency with self-assembly). The behavior in
the case of large J is particularly interesting. We notice that

at each concentration, assemblies shorter than Nc1 are made
purely of type 2 species and very long assemblies are made
mostly of species type 1, and that the transition from compo-
sitionally pure assemblies of type 2 to compositionally pure
assemblies of type 1 is sharp. This clearly demonstrates the
“demixing” effects occurring due to the large asymmetry of
the two species.

The behavior that we find is consistent with that ob-
tained, in a more general sense, from the 1D Ising model. This
more general picture arising from the Ising model is that for
very short chains, that is, compared to the correlation length
ξ 0 ≡ exp (2J)/2, there is less combinatorial entropy available,
simply because there is not enough room to move the do-
mains about. As a result, states of either spin up or spin down
(in our case assemblies merely consisting of type 1 or 2) are
preferred.

In the other extreme of chain lengths much longer than
the correlation length ξ 0, the combinatorial factor can bene-
fit from a large number of fragmentations, leading to many
bound domains of moderate lengths of the order of the corre-
lation length. For J = 0.5kBT, ξ 0 
 1.4 while for J = 3kBT, ξ 0


 202. Therefore, for small J, almost for any assembly length
we are already in the regime that mixed assemblies are fa-
vored, while for large J, except for very long assemblies and
sufficiently high concentrations, we are in the region N < ξ 0,
therefore, pure assemblies are preferred.

Having discussed the average fraction of the two species
in the assemblies 〈θ i〉N, we next consider the number-
averaged size of the assemblies, 〈N〉, as a function of the total
concentration of monomers. See Fig. 6. In this figure we also
show the concentration dependence of 〈N〉 of the monodis-
perse species for comparison. As expected, the average length
of assemblies increases as we increase the total concentration
of monomers. We find that the average length of the assem-
blies in the bidisperse case lies in between that of the pure
species. This implies that, e.g., for α = 1, the mean degree
of polymerization obeys an apparent growth law that deviates
from the usual square-root law over, say, a decade in con-
centration. While for small J, 〈N〉 grows monotonically with
concentration, for the large-J case 〈N〉 remains fairly con-
stant at intermediate concentrations due to the demixing effect

FIG. 6. The number-averaged degree of polymerization of linear assemblies as a function of the overall concentration for different stoichiometric ratios α.
α = 0 and α = ∞ correspond to monodisperse cases of types 1 and 2, respectively. (a) Weakly bidisperse case, with an equivalent J = 0.5. (b) Strongly
bidisperse case corresponding to J = 3. The free energy parameters used here are the same as those of Figs. 2 and 3. The vertical dotted lines in each figure
show the concentrations � = �∗

1 and � = �∗
2, respectively.
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discussed earlier. This means that over a range of concentra-
tions the mean aggregation number does not grow at all.

In this range of concentrations, the species 1 monomers
have already formed relatively long assemblies, while the
species 2 are still mainly in the form of free monomers. The
average aggregation number, 〈N〉, reflects the average num-
ber of assemblies formed by both species. Therefore, in the
averaging, the growing number of long assemblies made of
species 1 are taken with the growing number of very short as-
semblies of the species 2, and effectively 〈N〉 does not grow.
This behavior is seen even when the relative population of
second species is small α = 20, this implies that impurities
can strongly affect the growth of linear supramolecular as-
semblies. It shows again the important effect that impurities
can have on observed quantities such as the average degree of
polymerization.

VII. CONCLUDING REMARKS AND OUTLOOK

To summarize, we have set up a model that allows us
to investigate theoretically the effects of molecular chem-
ical bidispersity in dilute solutions of quasi-linear, self-
assembling objects. Mapping our model onto the 1D Ising
model, we find that different arrangements of the two species
in the assemblies take place, depending on the relative values
of the binding free energies involved in the binding. These
morphologies correspond to ferromagnetic (“blocky”), anti-
ferromagnetic (“alternating”) and paramagnetic-like (“ran-
dom”) ordering of the two species in the polymeric assem-
blies. See Fig. 1.

Analyzing our model for the case of ferromagnetic-like
(or blocky-type copolymeric) ordering, we find a range of
interesting phenomena. The fraction of self-assemblies and
the value of the critical concentration, which quantifies the
crossover to the high-concentration regime, not only depend
on the free energy parameters of the two components in the
system but also on the relative abundance of the two species.
The degree of asymmetry of the two species, described by a
coupling constant J, strongly influences the dependence of the
critical concentration on the density ratio of the two compo-
nents.

The larger the value of the coupling parameter J, the
wider the region over which the critical concentration is dif-
ferent from either that of the two species. Looking at the
distribution of the monomers of each species, we find that
a large asymmetry encoded by a large value of J gives rise
to a larger asymmetry in the composition of the assemblies
formed. For sufficiently large values of J (signifying a large
degree of molecular asymmetry) this leads to the emergence
of a demixing region, where pure assemblies, made up almost
entirely of either of the two species, coexist.

As pointed out in the Introduction briefly, it is of interest
to discuss the analogy of the effective coupling constant J
in our two-component self-assembly model and the Flory-
Huggins binary interaction parameter χ , describing the non-
bonded interaction between different types of monomer in
binary polymeric or copolymer melts, or between homopoly-
meric polymers in a solution.36, 41 In copolymers, the binary
interaction parameter χ determines the miscibility of the two

constituent units and morphology of mesophases. Hence, both
of the parameters J and χ govern ordering of the two compo-
nents involved in supramolecular and conventional copolymer
solutions, respectively. In our model, increasing J leads to the
segregation of species into compositionally pure assemblies.
This is analogous to having a large χ parameter between
block copolymer melt leading to micro-phase separation. The
supramolecular copolymerisation we have discussed here is
analogous to the free radical polymerization method used for
the synthesis of well-defined block copolymers.36, 42, 43

It is sensible comparing the results of our study with that
of the existing phenomenology of polydispersity effects on
the phase behavior of thermodynamic systems. Commonly,
the introduction of polydispersity causes a range of new fea-
tures in the phase behavior. Two important observed effects of
polydispersity are: (1) A widening of the coexistence region,
i.e., of the density range within which two or more phases
coexist; and (2) fractionation, meaning that the coexisting
phases have different concentrations to the different particle
species present.19

Here, for the crossover from a mainly monomeric regime
to a self-assembly dominated regime, characterized by a crit-
ical concentration, we find a strong dependence of the critical
concentration on the ratio of the two concentrations. Further-
more, we observe an analogous effect to fractionation. The
relative composition of the two species in the assemblies and
hence also that of the free, unbound monomers in solution is
different from the original parent ratio of monomers put into
the system, especially for concentrations larger than the criti-
cal concentration.

Finally, although we have investigated the effect of chem-
ical polydispersity for the simplified case of two-component
solutions, we believe that the insights obtained provide an in-
sight into the generic phenomenology and the qualitative fea-
tures of more general assembly behavior in self-assembling
systems. In the general polydisperse case, one would expect
the value of the critical concentration, which demarcates the
transition from the monomeric regime to that where self-
assemblies predominate, to depend on the exact form of the
distribution of the polydispersity attribute, and to be strongly
affected by the width of the distribution.

One may deduce that for a weakly polydisperse system,
i.e., one with a narrow distribution of the pertinent polydis-
perse attribute, a monotonic crossover from the monomeric
regime to the self-assembly regime can be expected. For
a strongly polydisperse system, characterized by a wide
distribution function, the appearance of multiple regions
where pure assemblies of single species coexist should
be expected. Moreover, from our calculations we conclude
that independent of the degree of polydispersity, monomers
with lower tendency to self-assemble are found more abun-
dantly in shorter assemblies, while those with a larger affin-
ity to self-assembly have a greater contribution to longer
assemblies.

A model to investigate the generalized case of a contin-
uous distribution of polydisperse attributes, similar to that of
the polydisperse lattice gas model for the liquid-vapor phase
equilibria,44 and its consequences on self-assembly is, cur-
rently under development.
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List of symbols

bij: free energy of the bonded inter-
action between two monomers
of type i = 1, 2 and j = 1, 2, in
units of the thermal energy kBT;

ai: activation free energy of
species i = 1, 2 in units of kBT,
with Kai defining the activation
constant;

n
(j )
i : the occupation number of

species of type j = 1, 2 at site i
of a specific assembly;

�: grand potential energy in units
of kBT;

ZN: the partition function of an as-
sembly of length N;

ρ(N): the number density of assem-
blies of degree of polymeriza-
tion N;

ν: interaction volume;
〈N〉: the number-averaged degree of

polymerization N;
J ≡ 1

4 (b11 + b22 − 2b12): The effective coupling constant
in the Ising mapping;

H ≡ 1
2 [(b11 − b22)

+ (μ1 − μ2)]:
the magnetic field in the Ising

model;
b̄ ≡ 1

4 (b11 + b22 + 2b12): average binding free energy;
μi: chemical potential of species

i = 1, 2;
zi ≡ exp (μi): The corresponding fugacities

of species i;
λ±: the eigenvalues of the transfer

matrix of Ising model;

± ≡ λ± exp(b̄)

√
z1z2: The effective fugacities of the

bidisperse system;
�i: molar fraction of molecules of

species i = 1, 2;
� ≡ �1 + �2: the overall molar fraction;
α ≡ �1/�2: the ratio of molar fraction of

the two species;
f: mean fraction of self-

assemblies;
�∗

i = exp(−bi + ai): critical molar fraction associ-
ated with species i, demarcat-
ing the transition from min-
imal assembly to assembly-
predominated regime;

�∗(α): critical molar fraction of the
bidisperse system, whose value
depends on the ratio of mo-
lar fraction of the two compo-
nents;

�
f

i : the molar fraction of free
monomers of species i;

ρf ≡ �
f

1 /�
f

2 : the ratio of the molar fraction
of free monomers;

θj = 1/N
∑N

i=1 n
(j )
i : the fraction of species of type j

= 1, 2 in a specific assembly of
length N;

〈θ j〉N: the average fraction of species
of type j = 1, 2 in the collection
of assemblies of length N;
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