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ABSTRACT: We put forward a coarse-grained model that describes the competition between the
supramolecular polymerization of molecules and their binding to template molecules containing a fixed
number of binding sites that are also present in the solution. Our model captures the salient features of the
competition between this kind of self- and template-assisted assembly and demarcates conditions under
which either is predominant. Template-assisted or “templated” assembly wins over self-assembly if the free
energy gain of attaching of amonomer unit to a binding site is larger than that of binding it to a self-assembly.
In order to find the optimal conditions for full coverage of the templates, we investigate the role of different
control parameters such as stoichiometry and temperature on the binding efficiency. We also present a
quantitative picture of the distribution of bound guest molecules along the templates for incompletely filled
host molecules.

1. Introduction

Natural supramolecular structures such as liposomes, viruses,
actin fibers, and amyloid fibrils have inspired scientists to exploit
supramolecular self-assembly as a tool to design and construct
desired molecular structures from synthetic molecular com-
pounds.1,2 Indeed, along these lines of effort, employing biomi-
metic self-assembly principles, complex structures as challenging
as “smiley faces”3 and interlocking rings (Borromean rings)4 have
been constructed from DNA. The most common (and much
simpler) type of supramolecular assembly is that of the so-called
equilibrium polymer (EP), in which all the monomeric molecular
building blocks are able to bond reversibly with each other and
form quasi-linear self-assemblies of varying length.5-8 The
growth of these assemblies can take place either in the form of
isodesmic self-assembly (“free association”) or of nucleated
assembly in which an energy barrier must be overcome in one
or a few steps in the cascade of addition reactions. The main
feature of EPs is their exponential size distribution, which makes
them inherently very polydisperse. The average molecular weight
can be influenced by varying the temperature and concentration
of the monomers or by adding so-called chain stoppers. The
polydisperse nature of self-assembled polymers cannot easily be
altered as it results directly from the law of mass action.

A way to overcome this for some applications undesirable
feature is to use host templates consisting of a definite number of
binding sites to which guestmonomers can be bound, leading (in
principle) to self-assembled but monodisperse supramolecular
strands. Obviously, this strategy works only if the affinity of the
guest molecules for the binding sites is larger than that for
themselves to polymerize. In Nature templates with specific
binding sites can be found that efficiently form assemblies with
predefined size or sequence. For instance, in linear viruses such as
the cylindrical tobacco mosaic virus (TMV) single-stranded

RNA acts as a tape-measure molecule for the directed assembly
of the coat proteins of the virus.9-11 A similar mechanism has
been suggested for the self-assembly of coat proteins of spherical
viruses.11,12 Interestingly, in tailed bacteriophages the tail length
seems to be regulated by a ruler or tape-measure protein, around
which the tail tube monomers polymerize.13 As another example
one can mention the binding of RecA proteins to double-
stranded DNA.14

All of this has inspired researchers to exploit template-assisted
or “templated” polymerization as a tool to control the size and
sequence of synthetic supramolecular polymers via a bottom-up
approach,where the shape ofmolecule is specificallydesigned.15-19

Probably one of the simplest systems based on this kind of bottom-
up method are given by double-stranded homopolymeric DNA
hybrids constructed from naphthalene-type chromophores, acting
as guest molecules, hydrogen bonded to single strands of oligothy-
mine that act as the host template molecules.18,19 Here, in addition
to the hydrogen bonds formed between guest and host molecules,
π-π stacking interactions between neighboring boundmonomers
enhance the templated assembly in this kind of structure, in fact
mimicking similar effects in actual double-stranded DNA.

The binding efficiency of the guest molecules may be quanti-
fied by the average fraction of filled binding sites of a template,
i.e., the so-called bound fraction. Experimentally, the bound
fraction can be determined spectroscopically and its depen-
dence probed as a function of the overall concentration,
the temperature, and the relative ratio of number density of
guests to host binding sites (the so-called stoichiometric ratio).
Because chromophore binding via hydrogen bonding is exo-
thermic, i.e., enthalpy-driven, the bound fraction increases
upon decreasing the temperature and saturates for sufficiently
low temperatures when full coverage of the templates is
achieved.18,19 Note that with increased coverage the confor-
mation of the templates plausibly changes from a disordered
coil to a rodlike or helical configuration, in particular if the
template is single-stranded DNA.
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Recent experiments indicate that for guest concentrations
higher than some value, or temperatures that are sufficiently
low, linear self-assembly may also set in, induced by the afore-
mentioned stacking interactions.19 This suggests that there must,
if only in principle, always be a competition between templated
and self-assembly. In fact, under some experimental conditions,
linear self-assembly could plausibly become the predominant
mode of self-organization. Motivated by the mentioned experi-
mental work, we investigate theoretically in this paper both types
of assembly and argue that the issue is of considerable interest.
First, understanding the behavior of competing self-assembling
systems is of fundamental theoretical significance that has
received little attention in the literature (see, however, refs 20
and 21). Second, insights gained may be of use in designing and/
or optimizing template-assisted assembly systems, in particular
how to tune the intermolecular interactions and concentrations of
species involved in the experiments.

Our theoretical approach is a coarse-grained one that ignores
the chemical details of the molecular structures and only con-
siders the most important interactions governing the assembly
included in the model as adjustable free energy parameters (see
Figure 1). The relevant free energy for the self-assembly is a
stacking or binding free energy of monomers in a linear supra-
molecular polymer, ε1. For the templated-assembly route, we
have a net binding free energy ofmonomers to the host templates,
g, which includes the free energy for the change of the conforma-
tional state of amonomer from that in free solution to that bound
on the template, and a stacking free energy of two adjacently
bound monomers ε2.

From our calculations, we conclude that the relevant quantity
governing the predominance of either type of assembly is the free
energy difference, ΔF, between a monomer attached to a binding
site adjacent to an occupied site on a template and that of a
monomer binding to one end of a preexisting self-assembly, so
ΔF = g þ ε2 - ε1. Predominance of templated assembly requires
that this quantity is negative. Interestingly, in such a templated-
assembly predominant case, no self-polymerization occurs until all
the templates are filled. This implies that with increasing guest
monomer concentration, the monomers favor occupying the tem-
plate sites rather than self-assembling until they almost completely
fill the templates, and it is only after this happens that linear self-
assemblies are formed in coexistencewith the templated assemblies.

In the opposite case where the free energy gain from binding of
a monomer to a self-assembly is larger than that of binding to a
vacant template site adjacent to a bound site and ΔF is positive,
self-assembly is dominant. Strikingly, in this case the templates
are only partially filled even for highest concentrations of guest
monomers. Even a slightly positive ΔF is sufficient to impair the
templated assembly and for the case ofΔF=0; at most only half
of the templates binding sites can get filled. This asymmetry in
the assembly behavior for positive and negative values of the free
energy ΔF originates from the fact that the number of template
molecules, and hence the number of binding sites is limited, while
effectively there is no limitation on the length or the number of
the self-assemblies.

The remainder of this paper is organized as follows. In section
2, we first describe the theoretical model, which is a combination
of theory of linear self-assembly and Ising-like model for tem-
plated assembly. In section 3, we present generic state diagrams
and discuss in detail the regimes where templated assembly and
self-assembly predominate andwhere neither has the upper hand.
We find that in the templated assembly dominated regime, no
self-polymerization occurs before all the templates are by and
large filled. Hence, under experimental conditions where full
binding is not achieved, the system behaves essentially as in the
case of exclusively templated assembly, that is, with monomers
that have no tendency to self-assembly. Therefore, in section4,we
focus on the case of exclusively templated assembly and explore in
considerable detail the effect of the size of template, cooperati-
vity, and the stoichiometric ratio on the bound fraction of guest
molecules.

In section 5, we investigate the issue of the distribution of guests
over the templates for incompletely filled templates.We show that
mapping the templated assembly problem onto an Ising model
enables us to calculate the relevant probability distribution func-
tions and obtain a clear picture of the monomer distribution on
templates of varying length. To make a direct link to experiments
in which the temperature dependence of the bound fraction are
measured, we devote the section 6 to calculating the bound
fraction and fraction ofmonomers in self-assemblies as a function
of the temperature. Finally, we end our paperwith section 7where
we summarize our main findings and results and provide a
discussion of our work in relation to the existing literature and
recent experimental results.

Figure 1. Schematic representation of our model system, consisting of guest molecules (filled circles) and template molecules (drawn lines) with q
binding sites on them. The guestmolecules can reversibly polymerize, if the binding free energy, ε1, is negative, or bind to binding sites on the templates,
if the binding free energy, g, is negative. If two guests bind on neighboring sites on the template, this liberates a stacking free energy, ε2.
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2. Theory

In this sectionwepresent an equilibrium theory for assembly in
a two-component system consisting of guest monomers and host
template molecules, in a solvent the properties of which are
included effectively in the model parameters. The monomers can
either bind reversibly to themselves to formquasi-linear polymer-
like self-assembling structures of an arbitrary degree of polym-
erizationN or bind (also reversibly) to available binding sites on
the host templates (see Figure 1). In our model we ignore the
details of molecular structure of the various components, and the
host molecules are considered as quasi-one-dimensional objects
with q binding sites onto which the monomers can bind. The
relevant interactions driving the assembly both on and off the
templates are parametrized by phenomenological, temperature-
dependent effective free energies and understood to include
solvophobic interactions as well as, e.g., electrostatic, van der
Waals, hydrogen bonding, π-π interactions, and so on.

Let ε1<0 denote the free energy of the bonded interaction
between two monomers in a self-assembly, εn>0 a nucleation
free energy originating from the change of monomers conforma-
tions due to binding, g < 0 the free energy of binding of a
monomer to a binding site on the template, and ε2 < 0 the
stacking free energy between two adjacent monomers bound on
the same template (see Figure 1). In our model description, g, ε1,
ε2, and εn are free parametersmade dimensionless by scaling them
to the thermal energy kBT, with kB Boltzmann’s constant and
T the absolute temperature. As already alluded to in the Intro-
duction, these free energies can originate from different types of
interactions. For example, in the pertinent system of Janssen
et al.,18 involving naphthalene-type guest monomers and homo-
polymeric ssDNA, the binding free energy g results from three
hydrogen bonds between the monomer molecule and a single
binding site, and the stacking free energies ε1 and ε2 are mainly
due toπ-π interactions between two adjacent bound guestmole-
cules. The stacking free energy ε2 of two neighboring monomers
bound to a template can be different from that in the form of self-
assemblies ε1: the template backbone plausibly influences the
relative distance of two adjacent monomers through its chemical
structure or lost configurational degrees of freedom that influ-
ence the net binding free energy. The nucleation free energy εn
originates from loss of conformational entropy due to self-
assembly of free monomers.

The (dimensionless) grand potential Ω of our system consists
of the sum of the contributions from the free monomers and the
self-assembled polymers and that of the empty and bound
templates, and which are functions of the chemical potentials
of themonomers andhost templates,μg andμh. These are fixed by
the concentration of guest molecules, φg, and host templates, φh,
present in the solution. Presuming no additional interactions
between the different components than the ones already men-
tioned, we presume the solution to be dilute, in which case the
grand potential can be written as

Ω
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Here, υ denotes the so-called interaction volume that we take as
the volume of solvent molecules, V the volume of the system,
Fg(N) the number density of chains of degree of polymerization
N, and Fh(n) the number density of templates with n monomers
bound to them.ZEP(N) andZq(n,g,ε2) are partition functions of a
self-assembled polymer withNmonomers and of a template with

n occupied binding sites, respectively. The partition functions
count the number of configurational states of the chains and
weigh these according to their Boltzmann weight.

From established polymer theory, the partition function of a
polymer with N degree of polymerization has the generic form
which is a product of several factors, i.e., the single particle partition
function, the partition function counting possible arrangements of
monomers in the chain, and the Boltzmann weight taking into
account the bare free energy of N bonds.2 This partition function,
ZEP(N), can be renormalized and written in terms of effective free
energies and becomes equal to exp(εn) for a single free monomer
and to exp((N - 1)ε1) for an N-mer with N>1. The partition
function of a template with n occupied sites is

Zqðn, g, ε2Þ ¼
X
fnig

δ
n,
Pq
i¼ 1

ni

exp½-G1ðfnigÞ� ð2Þ

in which δi,j is the Kronecker delta and each configuration of a
template is represented by a set of occupation numbers ni=0, 1 for
i=1, 2, ..., q. Theoccupationnumber of each site on the template is
zero if no guest monomer is bound and one if a guest monomer is
bound to it. Within our model, the free energy change associated
with a specific configuration {ni} of bound guests on a template
with respect to reference state of empty templates reads

G1ðfnigÞ ¼ ε2
Xq- 1

i¼ 1

niniþ 1 þ g
Xq
i¼ 1

ni ð3Þ

again in units of thermal energy. Here, ε2 and g include the
contribution from free energy change configurational statistics of
the guest and the backbone template due to binding. This allows us
to calculate Zq(n,g,ε2) explicitly. We do this below.

The equilibrium size distributions Fg(N) and Fh(n) optimize the
grand potential eq 1, and hencewe set δΩtot/δFg(N)= 0 to obtain

Fgð1Þ ¼ υ- 1 expðμgÞ expðεnÞ, FgðN > 1Þ

¼ υ- 1 expðμgNÞ expð- ε1ðN- 1ÞÞ ð4Þ
showing that the size distribution of linear self-assemblies has an
exponential size dependence, implying polydisperse supramolo-
cular polymers.Note that exp(μg) is related to the number density
of unbound free monomers in the solution, itself linked to the
overall concentration of guestmolecules φg.With the distribution
of self-assemblies number density known, the fraction of guest
molecules in self-assemblies can be calculated from λ =P

N=2
¥ NFg(N)υ/φg.
Turning now to the templated assemblies, we obtain their

distribution by setting δΩtot/δFh(n) = 0

FhðnÞ ¼ υ- 1 expðμhÞZqðn, g, ε2Þ expðnμgÞ ð5Þ
This distribution function can be extracted from experimental
data for large template sizes once we know the bound fraction, as
we shall discuss in section 5. Indeed, the quantity of interest
amenable to the experimental observation is the mean fraction of
occupied sites Æθæ = Ænæ/q with Ænæ =

P
n=1
q nFh(n). The bound

fraction Æθæ can be calculated from grand partition functionQ(μ,
g,ε2)=

P
n=0
q Zq(n,g,ε2) exp(nμg)=

P
n=0
q Fh(n), which is Laplace

transform of the canonical partition function.
To calculate the grand partition function Q, which counts all

the possible configurations of the templates with different degrees
of occupancy, we for simplicity map it to the Isingmodel with the
transformation ni =

1/2(Si þ 1), with Si = (1 the spin states of
the sites.Next,we apply the standard transfer-matrixmethod22 to
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obtain it explicitly. The grand partition function in this repre-
sentation has the form Q =

P
Si=(1 exp(-G({Si})), in which

GðfSigÞ ¼ - J
Xq- 1

i¼ 1

SiSiþ 1 -H
Xq
i¼ 1

Si þ ε2
4
ð1þS1 þSqÞþE0

ð6Þ
with J�-ε2/4,H� (-ε2- gþ μg)/2, andE0� q(ε2/2þ g- μg)/2.
Knowing the relation of our model parameters to the coupling
constant J and magnetic field H in the Ising model, it is now
straightforward to calculate the grand partition function in terms
of the eigenvalues, λ(, of the transfer matrix.

The resulting partition function takes the form Q(s,σ,q) =
xλþ

q þ yλ-
q , in terms of the eigenvalues λ(=1/2[1þ s( ((1- s)2þ

4σs)1/2]/(σs2)1/4 with σ� exp(ε2) and s� exp(-ε2- gþ μg). Note
that here we have introduced a similar terminology as in the
Zimm-Bragg model of helix-coil transition in biopolymers.23

The quantity s describes the statistical weight for occurrence of
two adjacent bound sites on the templates, and σ is a measure of
cooperativity in the assembly; a small σ implies a large negative
value of ε2, leading to a more cooperative assembly, as we shall
discuss in more detail in the following sections. The quantities
x and y denote factors that depend on the boundary conditions
that we impose on the state of first and last site of the templates.
We shall not impose any boundary condition; i.e., both the first
and last binding site on each template can be either empty or
occupied. This gives x = (sσ þ 1 - (s2σ)1/4λ-)/(sσ)

1/2(λþ - λ-)
and y = (sσ þ 1 - (s2σ)1/4λþ)/(sσ)

1/2(λ- - λþ).
The mean bound fraction Æθæ of sites can be expressed in terms

of mean spin state ÆSæ through Ænæ = 1/2(1 þ ÆSæ) and calculated
from logarithmic derivative of grand potential22

Æθæðs, σ, qÞ ¼ 1

2
þ 1

q

D ln Q

D ln s
ð7Þ

In general, Æθæ is a function of binding and stacking free energies
as well as the length of template. The dependence of Æθæ on the
total molar fraction of guests φg and binding sites of the host
templates φh can bemade explicit by invoking the conservation of
total number of guest monomers. In total, we have two mass
conservation constraints, one for each of the guest and host
molecules.

The overall molar fraction of guest monomers is equal to
the sum of the molar fraction of free guest monomers, mono-
mers bound in self-assemblies, and monomers bound on the
template. The total molar fraction of binding sites is the sum
of all the possible configuration of templates with 0, 1, ..., q
occupied binding sites times the number of binding sites per
template, q. So, our two constraints, i.e., equations of mass
conservation, are

X¥
N¼ 1

NFgðNÞυþ Æθæφh ¼ φg ð8Þ

q
Xq
n¼ 0

FhðnÞυ ¼ φh ð9Þ

It turns out useful to reexpress eq 8 in terms of twomass action
variables, being Xg � φg exp(-ε1) and Xh � φh exp(-ε2 - g)
characterizing the strength of the driving force for self- and
templated assembly. Indeed,Xg andXh are proportional to the
a priori probabilities of binding of a free monomer either to
another one or to a free binding site on a template.

Taking advantage of eq 4 and performing the sum overN and
expressing everything in terms of mass action variables gives the
following form for the mass conservation equation, eq 8

sðeεn - 1Þþ s

ð1- seΔF Þ2 þXhÆθæðs, σ, qÞ-Xge
-ΔF ¼ 0 ð10Þ

where ΔF � ε2 þ g - ε1 is an aforementioned free energy that
describes the free energy difference of attaching a guest to a
template next to an occupied site and that of attaching one to free
end of a linear supramolecular polymer. As we shall see in the
next section, ΔF is a crucial parameter, and the casesΔFg 0 and
ΔF<0 give rise to different types of predominant assembly.
Equations 7 and 10 can be solved to eliminate the parameter s,
hence the chemical potential from the equations to determine the
bound fraction and number-averaged size of self-assemblies.

To compare the contribution of monomers in the form of self-
assemblies with that of templated assembly, we need to know the
fraction of self-assemblies. This quantity can also be expressed in
terms of mass action variable Xg and ΔF, giving

λðs,Xg,ΔFÞ ¼
P¥
N¼ 2

NFðNÞ
φg

¼ seΔF

Xg

1

ð1- seΔF Þ2 - 1

 !
ð11Þ

So, solving eq 11 with the constraint eq 10 provides us with the
fraction of quest molecules in self-assemblies.

Having all the tools in hand, we analyze the model in the next
section to obtain the general behavior of system as a function of
the mass action variables and of the free energyΔF. As a nonzero
nucleation free energy εn does not change the predictions of our
model qualitatively, and to reduce the number of parameters, we
set εn = 0 from now on in the remainder of the paper.

3. Predominant Assemblies and State Diagram

In this section, we focus on a general description of what states
of assembly predominate, as one varies the strength of the various
mass action variables. Both the fraction of self-polymerized
material and the bound fraction (of guest molecules on the
templates) are in principle functions of the concentrations φh
and φg and of the binding free energies ε1, ε2, and g. However,
because of the constraint of mass conservation, eq 10, we can
rearrange the variables and express the desired quantities as a
function of only four independent variables, being two dimen-
sionless concentrations,Xh andXg, and two free energies,ΔF and
ε2, where it turns out expedient to the express the latter in terms a
Boltzmann weight σ � exp(ε2). As we shall see, for some
experimental situations, it is convenient to convert this set into
one consisting of a dimensionless concentration Xh, a stoichio-
metric ratio η= φg/φh, and the free energy parameters σ andΔF.

As we already mentioned in the previous section, ΔF plays a
crucial role in determining the state of assembly of guest mole-
cules. It describes the difference in free energy gain of binding of a
monomer next to an alreadybound site on a free template site and
that of attaching a free monomer to a free end of a self-polymer.
Therefore, depending onΔF being positive or negative, we expect
that either self-assembly or templated assembly will be predomi-
nant, in accordance with basic thermodynamic principles.

The crossover from no to full assembly occurs gradually with
increasing guest and host mass action variables. The fraction of
self-polymerized material is characterized by the quantity λ, and
the fraction of polymerized material bound to the templates is
quantified by the bound fraction of sites Æθæ, the values of which
raise gradually from 0 to 1 with increasing of mass action
variables. For definiteness, we define λ = 1/2 as the transition
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point of self-assembly and Æθæ = 1/2 as the transition point of
templated assembly. Within these definitions, a templated-as-
sembly dominant regime is determined by Æθæ>1/2 and λ<1/2,
a self-assembly dominant regime is where λ>1/2 and Æθæ<1/2,
and we have significant coexistence of templated and self-assem-
bly if both λ>1/2 and Æθæ>1/2. If λ and Æθæ are both less than
1/2, and the guestmolecules are presentmainly in the formof free
monomers with no type of assembly being predominant (so-
called minimal assembly). We define the boundaries between the
different regimes by the equalities λ= 1/2 and Æθæ= 1/2. The
equations describing these boundaries can be obtained from
eqs 7, 10, and 11. In accordance with expectation, we find for
the two main regimes: (1) the templated-assembly dominant
regime for ΔF< 0 and (ii) the self-assembly dominant regime
for ΔF g 0.

Figure 2 shows two state diagrams for both these main cases.
The lines indicate the crossovers λ = 1/2 and Æθæ= 1/2 in the
Xh-Xg plane, as clarified in the caption. In the templated
dominant regime, whereΔF<0,we observe that upon increasing
the guest concentration, Xg, at fixed host concentration, Xh, first
at least half of the templates are filled. In fact, as we shall show
below, it is only after virtually all the templates are filled that the
excess of free monomers in the solution can take mass action to
induce self-assembly and λ reaches the value of one-half. Also,
indicated in Figure 2a by a gray line are conditions of “perfect
stoichiometry” where φg= φh, that is, the minimum amount of
guest molecules needed to be present in the solution to fill all the
template sites.

In Figure 2a we recognize two regimes for the crossovers Æθæ=
1/2 and λ=1/2: a horizontal part with slope zero and a part with
slope unity. To understand this, one should keep inmind that the
amount of guest concentration needed to fill half of the binding
sites is equal toφg= φh/2, which in terms ofmass action variables
becomes Xg1 = Xhe

ΔF/2. From eq 10, we then find that the
contribution of self-polymerization and free monomers to guest
mass action in such a situation (where s ≈ 1 is roughly equal to
Xg2 = eΔF(1 - eΔF)-2. Therefore, if the number of monomers in
the formof self-polymerization and free ones is predominant over
the number of monomers needed to fill half of binding sites, i.e.,
Xg1<Xg2, produces the condition Xh<2(1 - eΔF)-2; in other
words,Xg does not changewithXh. In this case, we have an excess
of guest molecules over the binding sites and the boundary φg=
φh is below the crossover Æθæ = 1/2 boundary.

On the other hand, if Xg1>Xg2, we have Xh>2(1 - eΔF)-2,
and the Æθæ=1/2 crossover is below the φg= φh line.Hence, if we
increase the concentration of binding sites, we need more guest
molecules to be able to fill half of the binding sites: their number
grows asXg=Xh/2e

ΔF. Therefore, the existence of two regimes of
low and high values of Xh is related to relative abundance of free
guest monomers. For small number of bindings sites, the number

of freemonomers ismuch larger thanwhat is needed to fill half of
the template binding sites, while for large number of binding sites,
almost all the monomers are consumed to fill half of templates,
and the number of free monomers is negligible compared to the
number of bound monomers.

To illustrate this, we plot in Figure 3a both Æθæ and λ as a
function of Xg for two different values of Xh, one much smaller
and onemuch larger than 2(1- eΔF)-2≈ 2 forΔF,-1. It shows
that for even when Xh , 2 and the tendency to form host-guest
complexes is small, almost all template sites are occupied even
before λ approaches a value of one-half. For Xh . 2 the fraction
of guest molecules in self-assemblies remains practically zero
before all the template sites are occupied, and only after that self-
assemblies growupon increasing the guest concentration,Xg, as is
expressed in a growth of the quantity λ.

The existence of two regimes for the polymerization line λ=1/
2 can be explained in a similar fashion, that is, in terms of the
number of the available guest molecules. For small values of Xh,
the number of monomers bound the templates is negligible in
comparison to the number of monomers needed to have half of
the guestmaterial in the formof polymers; therefore,Xgp, defined
as the guest mass action for which λ=1/2, is the same as that of
exclusive self-assembly, which happens forXgp≈ 0.585 (see ref 2).
While for Xh > Xgpe

-ΔF/2 ≈ 43 if ΔF = -5, the sum of the
concentration of monomers bound to the templates and of those
in free solution is of the order of 2Xhe

ΔF. This concentration
grows with increasing values of Xh and cannot be ignored; it
plays an important role in position of the boundary of where self-
polymerization takes off.

We now turn to the case ΔF g 0, where the affinity of
monomers toward each other is comparable to or stronger than
their affinity toward the binding sites on the templates. In this
situation, self-polymerization is the predominant state of the
system, and the templates coveragenever goes beyond Æθæ (e-ΔF,σ),
which is practically zero for ΔF = 5(kBT). Therefore, in this
case there is practically no coexistence of templated and self-
assembly. The asymmetry in the competition between templated
and self-assembly for positive and negative values of ΔF arises
from the fact that there is no limit on self-polymerization as we
increase the concentration of guest monomers, whereas for a
given host concentration Xh the number of binding sites to be
occupied by monomers remains constant. Note that if the
strength of the binding to a template site and that attaching to
a free end of a growing polymer are equal, implying thatΔF=0,
the fraction of bound sites reaches at most a value of 1/2, albeit
only in the limits of very high guest concentrations infinitely long
chains, q f ¥.

Figure 2. State diagram of self- and template-assembled polymers as a
function of the mass action variables Xg and Xh driving the self- and
templated-assembly for (a) ΔF<0 and (b) ΔFg 0, for a finite length of
template q=10. The light gray line indicates equal number of guest
molecules and host binding sites, i.e., φg/φh = 1.

Figure 3. (a) Bound fraction Æθæ (dotted lines) and fraction of self-
assemblies of the guestmolecules λ (solid lines) as a function of themass
action Xg for a template of length q= 10, degree of cooperativity σ=
0.01, and the energetic difference between the templated and nontem-
plated bindingΔF=-5(kBT) at two values of the mass action variable
of host molecules Xh = 0.1 and 20. (b) ÆθæXhe

ΔF (dotted lines) and
fraction of self-assemblies λ (solid lines) as a function of Xg for a
template of length q = 10, σ = 0.01, and ΔF = 5(kBT) and at two
different values of Xh = 1, 100.
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Interestingly, we also observe two regimes for the polymeriza-
tion line λ= 1/2 if ΔF>0, starting off with an initially constant
value of Xgp ≈ 0.585 for small Xh. The reason for the upturn for
increasing values ofXh is the small but increasingly non-negligible
number of monomers binding to the templates. The concentra-
tion of monomers bound to the templates and that of the free
monomers times exp(-ε1) is proportional to 2Æθæ(e-ΔF,σ)Xhe

ΔF.
This amount is indeed negligible for small values of Xh but does
give rise to a considerable contribution for large Xh. It is for this
reason that we observe a transition of the polymerization line
from zero to a nonzero slope for Xh ≈ Xgpe

-ΔF/2Æθæ(e-ΔF,σ),
which is approximately equal to 29 for the values σ =0.01 and
ΔF = 5(kBT) used in Figure 2b. We can clarify the above by
considering the quantities Æθæ(e-ΔF,σ)Xhe

ΔF and λ as a function of
Xg, which we have plotted in Figure 3b for two values of Xh, one
being much smaller and one much larger than the transitional
value Xh=29. The figures shows that for a small values of Xh,
Æθæ(e-ΔF,σ)Xhe

ΔF is negligible for all the values ofXg, while for the
larger value of Xh, this value grows with Xg and becomes
comparable to Xgp.

In conclusion, in the templated-assembly dominant regime self-
polymerization can only occur if the template sites are almost
completely occupied. As a consequence, the presence of templates
effectively suppresses self-polymerization of the guest molecules,
unless a large excess of guest molecules is present in the solution
and only then if the templates are already filled. So, before that this
happens, self-assembly can be safely ignored. This special case has
been discussed at length in the literature,24-28 themostwell-known
of them being the seminal work of McGhee and von Hippel. Still,
in spite of this a comprehensive discussion of the dependence of
bound fraction on the template size, the cooperativity factor σ and
the stoichiometric ratio as a functionof the experimentally relevant
tuning parameters remain lacking.Wealso note in passing that our
Ising-like approach is more straightforward in comparison to
earlier discussed probabilistic methods when it comes to extracting
the explicit dependence of the bound fraction on various system
parameters and obtaining a deeper understanding of templated
assembly. Also, in a recent workmodeling binding of small ionic
molecules to polymers, an Ising-like approach has been employed,31

however in that work, the binding statistics is considered at
themean-field level, while in our model the treatment of binding
statistics is exact. Our next section is devoted to this issue.

4. Exclusively Templated Assembly

Aswe discussed in the previous section, self-assembly does not
interfere with templated assembly if ΔF<0. Formally, we can
take the limit ε1 f ¥ or ΔF f -¥ to study this case. In this
situation, Xgf0, but this does not imply that the guest concen-
tration φg is zero. Therefore, Xg is no longer the relevant variable
for a description of the system, and we instead replace it with the
variable η � φg/φh. This quantity is known as the stoichiometric
ratio, and the pertinent set of variables for the description of our
system is now given byXh, η, and σ. In the limit ofΔFf-¥, the
mass conservation equation, eq 10, reduces to

s ¼ Xhðη- ÆθæÞ ð12Þ

In the following, we give an extensive analysis of the model in
order to understand how stoichiometry, template length, and
cooperativity influence the fraction of occupied binding sites on
the host template molecules Æθæ. To this end, we investigate the
functional dependence of Æθæ on the mass action variable Xh for
different values of the various parameters. We remind the reader
that Xh � φh exp(-ε2 - g) measures the strength of the driving
force toward host-guest binding and incorporates the depen-
dence both on the concentration of host templates and on the
stacking and binding free energies.

Looking at how Æθæ varies with Xh for arbitrary values of the
parameters η, q, and σ in the model, we observe a general trend: a
transition from empty, nonpolymerized templates with Æθæ = 0
for Xh = 0 to some saturation value Æθæ = Æθæmax that may be
smaller than unity for large values of Xh. This transition is
generally not sharp albeit that it varies with the values of any
of the three pertinent system parameters η, q, and σ. We
investigate the role of each of these parameters explicitly, fixing
the values of the other parameters.

For definiteness, we define as the “adsorption transition” that
value of Xh at which half of the binding sites are occupied by guest
molecules.According to this definition,wehave Æθæ=1/2 exactly at
the adsorption transitionXhp. Its value depends on the template size
q, the level of binding cooperativity σ, and the stoichiometric ratio
η. However, for excess amounts of guest molecules η>1 and in
the limit of long chains q.1, it approaches the value 1/(η- 1/2).
Furthermore, the sharpness of the transition can be defined as
∂Æθæ/∂Xh|Xhp

. We find it to be equal to (η - 1/2)/
√
σ in the infinite

chain limit, qf¥. This already tells us that ifσf 0, corresponding
to a high degree of cooperativity, we get a true phase transition
because the slope goes to infinity. The heat capacity in that case
makes a jump at the transition temperature. To understand better
how the level of cooperativity affects the sharpness of transition,
we start with investigating the role of the parameter σ first.

4.1. TheRole ofCooperativity.The level of cooperativity in
the binding of the guest molecules to the host template is
regulated by the parameter σ. It measures the influence of an
already bound guest molecule on the binding of a new guest
molecule adjacent to it. Not surprisingly, it is directly related
to the interaction free energy of neighboring bound guest
molecules ε2, with σ � exp(ε2). Therefore, by varying the
numerical value of σ, we alter the level of cooperativity in our
system, which directly influences the sharpness of transition:
the smaller σ, the higher level of cooperativity.

Figure 4 presents the bound fraction of sites as a function
ofmass actionXh for two different template sizes, q=10and

Figure 4. Bound fraction Æθæ as a function of mass action variable Xh

(see the text and list of symbols for explanations) for different values of
cooperativity σ=0.001, 0.1, and 1 (see the legends) on the templates of
q sites at the stoichiometric ratio η=3. The template lengths shown in
panels a and b are q = 10 and q = 100.
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100. From this figure, we conclude that irrespective of the
size of the template, the smaller the value of σ, corresponding
to larger values of stacking energy, the sharper the transition
is. Note that σ=1 corresponds to noncooperative case, and
as can be seen from the figure, in this case the sharpness
of transition is considerably lower than that of the coopera-
tive one.

An interesting case to consider is strong binding limit, i.e.,
when ε2 f -¥ for large q, corresponding to σ f 0. In this
limit, the asymptotic behavior of Æθæ(Xh,q,σ) is of the form

Æθæ ¼ σXhη

ð1-XhηÞ2
Xh ,Xhp ¼ 1þ 2=q

η- 1=2

Æθæ ¼ 1-
2

q

1

ðXhðη- 1Þ- 1Þ Xh.Xhp

ð13Þ

Also, we can calculate the slope of Æθæ at the transition point
in this limit, giving ∂Æθæ/∂Xh|XhfXhp

≈ qσXh(η - 1/2)/(1 -
Xh(η - 1/2))-2. Setting q f ¥, Æθæ approaches a Heaviside
step function of the formH(X-Xhp). Therefore, this jump in
the bound fraction occurring at Xhp is equivalent to the
magnetization jump in the one-dimensional Ising model in
zero-temperature limit.

Although increasing the cooperativity level for both q
values plotted in Figure 4 raises the sharpness of transition,
having a closer look at this figure, we find that for the same
value of σ the transition is sharper the larger the template
length q. Therefore, we explore in more detail the role of
template size in the next subsection.

4.2. Finite-Size Effects. To investigate the dependence of
the bound fraction on the length of the template, we have
plotted in Figure 5 Æθæ as a function of Xh for different
q values but fixed stoichiometry η=3 and level of coopera-
tivity σ = 0.001. This figure clearly shows that as the temp-
lates become longer, the sharpness of transition increases so
that for large enough q values the curves approach the
infinite-chain limit shown by the solid line in the figure. This
suggests that for template lengths larger than a characteristic
length scale the behavior of system becomes weakly depen-
dent on q. We expect that this length scale to be related to
average length of segments of occupied sites on the template,
characterizing the mean size of cooperative domains along
the templates. Indeed, this reminds us of the correlation
length, which in our case specifies the mean distance from an
occupied (or empty) site beyond which there is a zero
probability of having a bound (or empty) site.

In our model, the correlation length ξ is a decay length of
the two-point correlation function of the occupation number.

In the large-q limit the correlation length can be expressed in
terms of the two eigenvalues as ξ=1/ln(λ1/λ2), which takes a
simple form in the limit of strong cooperativity: ξ0� ξ(s=1,
σ, 1, qf¥)≈σ-1/2/2.22For the typical valueσ=0.001used
in Figure 5, ξ0(σ)≈ 16. Thus, for q values considerably larger
than ξ0, the bound fraction approaches that of infinite-chain
limit the corrections to it are on the order of 1/q. As a result,
for template sizes much larger than the correlation length we
can use the infinite-chain limit approximation, which leads to
a simple expression readily applicable for a quick fitting of
experimental data

Æθæðs, σÞ ¼ 1

2
þ 1

2

s- 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1- sÞ2 þ 4σs

q ð14Þ

where the quantity s follows self-consistently from eq 15.
These equations can be used to obtain the solid curve plotted
in Figure 5.

Having a clear view of how cooperativity and template size
influence the bound fraction, we now investigate how the
relative abundance of guests and host binding sites (the
stoichiometry) influences the binding efficiency.

4.3. The Role of Stoichiometry. The stoichiometric ratio
η = φg/φh is defined as the ratio of mole fraction of guest
molecules, φg, to that of host binding sites, φh. Obviously, in
order to fill all the template sites, the number of guests must
at least be equal to the number of binding sites, i.e., η=1.
However, because of thermal fluctuations not all the guests
will bind to the templates sites, and there are always some
free guest molecules available in the solution, except for very
high mass action values Xh . 1 where all the guests are
adsorbed on the templates. Thus, an excess of guest mole-
cules over binding sites is necessary but not sufficient to fill
all the binding sites.

To understand the influence of the stoichiometric ratio on
the bound fraction better, we have plotted Æθæ in Figure 6 as a
function of mass action variable Xh for different values of
η corresponding to three different cases η<1, η=1, and
η>1 for a short template and for an infinitely long chain.
The cooperativity parameter for all the curves is the same
σ=0.001, i.e., a strong degree of cooperativity that enhances
the efficiency of binding. We observe the general trend that
Æθæ increases gradually from zero to a saturation value
Æθæmax e 1 upon increasing the value of mass action variable
Xh. The sharpness of the transition, as well as the saturation
level Æθæmax, is influenced by the stoichiometric ratio η. As
expected, when η<1, the guest monomers cannot fill all the
binding sites, and at most only a fraction of binding sites
equal to ηwill be bound, i.e., Æθæmax= η. For ηg 1, Æθæmax=
1; one can reach the value 1 only for large enough Xh.

Figure 5. Bound fraction Æθæ as a function of host mass action variable
Xh for different template lengths q = 10, 50, and 500, stoichiometric
ratio η = 3 and cooperativity parameter σ = 0.001 giving rise to a
correlation length of ξ0(σ)≈ 16. The solid line shows the limit of curves
for q f ¥; see eq 14 for further explanation.

Figure 6. Bound fraction as a function of mass action Xh = φh

exp(-ε2 - g) for (a) a short template (q= 10) and (b) a long template
(q f ¥) at different values of stoichiometric ratio. The corresponding
stoichiometric ratios ofη=0.6, 1, and 2 are shown in the legend. For all
the curves σ = 0.001.
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Especially, for η = 1, full saturation requires quite large
values of Xh. Indeed, for η>1, the larger the η value, the
crossover from empty to full templates occurs at a lower
value of the mass action variable Xh and the sharpness of
transition asmeasured by the quantity ∂Æθæ/∂Xh|Xhp

increases.
In summary, a stoichiometric ratio larger than one en-

hances the binding efficiency, and to achieve full binding at
not very large values of mass action variable Xh, an excess of
guest molecules is required. On the other hand, for a
stoichiometric ratio smaller than unity, not all the binding
sites can be filled and the bound fraction saturates at a value
equal to the stoichiometry ratio for large values of host mass
action. This leads us to the issue of how precisely the guests
are distributed over the templates for partially filled template
sites. This is the subject of the next section.

5. Distribution Function of Occupied Sites

As already mentioned, the bound fraction, i.e., the mean filling
fraction Æθæ, is a quantity that can be probed experimentally. The
product qÆθæ then provides us with information about the average
number of occupied sites per template.An interesting question that
also arises is how, given this mean value, the filling fraction varies
from one template to another. In other words, the question arises
what the distribution of the filling fractions θ = n/q is over the
templates,wheren is the number of occupied sites of a template, for
a known value of 0< Æθæ<1. Of particular interest is whether or
not a fraction Æθæφh/q of templates is completely filled and the
remainder is empty or that all the templates have the average qÆθæ
number of sites occupied. To answer this question, we need to find
the probability distribution function Pq(θ) of the filling fraction,
which is defined as the normalized distribution of templates with
n = qθ occupied sites, Fh(n), i.e., Pq(θ) = Fh(qθ)qυ/φh.

As we discussed in section 2, the optimal distribution Fh(n)
minimizes the grand potential. The grand potential is character-
ized by twomain ingredients: a combinatorial factor counting the
number of possible configurations leading to the same number of
occupied sites and the Boltzmann weight associated with those
configurations. The combinatorial factor is largest when the
fragmentation of bound domains is largest (producing maximal
entropy) while the Boltzmann factor favors minimizing the
number of distinct domains (minimizing the interaction free
energy between the bound guest molecules). Clearly, these two
factors competewith each other in determining themost probable
of configurations. As it turns out, the interplay between them is
highly dependent on the length of templates.

For very short chains there is less combinatorial entropy
available, simply because there is not enough room to move the
domains about. As a result, states of either totally filled or empty
templates are in that case preferred. In the other extreme of long
chains, the combinatorial factor can benefit from large number of
fragmentations, leading to many bound domains of moderate
lengths of the order of correlation length. Therefore, we expect a
crossover from an all or nothing distribution for short templates
to a Gaussian distribution for long templates occurring at
template lengths on the order of correlation length.

To obtain from eq 5, an explicit functional form for the
probability distribution function of the filling fraction is not a
trivial task. However, for the related problem of spins on a one-
dimensional lattice, Shigematsu29 has been able to calculate
explicitly the normalized probability distribution function of
the average spin state of the Ising chain, at least in the limit of
large template lengths q. 1 and strong coupling, so large values
of |ε2|, for a fixed and finite ratio of the chain length and the
correlation length, q/ξ0. We can exploit this result by a simple
transformation of the average spin state of a single chain, ÆSæ =
q-1P

i=1
q Si, to the filling fraction of our templates, ÆSæ=2θ- 1.

For large q values, the discrete rational values of θ = n/q are
replaced then by a continuous θ variable varying between 0 and 1.

Implementing this mapping, we find that the probability
distribution function (pdf) for the case of arbitrary Æθæ consists
of a discrete part, representing the all-or-nothing distribution,
and a continuous part, representing the possibility of multiple
fragmentations. The relative dominance of each contribution is
determined by the ratio of chain length q and the correlation
length ξ0 in the infinite chain limit. The complete form of the pdf
for different values of 0< Æθæ<1 can be found in the Supporting
Information. Here, we present only the pdf formula for the case
that Æθæ = 1/2, corresponding to what we defined to be the
polymerization point

P¥ðθ, xÞ¼ 1

2
e- x½δðθ- 1Þþ δðθÞþ xI0ðzÞþ x2z- 1eð2θ- 1ÞyI1ðzÞ�

ð15Þ
where x� q/2ξ0, z� 2[θ(1- θ)]1/2, and δ is defined as q times the
Kronecker delta, that in the limit of qf¥ becomes equivalent to a
Dirac delta distribution. Finally, I0 and I1 are modified Bessel
functions, In, of the first kind for the integer valuesn equal to0and1.

The expression clearly shows that the probability distribution
function of the number of occupied sites must exhibit a crossover
between two distinct regimes characterized by large and small
values of the quantity x= q/2ξ0, as in fact expected from our
earlier arguments. Integrating over the discrete and continuous
part of the distribution function in eq 15, we find that contribu-
tion of these two parts becomes equal to each other if q/ξ0 ≈ 1.4.
The pdf then crosses over from a fully discrete measure to a fully
continuous measure. In Figure 7, we have plotted the pdf as a
function of θ and q/2ξ0. To visualize the discrete part, we have
approximated the delta functionswith normalizedGaussians of a
very small width (0.01). This figure indeed shows that the pdf
becomes more peaked around the center θ = 1/2 as the q/2ξ0
increases and the contribution of the continuous part to the total
pdf becomes dominant.

To get a better grasp of the influence of the template length on
the distribution function, we find the limiting behavior of the pdf
from eq 15 for two limits of x , 1 and x . 1

P¥ðθ; x, 1Þ ¼ 1

2
½δðθ- 1Þþ δðθÞ�

P¥ðθ; x.1Þ

¼
�

x

2π

�1=2
½4θð1-θÞ�- 1=4½1þ ½4θð1-θÞ�- 1=2� exp

�
2x

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
θð1-θÞ- 1

2

r ��

ð16Þ
In the limit of x , 1, short templates, the discrete part is fully
dominant and the pdf is described by a discrete measure con-
centrated on the numbers 0, 1. This implies that short templates in
the solution are either filled or empty. Mixed forms are not

Figure 7. Probability distribution function (pdf) as a function of θ and
q/2ξ0 for the case Æθæ= 1/2. The pdf becomes more and more centered
around θ = 1/2, as the length of templates is increased.
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favored because of a lack of combinatorial entropy. In that case
there are fewer mutually distinguishable distributions of bound
guestmolecules on the template. On the other hand, in the limit of
x . 1, the continuous part is fully dominant, and one gets an
almost Gaussian distributionwith an expectation value Æθæ=1/2
and width of 1/2

√
x and the templates have alternating filled and

empty sections with average lengths of the order ξ0. In this case
the combinatorial factor can benefit from a large number of
entropically favorable fragmentation on a long chain.

Finally, we summarize the dominant configurations of tem-
plates from the perspective of the distribution of guests over them
in state diagram in Figure 8. In this figure, the dominant bound
states are shown as we vary the length of templates and the
strength of host mass action variable Xh, for a set of values of σ
and η in the limit ofΔFf-¥. We can recognize three regions in
the state diagram: (i) a region of virtually empty templates with
Æθæ< 0.1, (ii) a region of essentially fully covered templates with
Æθæ>0.9, and (iii) a transition region, where 0.1< Æθæ<0.9 and
the templates are partially filled. The interesting region to discuss
here is the transition region. In this region, for a known value of
the bound fraction the distribution function of guests over the
templates is very much dependent on the length of templates.
Two distinct regimes can be seen as shown schematically in the
figure based on our earlier discussion: an all-or-nothing distribu-
tion for template lengths short compared to the correlation length
ξ0 and a continuous Gaussian-like distribution for very long
templates compared to ξ0. The width of transition region varies
with degree of cooperativity as σ1/2 for long templates and σ-1/q

for short templates.We expect that the transition region width to
depend on ΔF as well. To investigate this, we have plotted in
Figure 9 the boundary lines Æθæ=0.1 and Æθæ=0.9 for different
values of ΔF. We find that the boundary line Æθæ= 0.1 does not
vary with ΔF in the range investigated, while the boundary line
Æθæ=0.9 is highly dependent onΔF. This line shifts toward larger
and larger host mass action variable as ΔF becomes less negative
and the competition between binding of a monomer on a temp-
late site adjacent to a bound site and to a self-polymer gets closer.
Finally, it is worth mentioning that our state diagram of domi-
nant configurations is, perhaps not entirely surprisingly, very
similar to that of Zimm-Bragg for helix-coil transition of
biopolymers.23

6. Link to Experiments

In the previous sections, we discussed how the bound fraction
of host sites varies with the host mass action variable for varying
control parameters such as the stacking free energy, the stoichio-
metric ratio, and so on. However, in experimental reality the
bound fraction, or rather a quantity that can be related to it, is
measured bymeans of, e.g.,UVabsorption or circular dichroism,
not as a function of the mass action variable but rather the
temperature. In order to make a direct link to experiments, we
make explicit in this section the temperature dependence of the
bound fraction of sites, Æθæ, as well as the fraction of self-
assemblies, λ.

Of course, the temperature dependence of Æθæ and λ is implicit
through the temperature dependence of the free energies ε1(T),
g(T), and ε2(T). In the first approximation, one can always use a
Taylor expansion for each of the free energies around some
reference temperature Tp, leading to εi(T) ≈ εi(Tp) - (T - Tp)-
ΔHεi(Tp)/Tp þ ... for (i = 1, 2) and to g(T) ≈ g(Tp) - (T - Tp)-
ΔHg(Tp)/Tp þ ..., in which ΔHg(Tp) and ΔHεi(Tp) are the
dimensionless enthalpy changes associated with binding and
stacking of guest monomers at the reference temperature Tp (in
units of kBTp). The temperature Tp is arbitrary, but we choose it
as the point for which Æθæ(Tp) = 1/2, i.e., when half the binding
sites are occupied.

For our purposes, it turns out more practical to use one mass
action variable Xh, one stoichiometric ratio η, and the two free
energies σ and ΔF as the independent set of variables. In this
representation, the mass conservation equation eq 10 can be
rewritten as

s

ð1- seΔF Þ2 þXh½Æθæðs, σ, qÞ- η� ¼ 0 ð17Þ

The temperature dependence of the host mass action variable Xh

and cooperativity parameter σ are then Xh(T) = Xh(Tp) exp[Δh-
(Tp)(T-Tp)/Tp], withΔh(Tp)=ΔHg(Tp)þΔH2(Tp) an effective
binding enthalpy to a template site and σ(T)= σ(Tp) exp[-ΔHε2-
(Tp)(T - Tp)/Tp]. Incorporating the temperature dependence of
these free energies in eq 17, we can obtain T as a function of the
quantity s that we from now on treat as a dummy variable.
Therefore, solving the equations for the bound fraction Æθ(s)æ and
the temperature T(s) self-consistently, we obtain the explicit
temperature dependence of the bound fraction.

Figure 8. Configuration-state diagram as a function of the template
length q and the mass-action variable Xh. Shown are results calculated
for a stoichiometric ratio η= 2, degree of cooperativity σ=10-3, and
ΔFf -¥. The two contours of constant bound fraction of sites Æθæ=
0.1 and 0.9 are the boundaries of the transition region from sparsely to
densely occupied hostmolecules. It should benoted that thewidth of the
transition region varies as the template length q changes. For very long
templates q . ξ0 the width is proportional to σ1/2; for short templates
q, ξ0 the width is proportional to σ-1/q. The horizontal dashed line at
q = 1.4ξ0 shows the crossover from an all-or-nothing distribution for
short templates to a continuous Gaussian-like distribution for long
templates. See also Figure 7.

Figure 9. Configuration-state diagram as a function of the template
length q and the mass-action variable Xh. Shown are results calculated
for a stoichiometric ratioη=2anddegree of cooperativityσ=10-3. In
addition to Æθæ=0.1 and 0.9 in the limitΔFf-¥, the contour line Æθæ
=0.9 is shown for different values ofΔF=-5,-1, and-0.2. The less
negativeΔFbecomes, themore the boundary shifts toward larger values
ofXh. As in Figure 8, the horizontal dashed line at q=1.4ξ0 shows the
crossover froman all-or-nothingdistribution to a continuousGaussian-
like distribution for long template. See also Figure 7.
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As we discussed in section 3, in the templated-assembly
dominant state, ΔF < 0, the templated assembly does not
interfere with the self-assembly until all the templates are filled.
This means that bound fraction as a function of temperature
behaves the same as the case ΔF f -¥. Taking this limit
simplifies extracting the temperature from eq 17, as ΔHε1(Tp)
drops out of this equation. Therefore, by fitting the temperature-
dependent experimental data for Æθæ, one can obtain values for
both the total enthalpy change and cooperativity parameter.

To understand the influence of variations of each of the enthal-
pies in our model, we first consider the case that ΔHε2(Tp) = 0;
i.e., we suppress any temperature dependence of σ(T) � σ(Tp).
The temperature T can be expressed to first order in T - Tp in
terms of Xh, which in turn is expressed as a function of s from
eq 12, i.e., Xh = s/(η - Æθæ), and one can obtain the temperature
dependence of the bound fraction Æθæ from T(s) and Æθæ(s) para-
metrized in terms of the dummy variable s. Results have been
plotted inFigure 10a for the case ofΔHε2=0 anddifferent values
of enthalpy change ΔHg keeping all the other parameters fixed.
These curves clearly demonstrate that the rate of saturation of the
bound fraction of guestmolecules, Æθæ, upon cooling the system is
strongly influenced by enthalpy change due to binding of guest
molecules to the host molecules. In other words, the sharpness of
the transition is controlled byΔHg, the effective binding enthalpy
to the host molecules.

In Figure 10b, we compare the temperature dependence of Æθæ
for two cases: (i) ΔHε2 = 0 and (ii) ΔHε2 = -6kBTp, the latter
value leading to a temperature-dependent cooperativity para-
meter σ. Both cases have the same value for total enthalpy change
Δh=-20kBTp. As can be seen from this figure, the temperature
dependence of σ shows its influence only at temperatures below
Tp and leads to the saturation of the bound fraction at somewhat
higher temperatures albeit that the effect is small. This figure
suggests that the slope of Æθæ around T= Tp is determined by the
total enthalpy value Δh.

It is straightforward (if somewhat tedious) to show that atT=
Tp the slope of Æθæ at polymerization temperature Tp, for large
enough q values q . ξ0 and η>1, obeys

dÆθæ
dT

�����
T ¼Tp

� ΔhðTpÞ
TP

η- 1=2

1þ 4ðη- 1=2Þ ffiffiffiffiffiffiffiffiffiffiffiffi
σðTpÞ

p 1þ 4ðη- 1=2Þð ffiffiffiffiffiffiffiffiffiffiffiffi
σðTpÞ

p
- 1Þ

1þ 4ðη- 1=2Þ ffiffiffiffiffiffiffiffiffiffiffiffi
σðTpÞ

p 1

q

" #

þOðq- 2Þ ð18Þ
This slope is sensitive to the dimensionless enthalpyΔh as well as
the stoichiometric ratio η and the value of the cooperativity
parameter at polymerization temperature σ(Tp). In addition, it
includes the correction of the order of 1/q for large q. ξ0. In the
limiting case of infinite excess of guest molecules so that
η(σ(Tp))

1/2 .1, this slope takes the simpler form of (Δh(Tp)/
4Tp(σTp)

1/2)(1 - 1/(q(σTp)
1/2)), which, interestingly, is indepen-

dent of η. In the opposite limit of η(σ(Tp))
1/2 , 1, the slope takes

also a simple form Δh(Tp)(η - 1/2)/Tp, showing a linear depen-
dence on stoichiometric ratio. The behavior of the slope on these
two limits suggests that increasing η few times larger than one up
to η(σ(Tp))

1/2 ≈ 1 enhances the binding efficiency. However,
exceeding this limit does not help the binding efficiency any
further. This information can be used for a quick estimate of
enthalpy values from the temperature-dependent data of bound
fraction.

Another quick estimate of Δh(Tp) can be obtained from the
dependence of polymerization temperature Tp on the size of
template q. In the large q limit, the template size dependence ofTp

can be obtained from the ratio of host mass action variable at
Tp(q,σ) to its value at the polymerization temperature in the limit
q f ¥, Tp(¥), and using eq 12, i.e., Xh(Tp(q,σ))/Xh(Tp(¥)) =
sp(q,σ), which is independent of η. This leads to the following q
dependence for Tp

Tpðq, σÞ � Tpð¥Þ 1þ 2ð1- ffiffiffiffiffiffiffiffiffiffiffiffiffi
σðTPÞ

p Þ
ΔhðTPð¥ÞÞ

1

q
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1
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up to 1/q corrections. However, this expression becomes exact for
the noncooperative case of σ= 1, and there is no correction due
to finite length and for the cooperative case; the σ dependence is
weak as also evidenced byFigure 10b. In the cooperative case, for
a negative Δh, this tells us that the longer the template, the
templated assembly saturates at a higher temperature.

At sufficiently low temperatures when the bound fraction has
saturated, self-polymerization at some point sets in (unlessΔFf
-¥, of course). In such a situation, any UV absorbance or CD
effect that probes interactions between (helically) stacked guest
molecules is plausibly proportional to the overall fraction of
polymers, i.e., f= Æθæ/η þ λ, so consisting of contributions from
material in templated and in self-assemblies. To investigate this,
we calculated the temperature dependence of the bound fraction
and the fraction of self-assemblies explicitly, using the full mass
conservation equation eq 17 for a particular choice of parameters.
In Figure 11, we have plotted both the bound fraction and the
fraction of self-assemblies as well as the total fraction of polymers
as a function of the temperature. The enthalpy values used
here are comparable to what was extracted from experiments in
refs 18 and 19.

This figure leads us to two important insights. First, the
fraction of self-assemblies can indeed be ignored before Æθæ
saturates as in fact we already expected from our earlier discus-
sion (see section 3). Second, the total fraction of polymers shows

Figure 10. Bound fraction Æθæ as a function the temperature T, for a
stoichiometric ratio of η = 2, cooperativity factor σ(Tp) = 0.01, and
template length q = 40. (a) Results for different values of enthalpy
change ΔHg(Tp) and fixed ΔHε2 = 0 as shown in the legend. (b) Total
enthalpy change ofΔh(Tp)= 20kTp for two cases: (i)ΔHε2(Tp)= 0 and
σ(T) = σ(Tp) = constant and (ii)ΔHε2(Tp) =-6kTp, the latter leading
to a temperature-dependent σ. We have assumed a polymerization
temperature of Tp = 300 K for all the curves.
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an upward trend with decreasing temperature after all the
templates are filled due to the start of self-polymerization. Such
a temperature dependence has indeed been observed in UV-
absorption experiments by Janssen and collaborators.19 Hence,
our theory provides a plausible explanation for the nonsaturating
temperature dependence observed at low temperatures, although
it could also originate from other effects, such as optical or
change in supramolecular structure at lower temperatures. In our
view, clarifying this issue merits further experimental studies.

7. Concluding Remarks

To describe competition of templated- and self-assembly, we
present a coarse-grained model that is a combination of theory of
linear self-assembly and an Ising-like model for templated assem-
bly. The model that we advance hinges on three free energies
associatedwith the binding free energy of amonomer on an empty
site in a template, g, the stacking interaction of twomonomers in a
supramolecular polymer, ε1, and that of two adjacent bound
monomers on the template, ε2. The crucial parameter determining
the predominant state of assembly is a combination of these three
free energies ΔF � g þ ε2 - ε1, in essence the difference in free
energy gainof amonomer attached adjacent to a bound site on the
template and that of binding a monomer to a supramolecular
polymer.

IfΔFg 0, monomers tend to self-assemble rather than to bind
to the templates, and self-polymerization is the predominant
state. In this case, the average fraction of bound guest molecules
to the templates can never reach the value of one-half, as there is
no limit on the number of monomers that can self-assemble. For
ΔF<0, the monomers have a stronger affinity toward templates
than to each other. Upon increasing the monomer concentration
for a fixed concentration of host templates large enough so that
Xh>2/(1- eΔF)2, first virtually all the binding sites are filled and
only after the complexation saturates self-polymerization takes
off. This brings us to the important conclusion that in templated-
assembly dominant regime, the templated- and self-assembly do
not interfere before virtually all of the binding sites are occupied
by bound guest molecules. Hence, for all intents and purposes,
one can treat the complexation problem in terms of the depen-
dence of the bound fraction on various control parameters such
as stoichiometric ratio, temperature, etc., as if there were exclu-
sively templated assembly and self-assembly were somehow
suppressed.

We find that the binding efficiency of templated assembly
increases dramatically with increasing the stacking interaction, in

the sense that it raises the level of binding cooperativity leading to
a much sharper transition from empty to filled templates. Inter-
estingly, we also find that the length of the template has a similar
influence and that the longer the template, the sharper the
transition is albeit that the effect does saturate for chains much
larger than the correlation length of the bound guest molecules.
We come back to this below.

Another important determining factor for the sharpness of the
transition is the stoichiometric ratio. It is often assumed in
experimental studies that a 1:1 ratio of guest to host binding sites
is optimal for effective filling of all the binding sites of the
templates. However, as our model shows, at a stoichiometric
ratio of one thermal fluctuations prevent the templates to all get
filled except at very low temperatures, and the transition is
definitely not sharp even at high degrees of cooperativity.
Increasing the relative abundance of guests to a few times the
number of binding sites enhances the efficiency of binding to
templates dramatically and allows for effective filling of templates
within limited range of temperature.

Our model can be used to fit to experimental data and extract
the enthalpy values associated with the binding and stacking free
energies as well as the cooperativity parameter. Indeed, we
successfully fitted the data of Janssen et al.19 on mixtures of
oligo-thymine templates and naphthalene-like guest molecules,
even though we ignored the possibility of competing self-assem-
bly that indeed does seem to set in at low temperatures. It is clear
now why this is so: the binding strength is strong enough to
suppress it until all the templates aremoreor less filled. In relation
to the experimental situation, if we assume that in a first order
approximation ε1 ≈ ε2, then ΔF ≈ g<0. This suggests that as
long as g is large enough, the templated assembly is dominant and
the case ΔF>0 is improbable in practical situations.

We emphasize that although models for the description of
purely templated assembly have been developed long before,24

their full theoretical characterization has so far been lacking.
Here, we have filled in this gap and provided such a detailed
analysis. Specifically, we have discussed how the guestmonomers
distribute themselves over the templates for the case of incom-
plete filling of the templates. From the insight obtained from our
Ising-like model, we now understand that depending on the
length of templates relative to the aforementioned correlation
length that is set by the stacking free energy ε2, different types of
distribution are preferred. This correlation length is defined as the
mean number of correlated template binding sites and is a
measure of the average number of subsequent template sites in
the infinite chain limit. For very short templates, i.e., shorter than
the correlation length, the guests are distributed according to an
all-or-nothing distribution, so a fraction of templates equal to the
bound fraction are totally filled and the rest of them are empty.
For very long templates, on the other hand, the guests are more
or less evenly distributed over all the templates according to a
Gaussiandistribution centered around the averagebound fraction.

A final issue worth mentioning here is the “squeezing out” of
allowed template backbone configurations and a concomitant
local stiffening of this backbone resulting from the binding of the
guest monomers.30 These effects are not taken into account
explicitly in our quasi one-dimensional model. We argue that
they are, however, described implicitly in the various effective free
energy parameters.This is valid only in the limitwhere long-range
self-interactions of the backbone is not important yet, that is, if
the host molecules are not very long or if the solvent is near
θ-conditions. Clearly, this issue merits further study.
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Figure 11. Bound fraction Æθæ (solid line), fraction of self-assemblies
λ (dashed line), and overall fraction of polymers, f = θ/η þ λ, as a
function of the temperature for a template in the infinite-chain limit
q f ¥, with the interaction parameters values ΔF(Tp) = -5kTp, σ =
0.01, η = 5, and Tp = 300 K. The enthalpy values used here are
ΔHg(Tp) = -20kTp, ΔHε1(Tp) = -15kTp, and ΔHε2(Tp) = -5kTp.
Notice that self-assembly does not occur appreciably until all the
templates sites are filled.



5844 Macromolecules, Vol. 43, No. 13, 2010 Jabbari-Farouji and van der Schoot

Supporting Information Available: Probability distribution
function. Thismaterial is available free of charge via the Internet
at http://pubs.acs.org.

List of Symbols

ε1 free energy of the bonded interaction between two
monomers in a self-assembly, in units of the thermal
energy kBT

εn nucleation free energy in units of kBT
ε2 stacking free energy in units of kBT between two

adjacent monomers bound to the same template
σ = exp(ε2)

degree of cooperativity of binding guest on host
molecules

g free energy of binding of a monomer to a binding
site on the template in units of kBT

ΔF � ε2 þ g - ε1
free energy difference of attaching a guest to a
templatenext toanoccupied site and thatof attaching
one to a free end of a self-assembled linear polymer

s � exp(-ε2 - g þ μ)
measure of the strength of guest binding to the host

Fg(N) the number density of chains of degree of polymeri-
zation N

Fh(n) the number density of templates with n bound
monomers

μg chemical potential of guest molecules
μh chemical potential of host molecules
φg molar fraction of guest molecules
φh molar fraction of host molecules
η=φg/φh

stoichiometric ratio
q number of binding sites on a template molecule
θ= n/q fraction of occupied sites on a template of size q
Æθæ mean filling fraction
λ mean fraction of self-assemblies
Xg � φg exp(-ε1)

guest mass action variable
Xgp polymerization point of self-assembly
Xh � φh exp(-ε2 - g)

host mass action variable
Xhp polymerization point of templated assembly
Tp polymerization temperature
ξ0 correlation length in the limit of high cooperativity

σ, 1
x=q/2ξ0

ratio of template size and correlation length
P¥(θ,x) probability distribution function as a function of

filling fraction and ratio of template size to correla-
tion length for a known value of bound fraction

ΔHεi enthalpy change associated with binding free
energy εi

ΔHg enthalpy change associatedwith binding free energy g
Δh � ΔHε2 þ ΔHg

relevant enthalpy for binding to a template
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