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We study collective self-organization of weakly magnetic active suspensions in a uniform external field by
analyzing a mesoscopic continuum model that we have recently developed. Our model is based on a Smolu-
chowski equation for a particle probability density function in an alignment field coupled to a mean-field de-
scription of the flow arising from the activity and the alignment torque. Performing linear stability analysis
of the Smoluchowski equation and the resulting orientational moment equations combined with non-linear 3D
simulations, we provide a comprehensive picture of instability patterns as a function of strengths of activity and
magnetic field. For sufficiently high activity and moderate magnetic field strengths, the competition between
the activity-induced flow and external magnetic torque renders a homogeneous polar steady state unstable. As a
result, four distinct dynamical patterns of collective motion emerge. The instability patterns for pushers include
traveling sheets governed by bend-twist instabilities and dynamical aggregates. For pullers, finite-sized and
system spanning pillar-like concentrated regions predominated by splay deformations emerge which migrate in
the field direction. Notably, at very strong magnetic fields, we observe a reentrant hydrodynamic stability of the
polar steady state.

———–

I. INTRODUCTION

Self-propelled systems such as birds, fire ants and bacteria
exhibit fascinating patterns of collective motion. Unraveling
the physical principles governing collective self-organization
of such autonomous systems have attracted tremendous atten-
tion in recent years. The efforts to understand the collective
effects in self-propelled systems have led to emergence of the
interdisciplinary field of active matter, see for example [1–
3]. Active matter is a fundamentally non-equilibrium class
of materials which consist of particles transforming the am-
bient energy to some form of mechanical motion at the in-
dividual level. Many studies have focused on elucidating the
influence of inter-particle interactions on the collective behav-
ior of active systems. It is found that the interplay between
self-propulsion alone with simple short-ranged interactions in
minimal models such as active Brownian particles with steric
interactions [4–6] or Vicsek model with alignment interac-
tions [1, 7] leads to a rich phase behavior. Novel patterns
of collective dynamics like dynamical clusters and traveling
stripes have been identified [1, 6] which have no counterparts
in equilibrium systems.

Microswimmers, such as bacteria, algae and active colloids,
belong to a special class of active systems, which generate
flows upon self-propulsion in their suspending medium. As
a result, long-ranged hydrodynamic interactions induced by
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the self-generated flows affect their collective behavior sig-
nificantly. Additionally, microswimmers display new patterns
of coordinated motion in response to external fields such as
chemical gradients [8–10], light [11, 12], gravitational [13–
18], electric [19, 20], and magnetic fields [21–24]. For in-
stance, magnetotactic bacteria driven by a sufficiently strong
magnetic field migrate collectively in sheets which are per-
pendicular to the field direction [21, 22].

The control of collective dynamics of microswimmers via
an external field offers a promising route for high-tech ap-
plications such as micro-scale cargo transport, targeted drug
delivery, and microfluidic devices [25–28]. For instance, ex-
ternal magnetic field has been employed to control the rheo-
logical properties of magnetic swimmers [29, 30]. The col-
lective dynamics of microswimmers in an external field is
nonetheless poorly understood. Specifically, the effect of in-
terplay between long-range hydrodynamic interactions and
external fields on the pattern formation, with exception of few
cases [30–34], has been little explored.

To make further progress in this direction, we focus on
the large-scale collective dynamics of weakly magnetic mi-
croswimmers in a uniform magnetic field. Employing a con-
tinuum approach allows us to overcome the size limitations
of particle-resolved simulations and to capture the large-scale
patterns of collective motion over length scales much larger
than the particle size. To this end, various continuum models
ranging from mesoscopic theories based on microscopic mod-
els [34–38] to purely phenomenological field theories based
on symmetry arguments [1, 2, 39] have been developed. The
mesoscopic approaches, founded on a particle-scale statisti-
cal theory, provide a particularly good compromise between
costly particle-based simulations and purely phenomenolog-
ical continuum theories. Depending on the question of in-
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terest and density of microswimmers, mesoscopic theories
involve different levels of approximation to obtain a mean-
field single-particle Smoluchowski equation from many-body
probability density function of active suspensions. Here,
we are interested in the interplay between alignment by an
external field and activity for relatively dilute suspensions.
Therefore, we ignore the effect of short-ranged alignment in-
teractions and correlations and only take far field hydrody-
namic interactions into account, similar to the framework out-
lined in Ref. [35], in contrast to mesoscopic theories in ref-
erences [34, 36–38, 40], which focus on rather dense active
suspensions and incorporate these effects.

We provide an in-depth analysis of a kinetic continuum
model that we have recently developed for dilute suspension
of spherical microswimmers in an alignment field [33]. Al-
though our focus is on weakly magnetic swimmers, the model
is in principle also applicable to bottom-heavy microswim-
mers in a gravitational field. The kinetic model couples the
Smoluchowski equation for probability density function of
fairly dilute active spherical suspensions in an alignment field
to mean far field hydrodynamic interactions mainly generated
by the swimmers motion. The hydrodynamic interactions are
incorporated using the leading order flow field of a force-free
microswimmer that is described by a force dipole. It decays as
1/r2 where r is the distance from the swimmer. Independent
of the details of motility mechanism, e.g. flagellar propul-
sion or surface distortions, the majority of microswimmers
can be divided according to their far field flow into pusher
(extensile) and puller (contractile) swimmers, respectively. A
pusher swimmer uses its tail to push fluid outward along its
swimming axis whereas a puller swimmer employs its front
appendages to pull the fluid towards its body in the direction
of swimming. These two types of swimmers produce quali-
tatively different hydrodynamic flows and hence are expected
to produce distinct spatio-temporal patterns.

We study the dynamics of both puller and pusher swim-
mers in a magnetic field by combining linear stability analy-
sis and full numerical solution of 3D non-linear kinetic equa-
tions. Our linear stability analysis consists of investigating
the stability of the probability density function of polar steady
state as well as that of its orientational moments described
by uniform density and polarization fields. Combining the
two approaches we obtain complementary insights into the na-
ture of instabilities. At low magnetic fields, a homogeneous
weakly polarized state is stable, akin to an isotropic suspen-
sion of spherical swimmers. However, for sufficiently high
activity strengths and moderately strong magnetic fields, a ho-
mogeneous polar state becomes unstable for both pushers and
pullers. As we vary magnetic field and activity strengths, dis-
tinct spatio-temporal patterns emerge. At moderate field and
activity strengths, pushers are driven by bend-twist hydrody-
namic instabilities and form traveling sheets perpendicular to
the magnetic field. At stronger activity and field strengths, the
density-driven hydrodynamic instabilities predominate pusher
suspensions leading to formation of dynamical aggregates.
Pullers at moderate field and activity strengths form system
spanning pillars parallel to the field which are predominated
by splay deformations. However, at stronger field and activ-

ity strengths, they form finite-sized pillar-like concentrated re-
gions. Interestingly for very strong magnetic fields a homoge-
nous polar state becomes stable again. Hence, we observe a
re-entrant hydrodynamic stability; a hallmark of competition
between alignment and hydrodynamic torques.

The remainder of this article is organized as follows. In sec-
tion II, we discuss the main ingredients of the kinetic model
for a dilute suspension of polar active particles in an alignment
field. In section III, we analyze the linear stability of homoge-
nous polar steady state to plane-wave perturbations for active
polar suspensions aligned by an external field using a spectral
method. Then, we calculate the stability diagram as a function
of strengths of activity and magnetic field. In section IV, we
first derive equations of motion for the orientational moments,
density, polarization and nematic fields, using suitable closure
approximations. Then, we analyze the linear stability of mo-
ment equations. In section V, we focus on numerical solution
of the Smoluchowski equation coupled to the Stokes flow to
explore the non-linear dynamics. We first outline our simu-
lation method based on stochastic sampling method. Next,
we investigate the emergent spatio-temporal pattern formation
varying strengths of activity and magnetic field. We particu-
larly discuss the distinguishing features of patterns observed
at different instability regimes. Finally, our main conclusions
and a discussion on comparison of linear stability analysis and
non-linear dynamics solution can be found in section VI.

II. KINETIC THEORY FOR ACTIVE SUSPENSIONS IN
AN ALIGNMENT FIELD

A. Model system description

We consider a dilute suspension of N spherical magnetic
microswimmers with a hydrodynamic radius a immersed in a
fluid of volume V at a number density ρm = N

V . We assume
that the self-propulsion is generated by a force-free mech-
anism of hydrodynamic origin such that its far field flow,
averaged over swimmer’s beat cycle, is well represented by
that of a point-force dipole with an effective dipolar strength
Seff [41–43]. Seff depends on the geometrical parameters of
the model swimmer [44–47], for instance on the body size
a and the flagellum length ` [47]. The translational and ro-
tational friction coefficients of the swimmer are given by ξr
and ξt . Each swimmer carries a weak magnetic dipole mo-
ment µ = µn along its body axis specified by the unit ori-
entation vector n ≡ n̂ and has a self-propulsion velocity U0n
as depicted schematically in Fig. 1. The suspension is ex-
posed to a uniform magnetic field B that exerts an alignment
torque on each swimmer. We assume that µ is sufficiently
small such that the dipole-dipole magnetic interactions at av-
erage inter-particle distance dint & 3a are negligible relative to
the thermal energy scale and no instabilities occur due to mag-
netic interactions. Therefore, for volume fractions Φm . 0.15
the dynamics of the system is governed by the interplay be-
tween the hydrodynamic interactions and the field-induced
alignment torque.
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FIG. 1. A schematics of a spherical microswimmer with unit orien-
tation vector n and swimming speed U0n, carrying a magnetic dipole
moment µ. The dynamics of the swimmer is influenced by the local
flow U and its vorticity Ω = ∇×U, and an external magnetic flux
density B which creates a magnetic torque MB = µ×B.

B. Conservation equation: the Smoluchowski equation

For sufficiently low ρm, the mean-field configuration of an
ensemble of swimmers at a time T can be described by a
single-particle distribution function Ψ(X,n,T ), i.e., the de-
grees of freedom of other particles have been traced out by
integration. The function is normalized as

1
V

∫
V

dX
∫
S2

dn Ψ(X,n,T ) = N/V = ρm. (1)

As such Ψ(X,n,T )/N describes the probability density of
finding a particle with the center of mass position X and the
orientation vector n at time T . Therefore, a uniform and
isotropic state can be described by the constant distribution
function Ψ = ρm/4π .

The kinetic model for hydrodynamically interacting swim-
mers in an external field [33] is based on an evolution equation
for the distribution function Ψ(X,n,T ) coupled to an equation
for the mean-field fluid velocity U. The Smoluchowski equa-
tion for hydrodynamically interacting active particles carrying
a weak magnetic dipole moment in an external field is given
by

∂T Ψ+∇ · [vxΨ]+∇
◦
n · [vnΨ]−DΨ = 0, (2)

in which ∇◦n ≡ (1−nn) ·∇n with dyadic product defined as
(nn)i j = nin j denotes the angular gradient operator and vx and
vn are the translational and rotational flux velocities resulting
from a swimmer’s drift. D = Dt∇

2 +Dr ∇◦n
2 is the diffusion

operator in which Dt and Dr describe the effective long-time
translational Dt and rotational diffusion coefficients, respec-
tively. The diffusion coefficients can result from thermal or
biological fluctuations, e.g., due to tumbling of bacteria in
the case of rotational diffusion and set the long-term time
scales for a swimmer’s translational and rotational motion.
The translational flux velocity

vx =U0n+U, (3)

includes the drift contributions from the self-propulsion U0n
and an advection due to the local flow field U. The rotational

flux velocity vn ≡ ṅ is modeled as

vn = P⊥n ·
(

µ

ξr
B−W ·n

)
, (4)

in which P⊥n = 1− nn, describes the projection operator
to the space orthogonal to the orientation vector and W =
1
2 (∇U− (∇U)>), with (∇U)i j = ∂iU j, is the vorticity tensor.
The flux velocity vn includes the rotational drift contributions
resulting from the torque due to the magnetic field and vortic-
ity of the local flow. Using the relation between the angular
velocity ω and rate of change of orientation vector ṅ =ω×n,
the first term P⊥n ·

µ

ξr
B on the right-hand side is obtained from

the balance between the magnetic torque τ = µn×B and the
frictional hydrodynamic torque −ξrω in the overdamped and
low Reynold’s number limits. The second term models the in-
teraction of a spherical swimmer with the local flow vorticity
based on the second Faxen’s law [48].

From the distribution function, we define the local density
field ρ(X,T ), polarization field p(X,T ), and the nematic or-
der parameter field Q(X,T ), as the symmetric and traceless
parts of the zeroth, first, and second order orientational mo-
ments of Ψ(X,n,T ) with respect to n, respectively,

ρ(X,T ) = 〈1〉n =
∫
S2

dn Ψ 1 (5)

p(X,T ) = 〈n〉n =
∫
S2

dn Ψ n (6)

Q(X,T ) =
〈
nn−1/3

〉
n

=
∫
S2

dn Ψ

(
nn− 1

3
1

)
. (7)

These moments will be used throughout the paper in the fol-
lowing sections.

C. Mean-field flow

The flow field U in Eqs. (3) and (4) may result from an
imposed external flow or from hydrodynamic interactions. In
this work, we consider the case that there is no external flow
and U solely represents the self-generated flow due to mo-
tion of swimmers. In the limit of vanishing Reynolds number,
applicable to microswimmers, the fluid reacts in good approx-
imation instantaneously to changes in the particle configura-
tion. The mean-field flow U[Ψ] resulting from the hydrody-
namic interactions between the swimmers is well captured by
the incompressible Stokes equation

η∇
2U−∇P+∇ ·Σ[Ψ] = 0 (8)

∇ ·U = 0, (9)

in which P and η denote the isotropic pressure and the vis-
cosity of the suspending fluid and ∇ ·Σ = ∂XiΣi j ê j. The
mean-field stress Σ[Ψ] depends on the instantaneous suspen-
sion configuration encoded by Ψ. Although the Stokes flow is
not explicitly time-dependent, the coarse-grained stress pro-
file Σ[Ψ] produced by the collective motion of swimmers de-
pends on the time via the distribution function Ψ(X,T ). In
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the case of microswimmers, it can be decomposed into the
sum of several contributions, arising from the self-propulsion,
Brownian rotations, resistance to stretching and compression
by the local flow field and steric and magnetic torques. For
dilute suspensions of spherical microswimmers, we neglect
stresses arising from Brownian rotations (can be incorporated
into active stress by modifying the prefactor), inextensibil-
ity of the particles and steric torques because of their small
contributions. We only consider active stress Σa[Ψ], gener-
ated by the self-propulsion of swimmers, [42, 43] and a mag-
netic stress Σe[Ψ], caused by reorientation of swimmers in
the external field. Hence, the stress in our model is given by
Σ[Ψ] = Σa[Ψ]+σe[Ψ].

In a dilute suspension, for which the average ratio of inter-
particle distance to the swimmer size is large, the active stress
of a force-free microswimmer Σa[Ψ] can be modeled as that
of a point-force dipole – the leading order non-zero singularity
of the Stokes flow [43, 49, 50]. The active stress of a suspen-
sion of dipolar microswimmers is proportional to the nematic
order tensor field [35, 51] as defined by Eq. (7):

Σa(X,T ) = ΣaQ(X,T ). (10)

It can be interpreted as a superposition of stress contribu-
tions of all possible swimmer orientations at position X. The
strength of the active stress is determined by the amplitude
Σa = −ρmSeff. The sign of Σa determines the nature of the
swimmers, being a puller Σa > 0 or a pusher Σa < 0.

The torque due to external field MB = µn×B leads to rota-
tion of swimmers that in turn exerts a rotational stress on the
fluid while dragging the surrounding fluid layers. This results
in an antisymmetric stress contribution of the form

Σe =

〈
1
2
ε ·ρmMB(n)

〉
n

=

〈
ρmµB

2

(
nB̂− B̂n

)〉
n

=
Σe

2

(
pB̂− B̂p

)
, (11)

in which B̂ = B/B, Σe ≡ ρmµB, and ε is the Levi-Cevita sym-
bol. This stress contribution is identical to that of passive
magnetic suspensions. Note that the symmetric part of the
magnetic stress is zero for spherical particles [52, 53].

D. Non-dimensionalization

To facilitate the analysis of the model, we render the equa-
tions dimensionless, using the following characteristic ve-
locity, length, and time scales: uc = U0, tc = 1/Dr and
xc = U0/Dr. Note that our choice of characteristic time and
length scales are different from our previous work [33]. We
rescale distribution function with the number density such that
ψ(x,n, t) ≡ Ψ(xxc,n, ttc)/ρm, is dimensionless and ψ/v rep-
resents a probability density normalized to unity:

1
v

∫
v
dx
∫
S2

dn ψ(x,n, t) = 1. (12)

where v = V/x3
c . The form of Smoluchowski equation for

ψ(x,n, t) remains unchanged

∂tψ +∇ · [vxψ]+∇
◦
n · [vnψ]−Dψ = 0, (13)

where the gradient operator ∇ ≡ ∂/∂xi êi is now with respect
to the reduced coordinates. The dimensionless spatial and ro-
tational flux-velocities reduce to

vx = n+u (14)

vn = P⊥n ·
(

αeB̂−W ·n
)
, (15)

in which αe =
µB

ξrDr
defines the alignment parameter. Like-

wise, the dimensionless diffusion operator simplifies to

D= dt ∆+∆
◦
n . (16)

where dt = DtDr/U2
0 is the reduced translational diffusion co-

efficient. The equation for the flow-field transforms into

∆u−∇p+∇ ·σ[ψ] = 0 (17)
∇ ·u = 0,

with the dimensionless stress tensor σ given by

σ =
Σ

Drη
=

1
Drη

(Σa +Σe) . (18)

As such, two additional independent dimensionless parame-
ters, the active stress amplitude σa = Σa

Drη
and the external

field-induced stress amplitude σe =
Σe

Drη
appear in our model.

III. LINEAR STABILITY ANALYSIS OF HOMOGENEOUS
POLAR STEADY STATE

The set of equations (13) and (17) forms a closed system
that can be solved for the evolution of the distribution func-
tion ψ and the flow field u in the suspension. However, it is
not presently feasible to solve these coupled equations ana-
lytically. Therefore, we resort to the linear stability analysis
that provides us with some degree of predictive insight into
the dynamics of the equations with respect to a suitable base
state. This kind of analysis allows us to divide the parameter
space into a stable region described by the base state and an
unstable region with yet unknown dynamics departing from
the base state. Furthermore, the linear stability analysis of-
fers some valuable insight into the dynamics at the onset of
instability.

A. Homogeneous and steady solution as a base state

The external field breaks the rotational symmetry of the
system but preserves translational invariance. Thus, we first
seek for spatially-uniform ∂xψ0 = 0 and steady ∂tψ0 = 0 so-
lutions of the Smoluchowski equation (13). Solutions of the
form ψ0(αe,n) will serve as base states for the linear stability
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FIG. 2. (a) Angular distribution of the homogeneous steady state
ψ0(θ) for different values of the external alignment parameter αe =

µB
ξrDr

. (b) The total polarization p0 of the steady state ψ0 as a function
of αe ∝ B.

analysis. For a homogenous steady state, all spatial and time
derivatives in Eq. (13) vanish. The same holds for the flow
field, because a homogeneous distribution gives rise to a gra-
dient free and homogeneous stress (∇ ·σ= 0⇒ u0 = 0, which
follows from Eq. (17)). Only the rotational flux velocity terms
remain. Hence, ψ0(αe,n) can be obtained by setting the total
rotational flux velocity including both drift and diffusive con-
tributions to zero, i. e.,

αeP⊥n · B̂+∇
◦
n lnψ0 = 0. (19)

Solving this equation yields

ψ0(αe,n) =
αe

4π sinhαe
eαen·B̂ (20)

with the normalization
∫
S2 dn ψ0(αe,n) = 1. This steady-state

is identical to that of passive magnetic dipoles in an external
field [52]. For passive systems at the thermal equilibrium, the
Einstein-Stokes-Debye relation Dr =

kBT
ξr

[48] holds and the

alignment parameter becomes αe =
µB
kBT which is equal to ratio

between magnetic and thermal energy scales. More generally,
it describes the ratio between two characteristic reorientation
time scales αe = τe/τr. The time τr =

1
Dr

represents the av-
erage decorrelation time of a diffusive particle from its initial
orientation and τe =

ξr
mB is a measure of the typical alignment

time of a non-diffusive dipole with the external field. The
competition between alignment (order) and the randomization
of orientation (disorder) determines the degree of alignment
quantified by the mean polarization p0. It is given by the mag-
nitude of the polarization vector p0:

p0 =
∫
S2

dn nψ0(n) = p0B̂

p0(αe) = cothαe−
1

αe
. (21)

The function p0(αe) is identical to the well-known Langevin
function appearing in the context of paramagnetism or force-
extension relation of a freely jointed chain [54].

Assuming a magnetic field parallel to the z-axis, i.e. B =
Bẑ, without loss of generality, the homogeneous polar state
with axial symmetry takes the simple form of ψ0(αe,n) =
ψ0(αe,θ), where θ denotes the angle between the orientation
vector and the magnetic field and it coincides with the polar

angle in spherical coordinates for the orientation n(θ ,φ) =
(sinθ cosφ ,sinθ sinφ ,cosφ). The angular dependency of the
homogeneous polar steady state for different values of αe is
shown in Fig. 2 (a). A strong external magnetic field (large αe)
results in a focused angular distribution around the magnetic
field axis corresponding to θ = 0 and thus a large mean polar-
ization p0. The functional dependency of polarization mag-
nitude on the alignment parameter αe is plotted in Fig. 2 (b).
The mean polarization continuously increases with increas-
ing αe ∝ B. It asymptotically approaches a perfectly aligned
state with p0 = 1 in the limit of very large αe described by
limαe→∞ ψ0 = δ (n− B̂). In the other extreme of very low
magnetic field strengths, fluctuations will increasingly decor-
relate the orientation of a swimmer, leading to a flat profile
in the angular distribution, i. e., limαe→0 ψ0 = 1/4π , which
corresponds to an isotropic suspension with p0 = 0.

B. Linearized equations and eigenvalue problem

1. Linear perturbation of the base state

We now proceed to analyze the linear stability of the homo-
geneous polar steady state presented in Sec. III A. We con-
sider a small disturbance of the distribution function ψ with
respect to ψ0.

ψ = ψ0(n)+ εψp(x,n, t)

where |ε| � 1 and |ψp| ∼ O(1). Likewise, the flow-field
of the suspending medium is perturbed by, u = u0 + εup,
in which up is the flow-field caused by the perturbation ψp.
The corresponding flow field of the steady state is u0 = 0,
because all the spatial derivatives on the right-hand side of
Stokes equation (17) vanish for ψ0(n).

After neglecting terms of O(ε2) in the governing equations,
we obtain the following linearized evolution equation for ψp

∂tψp=−n ·∇ψp

+2n · B̂ψp− (P⊥n · B̂) ·∇◦n ψp

+(P⊥n ·W [up] ·n) ·∇◦n ψ0−3ψ0 nn .
.W [up]

+Dψp, (22)

where the double contraction .. is defined as (ab .. C) =
aib jCi j. In our derivation, we have used antisymmetric prop-
erty and tracelessness of the vorticity tensor W and the fol-
lowing identities:

P⊥n · (A ·n) = TrA−3nn .
.A

∇
◦
n ·(P⊥n ·a) =−2n ·a,

which hold for any arbitrary tensor A and vector a. The flow
field resulting from the perturbation up satisfies the same mo-
mentum equation as u, but forced by the linearized stress ten-
sor given by

σp(x, t) = σaQ[ψp]+σe(p[ψp]B̂− B̂p[ψp]])/2, (23)
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where the time-dependence of the stress tensor stems from
that of ψp(x,n, t).

To progress further, we Fourier-transform the linearized
Smoluchowski equation, Eq. (22) where the Fourier transform
of ψp is defined as ψF

p =
∫

dxψpeik·x and we use the fac-
torization ansatz ψF

p (k,n, t) = ψ̃(k,n)eλ (k)t . This ansatz de-
composes the contribution of Fourier mode of the perturbation
ψF

p to a time-independent amplitude ψ̃(k,n), also known as
mode shape, and an exponential growth factor with a complex
growth rate given by λ (k). This ansatz, which arises from lin-
earity of perturbation equations, implies that the Fourier trans-
form of the stress tensor due to perturbation given by Eq. (23)
can be written as σF

p = σ̃p(k)eλ (k)t , where

σ̃p[ψ̃](k) = σaQ[ψ̃]+σe(p[ψ̃]B̂− B̂p[ψ̃])/2. (24)

Consequently, the Fourier transform of the flow field up can
be obtained as

uF
p (k) =OF · (ik ·σF

p ) = i(OF · σ̃p ·k)eλ (k)t (25)

in which OF = 1
k2 (1− k̂k̂) is the Fourier transform of the Os-

een tensor and k̂ = k−1k is the normalized wavevector. From
above, we can see that the Fourier transform of the flow field
can also be decomposed as uF

p (k) = ũ(k)eλ (k)t where its am-
plitude is explicitly given by

ũ[ψ̃](k) =
i
k
(1− k̂k̂) · σ̃p[ψ̃] · k̂. (26)

After some algebraic manipulation, the governing equation
for ψ̃(k,n) transforms into an eigenvalue problem of the form

L[ψ̃] = λψ̃, (27)

in which L represents a linear differentio-integro-operator and
ψ̃(k,n) is the associated eigenvector encoding the form of the
orientational perturbation for a given k. The explicit form of
L is given by

L[ψ̃]=− in ·kψ̃

+2n · B̂ψ̃− (P⊥n · B̂) ·∇◦n ψ̃

+(P⊥n ·W̃ [ũ[ψ̃]] ·n) ·∇◦n ψ0−3ψ0 nn .
. W̃ [ũ[ψ̃]]

+∆
◦
n ψ̃−dtk2

ψ̃, (28)

in which W̃ [ũ] = i
2 (kũ− ũk). Based on the form of Eq. (28),

we note that the stability is governed by four dimensionless
parameters dt , αe, σa and σe. To determine the growth rate
λ (k) and hence stability of the active suspension in external
field for a given set of the parameters, we need to solve the
eigenvalue problem defined by equation (27). We discuss our
methodology for this problem in the following subsection.

2. Spectral method for solving the eigenvalue problem

The above analysis shows that it is sufficient to con-
sider plane wave perturbations of the form: ψp(x,n, t) =

ψ̃(k,n)eik·x+λ (k)t and up(x, t) = ũ(k)eik·x+λ (k)t to investigate
the linear stability of the steady state. Here, Reλ determines
growth rate and Imλ gives the frequency of a travelling wave
with wavevector k. To solve the eigenvalue problem of (27),
we employ a spectral method where we also expand the ori-
entational dependency of the eigenfunction ψ̃(k,n) as well as
ψ0 in the basis of spherical harmonics. We choose a spher-
ical coordinate system in which B is aligned with the polar
axis. Denoting the polar and azimuthal angles by θ ∈ [0,π]
and φ ∈ [0,2π), respectively, we have

n = (sinθ cosφ ,sinθ sinφ ,cosθ) (29)

In this coordinate system, the spherical harmonic function of
degree l and order m =−l, . . . , l is defined as

Y m
l (n) =

√
(2l +1)(l +m)!

4π(l−m)!
Pm

l (cosθ)exp(imφ) (30)

where Pm
l (cosθ) is the associated Legendre polynomial. The

spherical harmonics satisfy the orthogonality condition:

〈Y m
l |Y m′

l′ 〉= δll′δmm′ (31)

where the scalar product is defined by

〈 f |g〉=
∫
S2

dn f ∗(n)g(n),

with the star operator •∗ representing the complex conju-
gation. These functions form a complete basis on the unit
sphere, on which we expand the mode shape ψ̃(k,n) as

ψ̃(k,n, t) =
∞

∑
l=0

l

∑
m=−l

Y m
l (n)ψ

m
l (k, t) (32)

⇔ |ψ̃〉=
∞

∑
l=0

l

∑
m=−l

|Y m
l 〉〈Y m

l |ψ̃〉 , (33)

where

ψ
m
l (k, t) = 〈Y m

l |ψ̃〉
is the coefficient corresponding to spherical harmonics Y m

l .
After substituting Eq. (33) into Eq. (27) and applying the

orthogonality condition Eq. (31), the eigenvalue problem for
the mode shape ψ̃(k,n) reduces into an algebraic eigenvalue
problem for the vector |ψ̃〉 whose components are given by
the harmonic amplitudes ψh

l :

∞

∑
j=0

j

∑
m=− j

Lmh
jl ψ

m
j = λψ

h
l (34)

in which Lmh
jl ≡ 〈Y h

l |L(Y m
j )〉. Expanding the operator L de-

fined by Eq. (28) on the spherical harmonics basis generates
terms which are products of two spherical harmonics. The
product can in general be written as the following linear com-
bination of spherical harmonics

Y m1
j1

(θ ,φ)Y m2
j2

(θ ,φ) = ∑
j3,m3

√
(2 j1 +1)(2 j2 +1)

4π(2 j3 +1)

×〈 j1,0, j2,0| j3,0〉
×〈 j1,m1, j2,m2| j3,m3〉Y m3

j3
. (35)



7

10−6

10−4

10−2

100

d
iff
(ψ̃

)
(a)

0 10 20

jmax

10−6

10−4

10−2

100

d
iff
(λ
)

(b)

0 10 20

jmax

0.0

0.1

0.2

R
eλ

[j
m
a
x
](c)

αe = 4
σa = ±30

αe = 20
σa = 40

FIG. 3. (a) Magnitude of change of the corresponding eigenvectors
(in the basis of spherical harmonics) with respect to a truncation or-
der jmax, diff(ψ̃, jmax) = ‖ψ̃[ jmax]− ψ̃[ jmax−1]‖. The remaining
parameters are fixed to σe = 0.4αe,dt = 3×10−6. (b) Change of the
largest eigenvalues diff(λ , jmax) = |λ [ jmax]−λ [ jmax−1]| as a func-
tion of the number of included modes jmax on a logarithmic scale.
(c) The largest growth rate Reλmax[ jmax] as a function of truncation
order jmax.

in which 〈 j1,m1, j2,m2| j3,m3〉 are known as the Clebsch-
Gordan coefficients and their values are tabulated [55, 56] and
included in common software packages and computer algebra
applications such as Mathematica. The tensor L in Eq. (34)
is of infinite size, hampering further analytical progress. We
solve the algebraic eigenvalue problem by truncating the sum
at sufficiently large j = jmax such that the convergence of
the dominant eigenvalues and eigenvectors are ensured. The
number of angular modes that have to be included for conver-
gence depends on αe partly because of the growing number of
modes needed to accurately represent the steady state for large
αe. Truncating the coefficient tensor L introduces an error in
the calculation of the eigensystem. However, the error gets
progressively smaller and has rapid convergence when adding
further modes. as a function of jmax is plotted in Fig. 3 for
two different values of αe. For αe = 4, we find that jmax = 5 (
55 angular modes) is sufficient to obtain a good convergence
whereas for αe = 10, at least jmax = 10 ( 210 angular modes)
is required for a reasonable convergence.

C. Linear stability of homogeneous polar steady state

As discussed earlier, the linear stability of the homoge-
neous steady state ψ0 in equation (20) depends on four di-
mensionless parameters dt , αe ∝ µB, σa and σe. Addition-
ally, the eigenvalue problem defined by Eqs. (27) and (28)
and thus the stability of the steady state depends on the direc-
tion of the wavevector k̂ with respect to the field direction as
the external field breaks the rotational symmetry. However,
the system still holds an axial symmetry around the B axis.
Hence, the direction of wavevector can be characterized by a
single angle between the magnetic field and the wavevector
ΘB = cos−1(k̂ · B̂). For a given solvent viscosity and den-

−50 −25 0 25 50
σa

0

10

20

30

40

α
e

k‖ k⊥

pusher puller

0.5 1.0

p0(αe)

FIG. 4. Stability diagram of the steady state ψ0(αe) given by Eq. (20)
as a function of the dimensionless active stress σa and alignment pa-
rameter αe ∝ B; while setting σe = 0.4 αe and dt = 3×10−6. The
borderline of neutral stability (red dash-dotted line) is calculated by
finding Reλmax(k) = 0, enveloping all possible unstable modes. The
dashed amber lines correspond to the cases where Reλmax(k||) = 0
for pushers and Reλmax(k⊥) = 0 for pullers. {These amber lines
separate the areas where finite wavelength perturbations predominate
from the regions for which the long wavelength instabilities paral-
lel and perpendicular to the field prevail pusher (σa < 0) and puller
(σa > 0) suspensions, respectively. The solid blue lines represent
Reλmax(k) = 0 based on the linear stability analysis of density and
polarization fields from truncated moment equations for wavevectors
parallel and perpendicular to the magnetic field. On the right side, the
corresponding polarization p0 of the steady state ψ0(αe) is plotted.
For the points marked by crosses, the behavior of growth rate and
pattern formation are further discussed in the paper.

sity of active particles, the experimentally tuneable parame-
ters are the strengths of activity and magnetic field. There-
fore, we construct a stability diagram as a function of αe ∝ µB
and σa. We set dt = 3× 10−6 and, while fixing the particle’s
magnetic dipole moment to µ = 1×10−16 Am2 [23, 29], we
vary the magnetic stress concomitantly with αe as σe = 0.4αe.
These parameters are chosen to be comparable to the parame-
ter ranges relevant for magnetotactic bacteria [23].

For a given set of parameters, ψ0 is unstable if the
maximum growth rate is positive for at least one mode
parametrized by (k,ΘB). Based on the results of linear stabil-
ity analysis, we divide the parameter space spanned by (σa,α)
into stable and unstable regimes with respect to the steady
state ψ0 [33]. In the stable regime, the system evolves to-
wards the steady state ψ0 and becomes stationary. In the un-
stable regime, even small fluctuations make the system depart
from ψ0 towards a non-trivial dynamics. A line of neutral
stability, i.e., Reλmax = 0 divides the two regimes. In stabil-
ity diagram of Fig. 4, the red dashed-dotted lines represent
the lines of neutral stability for pushers σa < 0 and pullers
σa > 0. On the right panel, the mean polarization p0(αe)
given by Eq. (21) is plotted, highlighting the dependency of
the steady state ψ0 on αe. The steady state ψ0 is stable for
either of small activity |σa| . 20 or a low external magnetic
field αe . 0.5. In the case of small σa, hydrodynamic interac-
tions are too weak to destabilize the steady state. For a small
αe, the polarization p0(αe . 0.5). 0.3 is rather weak and our
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FIG. 5. Growth rate Reλmax and oscillation frequency Imλmax for
different perturbation angle ΘB. For (a) pusher at σa = −30,αe =
4, (b) puller at σa = 30,αe = 4,σa = 30, and (c) pusher at σa =
−40,αe = 19. (d) puller at σa = 40,αe = 19.

system akin to an isotropic suspension of spherical swimmers
remains stable. For a sufficiently large active stress σa & 20
and a moderate external magnetic field strength, the homoge-
neous polar steady state becomes unstable. In this regime, the
combined effect of sufficiently strong hydrodynamic interac-
tions ∝ σa and orientation fluctuations drive the system away
from a uniformly aligned state. Interestingly, by further in-
creasing the external magnetic field strength, the steady state
becomes stable again, and we observe a reentrant hydrody-
namic stability. Reentrant stability at strong external fields is
a consequence of magnetic torque overcoming the hydrody-
namic torque. For given active stress amplitude σa, the active
force fa = σa∇ ·Q and its resulting hydrodynamic torque has
an upper bound that can be overcome by the alignment torque
for sufficiently strong magnetic fields. As a result, the steady
state becomes stable again.

Analyzing the nature of instability in the unstable regions,
we recognize four distinct types of instability. To demonstrate
their distinct nature, four representative points, correspond-
ing to each type are picked out from the stability diagram.
These points are marked by crosses in Fig. 4 and correspond
to (σa,αe) = (−30,4),(30,4),(−40,20) and (40,20) in the
parameter space. Fig. 5 shows the real and imaginary parts
of the complex growth-rate with the largest real part, the so-
called maximum growth rate (Reλmax) and its oscillation fre-
quency Imλmax, as a function of k = |k| at various pertur-
bation angles ΘB for each of the points. We note that the
maximum growth rate strongly depends on the direction of
the perturbation wavevector, i. e., ΘB. For puller and pusher

swimmers with equal strength of activity |σa| = 30 and mag-
netic field αe = 4, long-wavelength perturbations k→ 0 dom-
inate the instabilities and destabilize the homogeneous polar
state ψ0. However, for pushers σa = −30, fluctuations in the
direction of magnetic field grow fastest, whereas for pullers
σa = 30 both perturbation directions parallel and perpendicu-
lar to B predominate the system. Therefore, we expect distinct
patterns of instabilities for pushers and pullers as confirmed
by our non-linear simulations presented in Section V. No-
tably, in both cases Imλmax(k→ 0)→ 0 which implies that
the large wavelength fluctuations grow monotonically with
time. Interestingly, for pushers and pullers with stronger ac-
tivity σa = ∓40 and much larger magnetic field αe = 20 but
still in the unstable regime, the wavenumber corresponding
to the maximum growth-rate kmax ≈ 2.5 is finite and it oc-
curs at ΘB ≈ 30◦ for pushers and ΘB ≈ 60◦ for puller, fea-
turing clearly different instability regimes. In the case (d),
Imλ (kmax) of the wavevector with the maximum growth-rate
is non-zero pointing to the oscillatory behavior of the predom-
inant growth mode. These examples represent the four dis-
tinct types of instabilities observed: parallel and perpendicu-
lar orientational instabilities for pushers and pullers at mod-
erate external field strengths, and more complex perturbation
structures at higher field strength featuring a finite character-
istic wavenumber for the largest growth rate at an activity-
dependent angle intermediate between parallel and perpendic-
ular directions.

IV. LINEAR STABILITY OF ORIENTATIONAL MOMENT
EQUATIONS

In this section, we take an alternative approach for inves-
tigating the linear stability of the homogeneous polar steady
state. Instead of expanding the orientational part of the sin-
gle particle distribution ψ in terms of spherical harmonics,
as done in equation (32), it equivalently can be expanded in
terms of dyadic products of the orientation vector n [57, 58],

ψ(x,n, t) = ∑
j
M( j,x,n)� j n⊗ j, (36)

where the l-fold dyadic product is denoted by

n⊗l = n⊗ . . .⊗n︸ ︷︷ ︸
l times

, (37)

and �l denotes the l-fold contraction of two tensors,

(A�lB)
i1,...,in−l

kl+1,...km ,= Ai1,...,in−l , j1,... jl B j1,..., jl ,kl+1,...km ,

for tensorsA ∈ T n
0 (R3) andB ∈ T 0

m(R3) using Einstein sum-
mation convention. As shown in reference [57], the coeffi-
cients M( j,x,n) are proportional to the orientational expec-
tation values of the symmetric and traceless (irreducible) part
of n⊗ j, where the orientational expectation value is defined
as 〈•〉n =

∫
S2 dn ψ •. They are called the orientational mo-

ments of ψ . Especially, the zeroth, first and second moments
coincide with the density, the polarization, and the nematic
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fields defined in equations (5-7). Hence, the distribution ψ

expanded in terms of the orientational moments reads

ψ(x,n, t)=
1

4π

[
ρ(x, t)+3n ·p(x, t)+ 15

2
nn ..Q(x, t)+ · · ·

]
.

Truncating the moment expansion allows us to manipulate the
resulting terms algebraically and to find approximate analyt-
ical expressions for the linear stability analysis. Evolution
equations for each of the orientational moments can be di-
rectly derived by taking moments of the Smoluchowski equa-
tion (13). The dynamical moment equations for the first three
moments are presented in the subsequent subsection.

A. Equations of moments

The time evolution of the density field ρ(x, t) = 〈1〉n can
be derived by tracing out the angular dependency in equa-
tion (13). Using the identity

∫
S2 dn ∆◦n ψ = 0, its time evo-

lution is given by

Dtρ =−∇ ·p+dt ∆ρ. (38)

where Dt ≡ ∂t +u ·∇ represents the material derivative. This
represents a convection-diffusion type of equation with a
source term which originates from the divergence of polar-
ization field. Likewise, the time evolution of the polarization
field p(x, t) = 〈n〉n can be obtained by taking the first moment
of equation (13) and using the following identities.∫

S2
dn n∆

◦
n ψ =−2p (39)

and ∫
S2

dn n∇
◦
n ·(vtψ) =−

∫
S2

dn vtψ, (40)

in which vt represents any tangential vector field on a sphere
fulfilling vt ·n = 0, and in our context, it is given by the ro-
tational drift velocity vn defined by equation (15)). Conse-
quently, the evolution equation for the polarization field is
given by

Dtp =−∇ ·Q− 1
3

∇ρ

−
(
Q− 2

3
ρ1

)
·αeB̂+W ·p−W .

. 〈nnn〉n +dt ∆p−2p.

(41)

which is again a convection-diffusion type of equation with a
more complex source term including contributions from den-
sity gradient, polarization and the divergence of the nematic
tensor field and terms arising from the interaction of the ac-
tive particles with the local flow vorticity and the magnetic
field.

Lastly, we obtain the time evolution of the nematic tensor
fieldQ(x, t) =

〈
nn−1/3

〉
n by integrating equation (13) with

∫
S2 dn nn• and using the following identities:

∇
◦
n n = eϑ eϑ + eϕ eϕ = 1−nn (42)∫

S2
dn nn∇

◦
n ·vr =−

∫
S2

dn [nvr +vrn] (43)∫
S2

dn nn∆
◦
n ψ =−2

∫
S2

dn nψ ∆
◦
n n+2

∫
S2

dn ψ ∇
◦
n n

=−6Q, (44)

Additionally, the moment equation for Q is eventually given
by

DtQ=
1
3
1∇ ·p+αe(pB̂+ B̂p)−W ·Q+Q ·W −6Q

+dt ∆Q−∇ · 〈nnn〉n−2αeB̂ · 〈nnn〉n, (45)

in which we have used the antisymmetric property of the vor-
ticity tensor W to further simplify the equation. The dynam-
ics of nematic tensor is directly affected by source terms stem-
ming from the divergence of polarization. Similar to nemato-
dynamics equation of active nematics [59], the dynamics ofQ
is strongly coupled to the flow velocity through the advection
and vorticity terms. Moreover, additional terms appear due to
coupling to the external field.

As can be seen from the equations of moments Eq. (38),
Eq. (41), and Eq. (45), they constitute a hierarchy of equations
where each moment equation depends on higher moments. In
order to proceed further, we break this hierarchy by introduc-
ing the following closure relations which are compatible with
a polar steady state:

Q̄= pp− 1
3
1,

〈nnn〉n = 0.
(46)

All higher order moments are neglected. This closure approxi-
mation is sometimes referred to as Hand-closure [60]. Impos-
ing these closure relations, the nematic field is coerced by the
polarization field and the dynamic equation for the nematic
tensor Eq. 45 is not needed anymore. We will see in the next
subsection that it generates perturbations that are structurally
consistent with the results of linear stability analysis of steady
distribution function ψ0 in Section III B 1.

B. Stability of moments

After establishing the moment equations of the system, re-
duced to the density and polarization field, we proceed with
their respective linear stability analysis employing the above
closure relations. The homogeneous steady state solution of
moment equations, Eqs. (38) and (41) is given by (ρ0,p0)
where

ρ0 = 1 (47)

p0 =

√
4α2

e +9−3
2αe

B̂. (48)
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which become equivalent to 〈1〉ψ0
n and 〈n〉ψ0

n = αe cothαe−1
αe

(see
Eq. (21)) for sufficiently small αe. Using the first closure re-
lation given in Eq. (45), we can express the nematic tensor of
the steady stateQ0 in terms of p0, i.e.,Q0 = p0p0− 1

31.
Next, we linearly disturb the steady state by small pertur-

bations of the form

ρ = ρ0 + ερp (49)
p = p0 + εpp (50)

Q̄= Q̄0 + εQ̄p =

(
p0p0−

1
3
1

)
+ ε(p0pp +ppp0) (51)

u = u0 + εup, (52)

in which 0 < ε � 1 and u0 = 0, and substituting them into
equations (38) and (41) the dynamics of the linearized pertur-
bations in O(ε) can be formulated as

∂tρp=−∇ ·pp +dt ∆ρp (53)

∂tpp=
2
3

ρpαeB̂− 1
3

∇ρp +Wp ·p0 +dt ∆pp−2pp

−∇ · Q̄p− Q̄p ·αeB̂. (54)

Analogous to Section III B 1, we make an eigenmode ansatz
for the perturbations of the moments as below:

ρp(k;x, t) = ρ̃(k)eik·x+λ t (55)

pp(k;x, t) = p̃(k)eik·x+λ t (56)

Qp(k;x, t) = Q̃(k)eik·x+λ t ≡ (p0p̃(k)+ p̃(k)p0)eik·x+λ t

(57)

up(k;x, t) = ũ(k)eik·x+λ t . (58)

Here, the flow field perturbation ũ is mainly driven by Q̃ as

ũ =
i

k2

(
1− k̂k̂

)
·σaQ̃ ·k, (59)

in which k̂ = k−1k and Q̃ ≡ p0p̃+ p̃p0. Here, we have ne-
glected the contribution of magnetic stress due to its small
effect. Substituting the eigenmode ansatz for perturbations
back into the density and polarization equations, they trans-
form into

λρ̃=− ik · p̃−dtk2
ρ̃ (60)

λ p̃=
2
3

ρ̃ αeB̂− i
3

kρ̃ +W̃ ·p0−dtk2 p̃−2p̃

− ik · (p0p̃+ p̃p0)− (p0p̃+ p̃p0) ·αeB̂, (61)

where again W̃ = i
2 (ũk−kũ).

To analyze these equations, we consider perturbations of
polarization which are perpendicular to the external field
B = Bẑ and polarization p0 ≡ p0ẑ. Without loss of gener-
ality, we assume the perturbation to be in the x-direction i.e.,
p̃ ≡ p̃(k)x̂. This assumption reduces the problem to 2D and
moreover, p̃ ·p0 = 0. It also implies that small linear pertur-
bations perpendicular to p0 practically influence the orienta-
tion but not the magnitude of the polarization and allows us

to investigate hydrodynamically induced orientational insta-
bilities. Moreover, it naturally generates a nematic perturba-
tion of the form p̃p0 +p0p̃ which is compatible with the clo-
sure approximation given by Eq. (46). Physically, a polariza-
tion perturbation of this form corresponds to bend (for push-
ers) and splay (for pullers) deformations of the polarization
field [39], to be discussed in the following Section. Setting
p̃ ·p0 = 0 and thus focusing on ρ̃ and p̃⊥, the equations (60)
and (61) can be written in the reduced form of

λ

(
ρ̃

p̃⊥

)
= T ·

(
ρ̃

p̃⊥

)
, (62)

with the operator

T ≡

(
−dtk2 −ik sinΘB

− 1
3 ik sinΘB −2−dtk2− ip0 k cosΘB−αe p0− 1

2 p2
0σa cos2ΘB

)
.

Here, k = k sin(ΘB)êx + k cos(ΘB)êz was used, where ΘB
denotes the angle of the direction of the perturbation with
respect to the external field axis pointing in the z-direction,
ΘB =∠(k,B). The eigenvalues can be found analytically[61].

Solving this eigenvalue problem, we find that the largest
eigenvalue can be found at k→ 0, in agreement with the find-
ings of Section III C for the cases (a) and (b) in Fig. 5. There-
fore, for stability regimes (a) and (b), it is sufficient to restrict
the analysis to parallel and perpendicular modes of truncated
moment equations to assess the stability of a uniform polar-
ization field. The k→ 0 eigenvalues read

λ1,2 =
1
4
(a±|a|) (63)

with a = −4− 2αe p0 − p2
0σa cos2ΘB. The largest eigen-

value is given by λmax = max(0,a/2) (and the smallest by
min(0,a/2)). However, simulations show that the perturba-
tion associated with the λ = 0 can be considered stable. On
the other hand, the eigenvalue corresponding to the mode that
becomes unstable, i.e., the one having a change of sign in its
growth rate, can be constructed by combining the non-zero
parts of eigenvalues into one, yielding

λ =
a
2
=−2−αe p0−

1
2

p2
0σa cos2ΘB. (64)

The dependence of the non-zero eigenvalue λ on the align-
ment parameter αe is plotted in Fig. 6. This result demon-
strates that the simplified approach is sufficient to recover the
re-entrant stability obtained earlier based on the full linear sta-
bility analysis of the steady state.

The line of neutral stability can be found by solving λ = 0
for σa:

σ
0
a (αe) =−

2p0(αe)αe +4

p0(αe)
2 cos2ΘB

. (65)

It is shown in Fig. 4 in direct comparison to the result of linear
stability analysis of the steady state distribution function ψ0.
The line of neutral stability based on the stability of the first
two moments (blue solid line) nearly coincides with the results
of the parallel and perpendicular perturbations obtained from
the linear stability analysis of ψ0 discussed in Section III C
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FIG. 6. The growth rates Reλ against the alignment parameter αe of
a linear perturbation of the polarization field, equation (64). This il-
lustrates the re-entrant stability upon increase of magnetic field. The
blue line is the eigenvalue of a mode crossing over from negative to
positive and back to negative growth rate. It is constructed from the
eigenvalues λ1,2 defined in equation (63).

(red dashed line). For larger external field strengths, the full
analysis reveals additional unstable modes that do not fall into
the same scheme. For the regions between the red dash-dotted
lines and dashed amber lines in Fig. 4), a wider spectrum of
orientational modes contribute to the instability that are not
captured by the closure approximation of equation (46). Ad-
ditional moments would be required to obtain a complete de-
scription.

V. NONLINEAR DYNAMICS SIMULATIONS

The linear stability analysis predicts the stability of a given
steady state and provides us with a qualitative insight into the
dynamics near it. However, as the system departs from the ini-
tial steady state, non-linearities prevail the dynamics and the
linearized equations fail to describe the dynamics correctly.
Therefore, it is necessary to investigate solution of the full
non-linear equation (13). Below, we first outline our method-
ology for solving the full non-linear Smoluchowski equations
coupled to the Stokes flow. Then, we discuss the pattern for-
mation emerging from the long-time dynamics of active mag-
netic swimmers in the external field.

A. Numerical simulation method

There exist various numerical methods to solve the Smolu-
chowski equation depending on both position and orientation.
The common methods such as finite-difference and finite-
volume methods discretize the partial differential equation on
a grid. However, such computations are quickly costly on the
necessary five-dimensional grid and additional care has to be
taken to conserve the probability density. Instead, here we fol-
low a different physically motivated approach which is based
on the equivalency between the Smoluchowski and Langevin
equations which we dub as stochastic sampling method. This
method is based on an Brownian dynamics integrator for the
coupled translational and rotational Langevin equations with

periodic boundary conditions, which are the counterpart of the
Smoluchowski equation. They are given by:

ẋ = vx(ψ(x,n, t),x,n, t)+
√

2dtΓ(t) (66)

ṅ = vn(ψ(x,n, t),x,n, t)+
√

2Λ(t)×n, (67)

where vx and vn are defined by equations (3) and (4). Γ and Λ
represent the stochastic force and torques with the following
statistical properties:

〈Γ(t)〉= 0, 〈Γi(t)Γ j(t ′)〉= δi jδ (t− t ′), (68)
〈Λ(t)〉= 0 , 〈Λi(t)Λ j(t ′)〉= δi jδ (t− t ′) (69)

Within our theory, direct inter-particle dependencies are re-
placed by mean-field interactions. Consequently, once the
mean-field stress profile and the resulting flow is computed
from the distribution function, different initial value problems
for a given particle can be simulated independently of each
other, and therefore in parallel. This realization is the basis of
our “Stochastic Sampling” method.

To solve these equations numerically, we employ the Eu-
ler forward integration scheme based on the Itô interpretation
of noise. For every time step, we integrate the correspond-
ing Langevin stochastic differential equations for the positions
and orientations of a large number (order of 108) of indepen-
dent and randomly initialized test particles with a time step
∆t = 0.01 tc. These sample configurations provide us with
sufficient statistics to infer the distribution function ψ(x,n, t)
by using a kernel density estimation method. From the es-
timated distribution function, we compute the stress profile
in the fluid. We use a spectral method based on the decom-
position of u into the Fourier modes for solving the Stokes
equation. In the Fourier domain, the flow field is obtained as
uF

p (k) = 1
k2 (1− k̂k̂) · (ik ·σF

p ), in which σF
p is the Fourier

transform of the stress tensor. Given the stress profile, the flow
field in terms of its Fourier modes on a periodic lattice is ob-
tained. By an inverse Fourier transformation the flow in real
space can be obtained. Eventually, u(x, t) is fed back into the
next integration time step for the Langevin equations. Fig. 7
summarizes the flow diagram of our method for which further
details can be found in reference [62].

This method intrinsically conserves the probability den-
sity, because the number of particle realizations is preserved,
which leads to a good numerical stability. Furthermore, by
sampling regions with high density, and high impact on the
dynamics, more intensely, while sampling low impact regions
more sparsely, a rather fast simulation time can be achieved.
On a production run, it takes a couple of days to run 10000
time steps for 200 million simulation particles on a typical
2017th HPC cluster node, providing sufficient statistics for
the observed patterns.

In the reported numerical simulations, we use a grid of 100
lattice points with box dimensions of 5xc for each of the spa-
tial coordinates, and 24 and 16 points for the spherical polar
and azimuthal orientational coordinates θ and φ in n(θ ,φ).
This choice of box dimension ensures that the initial pertur-
bation spans both unstable and stable modes for all the four
instability regimes presented in Fig. 5. The simulations, con-
ducted in a box size of Vsim = (5xc)

3, are initialized with the
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Ψ(tn) ⇒ x,n(tn)

tn → tn+1

x,n(f [Ψ(tn)], tn+1)
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Ψ(x,n, tn+1)
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FIG. 7. Flow diagram illustrating the algorithm of Stochastic Sam-
pling method used to solve full non-linear Smoluchowski equation
coupled to the mean-field Stokes flow. Given a probability density
function (PDF) Ψ, the mean flow field can be calculated by eval-
uating the stress profile based on Eq. (18). Then, the PDF can be
sampled to obtain particles which are integrated using the interaction
field. Employing the updated sample configuration the PDF can be
estimated by a Kernel Density Estimation (KDE). By iterating the
process, the Smoluchowski equation describing the dynamics of the
PDF can be integrated in time.

homogeneous polar steady state ψ0, given by equation (20) for
different system parameters. As in the previous sections, the
translational diffusion is fixed to dt = 3×10−6, the alignment
stress magnitude is set to σe = 0.4αe, while the external mag-
netic field and the active stress magnitude are varied through
the alignment parameter αe and the active stress amplitude σa.

B. Pattern formation and nature of instabilities

Starting from a spatially homogeneous polar state ψ0(αe)
given by Eq. (20), we evolve ψ and u for each state point
characterized by the (αe,σa) pair by employing the method
outlined above. For the unstable state points, ψ departs
from ψ0 significantly whereas for the stable points the system
converges towards ψ0 even starting from an initial uniform
isotropic state. The snapshots of Fig. 8 depict the time evolu-
tion of density field, projected to 2D by averaging along the
y-axis, for (αe,σa) values corresponding to the points marked
by crosses in Fig. 4. We observe a general trend that a uni-
form density profile becomes unstable towards density fluctu-
ations. Over time, small-scale fluctuations disappear and the
field profiles become smoother owing to diffusion. Only pre-
dominant fluctuations at wavelengths of the order of the box
size persist. As a consequence, smooth non-uniform density,
polarization and flow fields develop. At long times, the config-
uration of the active suspensions is not steady but constantly
fluctuates in time. The distribution of swimmer orientation
appears to converge towards a dynamical steady state which
depends on αe and σa, leading to a constant average polariza-
tion in time [33]. In contrast, the density fields exhibit distinct
spatial patterns for different instability regimes which keep
evolving and reorganizing.

Using the results from the non-linear dynamics simulations,
we assess the validity of the phase diagram of Fig. 4 pre-
dicted by the linear stability of ψ0(αe). Fig. 9 presents an
overview of density field projections into the x-z-plane, at a
late time t=1800, after the instability has already established
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FIG. 8. Representative snapshots of density field projections av-
eraged along the y-axis from 3D non-linear simulations at differ-
ent time steps, as shown on the snapshots, for magnetic swimmers
with activity strength and alignment parameter values (a) σa = −30
(pusher) and αe = 4 (b) σa = 30 (puller) and αe = 4, (c) σa = −40
(pusher) and αe = 19 and (d) σa = 40 (puller) and αe = 19. The
colors encode the probability density integrated in the y-direction
ρ̄(x,z) = ∆y∑y ρ(x,y,z). In all simulations, the translational diffu-
sion is fixed to dt = 3×10−6 and the alignment stress is varied along
the external field as σe = 0.4αe.

itself, for different values of the active stress σa and the align-
ment parameter αe. To compare with the linear stability anal-
ysis predictions, we have plotted the lines of neutral stabil-
ity (red lines), for which the largest growth rate is zero, i.e.,
Reλmax = 0. Additionally, the dashed amber lines depict the
borderlines beyond which instability is governed by parallel
and perpendicular perturbations for negative (pusher) and pos-
itive (puller) σa, respectively. Comparing the predictions of
the linear stability analysis with results of simulations for dif-
ferent activity and magnetic field strengths, we find excellent
agreement. ψ0(αe) is stable for the (σa, αe) values where den-
sity profile remains homogenous, whereas ψ evolves towards
an inhomogeneous time-dependent density profile for the re-
gions that are unstable according to the linear stability analy-
sis.

For moderate external magnetic field strengths ∝ αe and
moderate activities ∝ σa, corresponding to the unstable re-
gions beyond the amber lines, patterns with the most distinct
characteristics appear. The higher the external field, the pat-
terns display finer structures (of higher wavenumbers) in the
density profile suggesting a the predominance of the charac-
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FIG. 9. Density projections for different (αe,σa) values superposed by the lines of neutral stability from linear stability analysis. Pushers are
one the left (σa < 0) and pullers on the right (σa > 0). The red lines marks the onset of instability calculated by the linear stability analysis
probing all possible orientations of wavevector. The amber dashed lines correspond to predictions for neutral stability (Reλmax(k) = 0) when
considering only perturbations parallel k|| (pushers) and perpendicular k⊥ (pullers) to the external field. The translational diffusion coefficient
is fixed to dt = 3×10−6 and the alignment stress is varied with the external field as σe = 0.4αe.

teristic length scale associated with the external field vary-
ing inversely with magnetic field strength. Indeed, based on
dimensional analysis, one can identify a length scale `e ∝√

Dtη/ρmµB ≡
√

Dtη/σe. In these regions, the basic char-
acteristics seem to be conserved, with a sheet-like structure
for pushers and a pillar-like structure for pullers. In the in-
termediate regions between the red and amber lines, the per-
turbative mode structure of the instabilities differs from the
region beyond the amber line, as discussed in section III C
and particularly in Fig. 4. For pushers, we observe sheet-like
density structures which are not perpendicular to the magnetic
field. Pullers in the intermediate region mainly produce a sim-
ilar density profile as in the region beyond amber line but with
finer density structures. Notably, at higher magnetic fields,
i.e., larger αe, we observe hatch-like patterns of density with
finite width, which are not parallel to the magnetic field. In
general, as expected, the instabilities near the line of neutral
stability are rather weak and the resulting dynamics only de-
part very slowly from the steady state. Consistent with the
linear stability analysis prediction, we observe distinct pat-
terns for pushers and pullers. More insight into instabilities

and their underlying mechanism can be gained by investigat-
ing the polarization and self-generated flow fields. In the fol-
lowing, we discuss the prominent features of the long-time
density, polarization and flow fields of each of the represen-
tative points discussed in Fig. 5 and Fig. 8 corresponding to
four distinct instability regimes.

1. Instability regime (a): traveling sheets

The snapshots in Fig. 8 (a) present pattern formation for
pushers with dimensionless active stress σa =−30 and align-
ment parameter αe = 4. They correspond to the panels (a.1)
and (a.2) of Fig. 5, where the linear stability analysis pre-
dicts the prevalence of the long wavelength instabilities of
wavevectors parallel to the magnetic field. At late stages of
the simulations, we observe density modulations in the direc-
tion parallel to B, confirming the development of such long
wavelength instabilities. The swimmers concentrate in sheets
perpendicular to the magnetic field spanning the whole trans-
verse dimension of the box while traveling collectively in the
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FIG. 10. (a) Streamlines of the polarization field (py, pz) of a slice
in the y-z-plane at x = 0.75, demonstrating the characteristic bend
fluctuations for a suspension of pushers with dimensionless active
stress σa =−30 and alignment parameter αe = 4 in a magnetic field
pointing in z-direction. The color encoded local density ρ/V × 106

is shown in the background. (b) The corresponding flow field (uy,uz)
is represented as vector arrows where the length of the vector is
weighted by its magnitude. The flow vorticity, responsible for the
hydrodynamically induced particle rotation, is color encoded in the
background. Red colors correspond to a vorticity vector pointing out
of the plane (counter clockwise rotation). Lines of constant density
are overlaid as contour lines on top to guide the eyes.

field direction. To better understand the origin of these hydro-
dynamic instabilities, we investigate the corresponding polar-
ization and flow fields. We first focus on a 2D slice of the
sample. Fig. 10(a) displays the polarization field superim-
posed by the density field at a late stage t = 1800. In Fig. 10
(b), the corresponding flow and vorticity fields are presented.
We note that concomitant with density modulations, the polar-
ization and flow fields also become non-uniform. The polar-
ization streamlines begin to deflect from straight lines forming
bend-like deformations. Such distortions can be understood in
terms of bend instability of polarization field similar to those
observed in liquid crystals.

Bend fluctuations consist of small polarization perturba-
tions which are perpendicular to p0 while their magnitude
is modulated in the direction parallel to p0 ‖ B̂ ≡ ẑ, i. e.,
pp = p̃⊥ exp(ikzz) [39, 63]. Such distortions increase the den-
sity in volumes of negative divergence ∇ ·p < 0, as expected
based on time evolution of density given by Eq. (38). As
a result, pushers form dense layers perpendicular to B̂ that
migrate parallel to the magnetic field. Bend-like distortions
also generate a position-dependent active stress ∝ Q that re-
sults in a net active force density in the fluid given by fa ≈
σa∇ ·

(
pp− 1

31
)

. The active force density leads to alternat-
ing flow layers perpendicular to the magnetic field as can be
observed from Fig. 10(b). The ensuing vorticity field, encoded
by background color, is also modulated in a similar fashion.
According to the Faxen’s second law [48], the spherical mi-
croswimmers is affected by the hydrodynamically induced
torque MHD ∝

1
2 ∇× u due to the flow vorticity, which ro-

tates the swimmers further away from the magnetic field axis.

FIG. 11. 3D volumetric visualizations of the density field of (a) σa =
−30 (pusher) and αe = 4; (b) σa = 30 (puller) and αe = 4; (c) σa =
−40 (pusher) and αe = 19; (d) σa = 40 (puller) and αe = 19, at
t = 1800 corresponding to the last time step presented in panels (a-d)
in Fig. 8, respectively. Figures in panel (a) and (b) are reused from
reference [33] with permission.

Thus, the self-generated flow amplifies the bend distortions
and renders a uniform homogenous polar phase unstable. This
self-amplification would lead to a highly unstable feedback
loop if the external torque MB ∝ αep× B̂ would not eventu-
ally counterbalance the hydrodynamic torque. The competi-
tion between the alignment and hydrodynamic torques con-
tinues until they almost balance each other, hindering further
growth of instabilities. As a result, fairly stable patterns at
dynamic equilibrium are established.

The emerging picture from a 2D slice of instability snap-
shot, provides the ground for discussion of 3D patterns. The
3D visualization of the density field shown in Fig. 11(a) is
consistent with the picture drawn from a 2D slice. It clearly
shows that the pushers concentrate in sheet-like structures per-
pendicular to the magnetic field that migrate in the field direc-
tion B̂≡ ẑ. Now, if we plot the variation of the perpendicular
component of the polarization field averaged in the x-y plane
along the z-axis i.e. 〈p⊥(z)〉x,y = 〈(px(z), py(z))〉x,y, shown in
Fig. 12, we observe a helical-like evolution of 〈p⊥(z)〉x,y. For
clarity, each of the perpendicular components of polarization,
〈px(z)〉x,y and 〈py(z)〉x,y are also shown in the px-z and py-z
planes by red and blue lines, respectively. We note that each
of the perpendicular components exhibit a bend-like instabil-
ity. Therefore, the resultant 〈p⊥(z)〉x,y can be interpreted as a
superposition of phase shifted bend deformations of the ori-
entation. The observed behavior is reminiscent of the bend-
twist phase predicted for passive chiral or bent-shape liquid
crystalline mesogens [64, 65] and observed experimentally in
achiral molecules [66]. Moreover, in hydrodynamic theory
of vectorially ordered suspensions of self-propelled particles
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FIG. 13. (a) Mean azimuthal angles around the magnetic field
axis for the orientation field φp = φ(

〈
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〉
x,y and the flow field

φu = φ(〈u〉x,y). and (b) mean density along the magnetic field axis
marking the position of two sheets perpendicular to the magnetic
field (compare with FIG. 8(a)) for a representative snapshot of push-
ers with a dimensionless active stress σa = −30 and alignment pa-
rameter αe = 4 at t = 1800. The magnetic field points along the
z-axis.

it was predicted that the coupling between polar order and
self-generated flow vorticity can lead to formation of bend-
twist waves [67]. The observed twist is a result of a sponta-
neous symmetry breaking and it depends on the initial con-
ditions of the simulations. Conducting a number of simula-
tions with same parameters but different random initial condi-
tions, we find an equal number of configurations with left and
right handed helices within a sensible statistical error stem-
ming from a finite number of simulations.

In a bend-twist phase, the polarization orientation vec-
tor draws an oblique helicoid, maintaining a constant
oblique angle 0 < θ0 < π/2 with the helix axis z: p̂ =
(sinθ0 cosφ ,sinθ0 sinφ ,cosθ0), in which the azimuthal an-
gle varies as φ = 2πz/`p with `p being the pitch of the he-
licoid. To evaluate if the observed helicoidal pattern is as-
sociated with a bend-twist instability, we have extracted the
values of the mean polar angle θp(z) = θ(

〈
p/ρ)

〉
x,y and the

azimuthal angle of the mean polarization φp(z) = φ(
〈
p/ρ)

〉
x,y

averaged in the x-y plane. We find that the mean polarization
angle is almost independent of z, 〈θp(z)〉 ≈ 0.1π−0.2π (apart
from small variations between on and off the sheets), whereas
φp shown in Fig. 13(a) varies nearly linearly with z. These
results confirm that polar pushers in an alignment field are
prevailed by a bend-twist instability. Moreover, we have also
calculated the azimuthal angle of the flow field averaged in the
x-y plane φu = φ(〈u〉x,y), in Fig. 13(a). φu also varies almost
linearly with z, but shows a clear π/2 phase shift relative to
φp. For comparison, we have also plotted the variation of den-
sity averaged over the x-y plane along the magnetic field axis
in Fig. 13(b), which clearly shows the modulation of density
as a result of sheet formation.

2. Instability regime (b): moving pillars

The time series snapshots for pullers at the same alignment
parameter αe = 4 and activity strength σa = 30 are presented
in Fig. 8 (b). At late stages, pullers tend to form dynamic
pillar-like structures parallel to the external field axis. A 3D
rendering of density field is shown in Fig. 11(b). Pullers ex-
hibit a more complex density pattern relative to pushers with
the same activity and magnetic field strength. This can be
understood in light of the linear stability analysis of homoge-
neous polar steady state, presented in panels (b1) and (b2) of
Fig. 5, which predicts the predominance of long wavelength
instabilities with wavevectors both parallel and perpendicu-
lar to the magnetic field. Although, our non-linear dynamics
simulations display some density undulations in the direction
parallel to the magnetic field, we observe that pattern forma-
tion is primarily prevailed by the perpendicular perturbations
as predicted by the linear stability of the moment equations,
Eqs. (38) and (41).

Next, we examine the corresponding polarization and flow
fields on a 2D slice of the sample in the y-z plane. Fig. 14(a)
displays the polarization field superimposed by the density
field at a late stage t = 1800 and the corresponding flow and
vorticity fields are presented in Fig. 14 (b). We observe that
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FIG. 14. (a) Streamlines of the polarization field (py, pz) of a slice in
the y-z-plane at x = 0.75, demonstrating a characteristic splay pattern
for a suspension of pullers with dimensionless active stress σa = 30
and alignment parameter αe = 4 in a magnetic field pointing in z-
direction. The color encoded local density ρ/V ×106 is shown in the
background. (b): The corresponding flow field (uy,uz) is represented
as vector arrows, where the length of the vector is weighted by its
magnitude. The flow vorticity, leading to hydrodynamically induced
particle rotation, is color encoded in the background. Red colors
correspond to a vorticity vector pointing out of the plane (counter
clockwise rotation). Lines of constant density are overlaid as contour
lines on top to guide the eyes.

the polarization streamlines significantly deviate from straight
lines. The distortions of polarization field can be understood
in terms of splay instabilities in the language of liquid crys-
tals [63], see also the appendix for an idealized description of
bend and splay distortions.

Splay deformations, similar to bend fluctuations, consist
of small polarization perturbations which are perpendicular
to p0 ‖ B̂ ≡ ẑ but in this case their magnitude is modulated
in directions perpendicular to it, i. e., pp = p̃⊥ exp(ik⊥ · x⊥),
where k⊥ ≡ (kx,ky,0) and x⊥ ≡ (x,y,0) [39, 63]. Again based
on Eq. (38) for the density moment, splay fluctuations in-
crease the density in volumes of negative divergence ∇ ·p < 0
and generate alternating pillar-like flow regions along B̂ as
shown in Fig. 14(a); see also the appendix for illustration of
an idealized splay distortion. Splay distortions also generate a
position-dependent active force density fa ≈ σa∇ ·

(
pp− 1

31
)

in the fluid that result in alternating flow layers parallel and
anti-parallel to the magnetic field, see Fig. 14(b). The vor-
ticity field also become heterogenous and induces a hydrody-
namic torque MHD ∝

1
2 ∇×u. This torque rotates the swim-

mers further away from the magnetic field axis and renders a
uniform homogenous polar phase unstable. The more concen-
trated regions of pullers, where ∇ ·p< 0 coincide with regions
carrying a flow anti-parallel to B̂ and high self-generated flow
vorticity. They result in a net convection anti-parallel to the
magnetic field and reduce the mean transport speed [33]. Fur-
thermore, we have also shown the polarization field superim-
posed by the density field and the corresponding flow and vor-
ticity fields of a x-y slice perpendicular to the magnetic field
at z = 0.75 in Fig. 15. We note that the perpendicular com-
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FIG. 15. (a): Streamlines of the polarization field (px, py) of a slice
in the x-y-plane at z = 0.75, where the size of arrows shows the rel-
ative magnitude of polarization for a suspension of pullers with di-
mensionless active stress σa = 30 and alignment parameter αe = 4
for a magnetic field pointing in z-direction. The color encoded local
density ρ/V ×106 is superimposed in the background. (b): The flow
field in the plane (ux,uy) is represented as black arrows, where the
length of the vector is weighted by its magnitude. The z-component
of flow field, uz is color encoded, where a red color denotes a flow in
the direction of the external magnetic field and a blue color opposed
to it. Lines of constant density are overlaid as contour lines on top to
guide the eyes.

ponent of polarization is largest in denser regions. Consistent
with our picture from a y-z slice, the regions of large vorticity
are correlated with the concentrated regions of swimmers.

3. Instability regimes (c) and (d): finite-sized concentrated regions

The snapshots in Fig. 8 (c) and (d) show the evolution
of density profiles of pullers and pushers with αe = 19 and
|σa| = 40. They correspond to the panels (c) and (d) of
Fig. 5, where the linear stability analysis of homogeneous po-
lar steady state predicts predominance of perturbations with a
finite wavelength. In both cases, the length scale associated
with concentrated regions is finite, kmax ≈ 2.5, and smaller
than the box size as opposed to cases (a) and (b), where the
maximum growth rate occurs at the limit k → 0. However,
the angle of wavevector relative to the magnetic field ΘB, for
which the maximum growth rate occurs is different for push-
ers Θmax

B ≈ 30 and pullers Θmax
B ≈ 60. In both cases, we see

fluctuating concentrated regions which on the average migrate
in the direction of magnetic field suggesting that some kind of
dynamical aggregates are formed. Consistent with the stabil-
ity analysis prediction, the morphology of the aggregates are
different for pushers and pullers with the identical activity and
magnetic field strengths. To gain more insight into similarities
and differences between pushers and pullers, we look into the
polarization and flow fields in each case.

For pushers prevailed by finite wavelength instabilities cor-
responding to panels (c) of Figs. 5, 8 and 11, concentrated
regions form aggregates of finite size. These patterns are dis-
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FIG. 16. (a) Streamlines of the polarization field (py, pz) of a slice in
the y-z-plane at x = 0.75, for a suspension of pullers with dimension-
less active stress σa = −40 and alignment parameter αe = 19 in a
magnetic field pointing in z-direction. The color encoded local den-
sity ρ/V ×106 is shown in the background. (b): The corresponding
flow field (uy,uz) is represented as vector arrows, where the length
of the vector is weighted by its magnitude. The flow vorticity, lead-
ing to hydrodynamically induced particle rotation, is color encoded
in the background. Red colors correspond to a vorticity vector point-
ing out of the plane (counter clockwise rotation). Lines of constant
density are overlaid as contour lines on top to guide the eyes.

tinct from those of pushers dominated by long wavelength
bend instabilities in case (a), where sheets perpendicular to
the magnetic field span the whole lateral dimension of the
box; see Fig. 11(a). Looking into the polarization field in
a y-z slice shown in Fig. 16(a), we observe very weak de-
viations from a uniform polarization, whereas the density is
notably heterogenous. The generated flow field and its asso-
ciated vorticity are shown in Fig. 16(b) and they are weaker
than the flow and vorticity created in the bend regime pre-
sented in Fig. 10(b), which is predominated by the bend-twist
instability. Examining the polarization field superimposed
by density in a x-y slice perpendicular to the magnetic field
shown in Fig. 17(a), we find that the deviations of polarization
field from the B̂ ≡ ẑ occur at concentrated regions. In other
words, the finite wavelength instabilities are dominantly den-
sity driven and the polarization distortions merely stem from
density perturbations. In the language of linear stability anal-
ysis, the predominant mode of perturbation is given by the
mode shape ψ0

0 (kmax)eikmax·x+λ t ∝ ρp(kmax,x, t), where kmax
corresponds to the wavevector with the largest growth rate
shown in Fig. 5(c). Likewise, from Fig. 17(b), we note that
the self-generated flow velocity component perpendicular to
the magnetic field (ux,uy) is rather weak and it only becomes
considerable in concentrated regions. Unlike the case (a), the
flow field has an appreciable component along the magnetic
field (parallel or anti-parallel) as encoded by red and blue col-
ors in Fig. 17(b).

For the pullers predominated with finite wavelength insta-
bilities corresponding to panels (d) of Figs. 5, 8 and 11, the
long-time density pattern resembles that of pullers with mod-
erate strengths of the activity and magnetic field in case (b)
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FIG. 17. (a): Streamlines of the polarization field (px, py) of a slice in
the x-y-plane at z = 0.75, where the size of arrows shows the relative
magnitude of polarization for a suspension of pushers with dimen-
sionless active stress σa = −40 and alignment parameter αe = 20
for a magnetic field pointing in z-direction. The color encoded local
density ρ/V ×106 is superimposed in the background. (b): The flow
field in the plane (ux,uy) is represented as black arrows, where the
length of the vector is weighted by its magnitude. The z-component
of flow field, uz, is color encoded with a red color denoting a flow in
the direction of the external magnetic field and a blue color opposed
to it. Lines of constant density are overlaid as contour lines on top to
guide the eyes.
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FIG. 18. (a) Streamlines of the polarization field (py, pz) of a slice in
the y-z-plane at x = 0.75, exhibiting weak splay distortions for a sus-
pension of pullers with dimensionless active stress σa = 40 and align-
ment parameter αe = 19 in a magnetic field pointing in z-direction.
The color encoded local density ρ/V × 106 is shown in the back-
ground. (b): The corresponding flow field (uy,uz) is represented
as vector arrows, where the length of the vector is weighted by its
magnitude. The flow vorticity, leading to hydrodynamically induced
particle rotation, is color encoded in the background. Red colors cor-
respond to a vorticity vector pointing out of the plane (counter clock-
wise rotation). Lines of constant density are overlaid as contour lines
on top to guide the eyes.
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FIG. 19. (a): Streamlines of the polarization field (px, py) of a slice
in the x-y-plane at z = 0.75, where the size of arrows shows the rel-
ative magnitude of polarization for a suspension of pullers with di-
mensionless active stress σa = 40 and alignment parameter αe = 20
for a magnetic field pointing in z-direction. The color encoded local
density ρ/V ×106 is superimposed in the background. (b): The flow
field in the plane (ux,uy) is represented as black arrows, where the
length of the vector is weighted by its magnitude. The z-component
of flow field, uz, is color encoded with a red color denoting a flow in
the direction of the external magnetic field and a blue color opposed
to it. Lines of constant density are overlaid as contour lines on top to
guide the eyes.

predominated by splay instabilities. However, concentrated
regions consist of of finite-sized pillar-like aggregates in con-
trast to the splay regime, where pillar-like dense regions span
the whole box dimension in the field direction, verifying the
predominance of smaller wavelength density fluctuations. In-
specting the polarization field superimposed by the density
field in a y-z slice perpendicular to the magnetic field shown
in Fig. 18(a), we notice that the polarization field displays
some splay-like deformations. However, these distortions are
weaker in comparison to the pullers of case (b) for which splay
deformations are the most dominant perturbation mode. Like-
wise, the self-generated flow field is very similar to the pullers
of case (b) and we observe a notable vorticity field in con-
centrated regions. Looking into the polarization and velocity
fields in a x-y slice perpendicular to B̂≡ ẑ, we find that similar
to usher aggregates in case (c), the deviations from a uniform
polarization occurs at concentrated regions, which lead to a
very heterogenous flow field as shown in Fig. 18(b). Despite
the similarities of polarization and flow field with pullers of
case (b) predominated by splay deformations, the predomi-
nant mode of perturbation in the linear stability is the density
mode similar to the aggregate forming pushers of case (c). It is
given by ψ0

0 (kmax)eikmax·x+λ t ∝ ρp(kmax,x, t), where kmax cor-
responds to the wavevector with the largest growth rate shown
in Fig. 5(d).

VI. DISCUSSION AND CONCLUDING REMARKS

We have presented a continuum kinetic model for active
suspensions of weakly magnetic spherical particles in an ex-

ternal field. The model is based on first principles, namely, a
conservation equation for the particle configuration distribu-
tion in an alignment field, coupled to the Stokes equation for
the fluid flow which incorporates stress contributions stem-
ming from activity and alignment torque. It is applicable to
moderately dilute suspensions of magnetotactic bacteria or ar-
tificial magnetic microswimmers with a small magnetic mo-
ment and focuses on the interplay between hydrodynamic in-
teractions arising from self-generated flow and external align-
ment torque. We investigated the nature of hydrodynamic in-
stabilities and emergent pattern formation by combining lin-
ear stability analysis and the full numerical solution of kinetic
model equations.

We first performed a linear stability analysis of steady state
solution of the model, which corresponds to a homogenous
polar distribution function ψ0. The stability analysis of steady
state as a function of activity and magnetic field strengths re-
veals that a uniformly polarized suspension becomes unsta-
ble for moderate magnetic field and sufficiently large activity
strengths for both pushers and pullers. Based on the disper-
sion relation of the maximum growth rate, we have drawn a
non-equilibrium phase diagram as presented in Fig. 4. We rec-
ognize four distinct instability regimes. For moderate activity
and field strengths, the long wavelength instabilities dominate
both pusher and puller suspensions. However, the nature of
instabilities are different for the two types of swimmers. Push-
ers are dominated by wave perturbations parallel to the field,
whereas pullers are unstable with respect to both parallel and
perpendicular wave perturbations. For stronger activities and
magnetic fields, the wavevector with the largest growth rate
has a finite wavelength and its angle with the field differs for
pushers and pullers with the same activity and field strengths.
These instability regimes are driven by density fluctuations as
opposed to long wavelength instabilities which are driven by
the orientational fluctuations. Increasing the magnetic field
strength further, the alignment torque is strong enough to
overcome the hydrodynamically induced torque. As a con-
sequence, the homogenous polar state becomes stable again
and we observe a reentrant hydrodynamic stability.

Next, we obtained the dynamical equations for the first
three orientational moments, i.e., density, polarization and ne-
matic field, imposing suitable closure approximations. Mo-
ment equations, although less accurate, provide us with new
insights into the nature of instabilities. As can be seen from
the moment equations, Eqs. (38), (41) and (45), density, po-
larization and nematic fields are coupled to each other. This
implies that any heterogeneity in one of them generates a het-
erogeneity in the other fields leading to a feedback loop until
a new dynamical equilibrium is reached.

Linear stability analysis of moment equations for uniform
density and polarization fields predicts the predominance of
long wavelength instabilities with wavevectors parallel to the
alignment field for pushers and wavevectors perpendicular for
pullers at moderate magnetic fields. Based on these results,
we deduce that pushers are prevailed by bend deformations,
whereas pullers are predominated by splay distortions. These
findings are in agreement the linear stability analysis of the
steady distribution function ψ0 for a large region of stabil-
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ity diagram, where long wavelength instabilities prevail the
system, although perturbation of ψ0, equivalent to consider-
ing the full hierarchy of moments, predicts the predominance
of both long wavelength parallel and perpendicular perturba-
tions for pullers. Moreover, the coarse-grained approximate
moment equations do not capture the finite wavelength insta-
bility regimes at higher magnetic fields and activity strengths.

To evaluate the accuracy of predictions of the linear stabil-
ity analysis, we investigated the numerical solution of kinetic
model equations. Numerical simulations show very good
agreement with predictions of linear stability analysis for the
borderlines of instability. Although linearly unstable modes
do not capture the full non-linear dynamics, many aspects of
the dynamics observed in simulations can be understood in
the light of the stability analysis. According to Fig. 4, for a
large region in the parameter space the most unstable mode
for pushers is parallel to the external field, whereas for pullers
perpendicular unstable modes dominate the system. Simu-
lations show that indeed in a large part of the unstable re-
gion predominant modes of instability for pushers are bend-
twist distortions of the polarization field. Although Fig. 5(b.1)
suggests that pullers also exhibit parallel instabilities at small
wavenumbers, simulations show that for pullers splay defor-
mations prevail the pattern formation and are predominant. As
a consequence, we observe distinct patterns for the two kinds
of swimmers: traveling sheets perpendicular to the magnetic
field for pushers and pillar-like concentrated regions parallel
to the field for pullers. As discussed in our prior work [33],
the deflections of polarization field lead to a reduction of the
average polarization and mean transport speed. In the regions
of stability diagram of Fig. 4, where the maximum growth rate
occurs at finite wavelengths, we observe finite-sized concen-
trated regions suggesting formation of dynamical aggregates
in external field. However, the morphology of these regions is
different for pushers and pullers in agreement with predictions
of linear stability analysis.

We conclude by pointing out a few limitations of the present
model and future directions. Our results are obtained in the
limit of negligible magnetic interactions and only consider the
interaction of a single particle with a mean-field flow. This
limits the validity of our model to moderately dilute suspen-
sions to magnetic swimmers with weak dipole moments such
as magnetotactic bacteria. Nevertheless, we believe that the
present model captures most salient features of interplay be-
tween hydrodynamic interactions and external field in not so
concentrated active suspensions. For instance, sheet forma-
tion observed for pushers are in agreement with experimental
findings of magnetotactic bacteria at moderate field strengths
B ∼ 3 mT [21]. For synthetic magnetic microswimmers with
larger magnetic dipole moments or dense suspensions, the
magnetic dipolar interactions alone can lead to clustering in-
stabilities [68] and the interplay between long-range magnetic
and hydrodynamic interactions on development of instabilities
merits further investigations. Moreover, the role of swimmer-
swimmer correlations [69], and near-field hydrodynamic in-
teractions in more concentrated suspensions remains an open
question. Finally, our results show that a sufficiently strong
alignment field can overcome hydrodynamic instabilities call-

ing for further exploration of controlling the collective behav-
ior and transport of active matter in various external fields.
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Appendix A: Idealized bend and splay instabilities

To illustrate better the underlying mechanism of the pat-
tern formation for pushers and pullers in an external field, we
present here the idealized 2D bend and splay deformations.
Hence, we restrict the discussion to a plane with components
parallel and perpendicular to the external field, x‖ ≡ ẑ and x⊥,
respectively. We approximate the polarization field of a bend-
deformation by

pbend(x‖) =
(

p̃⊥ cos(kx‖),
√

1− p̃2
⊥ cos2(kx‖)

)
,

assuming that the magnitude of polarization is constant ev-
erywhere and its perpendicular component varies as a cosine
function of a wavenumber k along the field direction with an
amplitude p̃⊥. Likewise, we approximate a splay deformation
by a polarization field of constant magnitude where the per-
pendicular component varies as a cosine function of amplitude
p̃⊥ and wavenumber k modulated in the direction perpendic-
ular to the field:

psplay(x⊥) =
(

p̃⊥ cos(kx⊥),
√

1− p̃2
⊥ cos2(kx⊥)

)
.

The active force density resulting from such a polarization
field can then be estimated as

fa ≈ σa∇ ·
(

pp− 1
3
1

)
.

For simplicity, we assume σa = ±1. Given the force density
field, the Stokes equation

∆u−∇p+ fa = 0

can be solved using the Oseen tensor and a spectral method.
The flow velocity is perpendicular to the external field for
pushers u = u⊥(x‖)x̂⊥ and parallel to the field for pullers
u = u‖(x⊥)x̂‖. To very good approximation, it can be de-
scribed by

u{⊥,‖}({x‖,x⊥})≈ c1 sin{x‖,x⊥}+ c2 sin3{x‖,x⊥},
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FIG. 20. An idealized (static) bend deformation for polarized pushers
(in x‖-direction). (a) shows the streamlines of the polarization field p
with its divergence ∇ ·p color coded in the background. Swimmers
accumulate eventually in volumes of negative divergence (red). (b)
Created flow field perpendicular to polarization axis. (c) The result-
ing flow vorticity field enhances the bend perturbation further (red
color CCW rotation, blue color CW).
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FIG. 21. An idealized (static) splay deformation for polarized pullers
(in x‖-direction) analogous to Fig. 20.

in which the braces {} evaluate to the first entry for pushers,
the second entry for pullers, and c1,c2 ∈R are some numerical
prefactors.

The polarization field and the associated flow and vortic-
ity fields of pushers with bend deformations and pullers with
splay distortions in the alignment field are shown in Fig. 20
and Fig. 21, respectively. The subplots (a) shows the stream-
lines of the polarization field p with its divergence color en-
coded in the background. The swimmers concentrate in the
red areas where the divergence is negative. As a consequence,

pushers form sheet-like regions perpendicular to the field,
whereas pullers concentrate in pillar-like dense regions par-

0.0 2.5 5.0 7.5 10.0 12.5
x‖

−0.02

0.00

0.02

M

MHD

MB

MB +MHD

FIG. 22. Illustration of the competition between a hydrodynamic
torque MHD ∝

1
2‖∇× u‖ and an external magnetic torque MB ∝

αe‖n× B̂e‖ for bend and splay instabilities in arbitrary units. The
instabilities cause the flow vorticity to grow while rotating the parti-
cles, until the rotation is compensated by the external torque (amber).

allel to the field. The subplots (b) depict a vector plot of the
self-generated flow fields as a result of the bend and splay de-
formations of the polarization fields of pushers and pullers,
respectively. In both cases, we observe alternating flow lay-
ers modulated in the direction perpendicular to field. For the
pushers, the flow velocities with alternating directions are per-
pendicular to the alignment field, while for pullers the al-
ternating flow velocities are parallel and anti-parallel to the
field. In subplots (c), the vorticity of the flow in the x-y
plane [∇×u]z is shown, where the red color encodes a counter
clockwise rotation and the blue color a clockwise rotation. We
observe the alternating clockwise and anticlockwise vorticity
fields are also modulated in directions parallel and perpendic-
ular to the field for pushers and pullers, respectively. Accord-
ing to the Faxen’s law, the flow vorticity induces effectively a
hydrodynamic torque MHD ∝

1
2 ∇×u, which rotates the par-

ticles away from the magnetic field direction and competes
with the magnetic torque. A homogenous polar steady state
becomes unstable due to these competing torques.

In the idealized case, both torques are easy to calculate and
are plotted in arbitrary units in Fig. 22 for a bend-deformation
(it is qualitatively the similar for splay-deformations). The
mean, dimensionless external torque, given by MB = αep× B̂
nearly fully balances the MHD hindering further growth of
bend deformation. As a result, a stable dynamical pattern
is established. The competition between the two torques be-
comes apparent looking into the rotational drift velocity given
by Eq. (15) which can be equivalently written as

ṅ =

(
αen× B̂+

1
2
(∇×u)

)
×n. (A1)

Under conditions that both terms compensate each other, the
bracket vanishes and the orientation n does not change any
more.
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