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Combining Object Detectors Using
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Abstract—Object detection is an important research area in
the field of computer vision. Many detection algorithms have
been proposed. However, each object detector relies on specific
assumptions of the object appearance and imaging conditions. As
a consequence, no algorithm can be considered universal. With
the large variety of object detectors, the subsequent question is
how to select and combine them.

In this paper, we propose a framework to learn how to combine
object detectors. The proposed method uses (single) detectors like
DPM, CN and EES, and exploits their correlation by high level
contextual features to yield a combined detection list.

Experiments on the PASCAL VOC07 and VOC10 datasets
show that the proposed method significantly outperforms single
object detectors, DPM (8.4%), CN (6.8%) and EES (17.0%)
on VOC07 and DPM (6.5%), CN (5.5%) and EES (16.2%)
on VOC10. We show with an experiment that there are no
constraints on the type of the detector. The proposed method
outperforms (2.4%) state-of-the-art object detector (RCNN) on
VOC07 when RCNN is combined with other detectors used in
this paper.

Index Terms—Object Detection, Fusion, Learning to rank

I. INTRODUCTION

OBJECT detection is an active research area in the field of
computer vision. Many detection algorithms have been

proposed [1], [2], [3], [4], [5], [6], [7], [8]. Although these
detection algorithms are successful for many detection tasks,
they may be less accurate for some specific cases.

To gain more insight on the differences amongst detectors,
Hoiem et al. [9] provide an extensive analysis on object detec-
tors and their properties [9]. Their findings are that detectors
perform well for common object appearances and common
imaging conditions. Obviously, different design properties of
the detectors (e.g. search strategy, features, and model pre-
sentation) influence the robustness of the methods to varying
imaging conditions (e.g. occlusion, clutter, unusual views, and
object size). For instance, detectors based on the sliding-
window approach [1] using pre-defined window sizes and
aspect ratios are good at finding likely object positions (rough
object positions). However, they are less suited to detecting
deformable objects precisely. Hoeim et al. [9] show that
these types of detectors typically suffer from poor localization
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errors. Moreover, the large number of candidate regions to
be considered limits the capability of sliding-window based
object detection methods [2], [10]. Due to a large number of
candidate regions (over 100K per image), it is not possible to
perform object detection within an affordable time-frame while
using strong classifiers [2]. The large number of candidate
regions does not only restrict the classifier options but also
influences the choice of the selected features. Extracting com-
plex features from a prohibitively large number of sub-regions
is not feasible due to its low efficiency [2], [7]. To avoid the
limitations of a sliding-window approach, an object proposal
method (selective search [7]), is integrated as a pre-processing
step in current state-of-the-art techniques [5]. Selective search
generates a significantly reduced set of candidate regions
(around 2K per image). However, Hosang et al. [10] show
that selective search generates candidate regions which are
sensitive to changes in scale, illumination and geometrical
transformations. This is because selective search is based on
segmentation derived from superpixels which are unstable for
small image deformations.

Besides the method to generate proper candidate regions for
detection, the choice of features influences the robustness and
discriminative power of the detectors. HOG-based templates
are able to preserve the shape information [1], [4] of objects
but are less suited for differentiating between visually similar
categories such as cats and dogs. This limitation is addressed
using color information in [3], following successful results of
using color information in object recognition [11]. HOG-based
object detection using color [3] is suited for object classes in
which the intra-class color variation is low (e.g. potted plant
and tv-monitor). However, the use of color negatively affects
the detection accuracy for object classes in which the intra-
class color variation is large (e.g. bottles and buses).

Finally, the chosen model and classifier drastically influ-
ences the performance of the detectors. In general, object
detectors represent all positive samples of a given category as
a whole [1], [3]. However, Malisiewicz and Efros [12] show
that standard categories (e.g. train, car and bus) do not form
coherent visual categories. Accordingly these methods are too
generic. To address this issue Malisiewicz et al. [4] propose
to train a separate linear SVM classifier for each positive
sample in the training set. Gu et al. [13] show that using
only one positive sample for training significantly reduces
the generalization capacity. Hence, the detection performance
of [4] deteriorates for uncommon object views.

As a consequence, no detection algorithm can be considered
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Fig. 1. Flow of the proposed method (Best viewed in color). Initial detections from different detectors namely, Det1(green), Det2(red) and Det3(Blue) are
combined by a learning to rank algorithm. False detections of the individual detectors are learned by detector-detector relations and obtain less confidence
when combined, whereas consistency in detectors BB1, BB2 and BB3 are rewarded by the re-ranking system.

universal. With the large variety of available methods, the
question is how to combine these object detectors to preserve
their strengths while reducing their limitations and assump-
tions. In this paper, we consider a rank learning approach
to combine object detection methods. The proposed frame-
work combines detections (detector outputs which consist of
a classifier score and bounding box locations) of different
well-known object detectors including DPM [1], CN [3] and
EES [4]. Furthermore, the method extracts high-level con-
text features such as detector-detector consistency, detector-
class preference, object-saliency of a detection, and object-
object relations. These features are used in a learning to rank
framework to yield a combined detection list. The flow of the
proposed method is summarized in Fig 1.

The proposed approach offers the following advantages over
single object detectors:

• Missed detections (false negatives) of single detectors
are compensated by combining detections of different
detectors.

• Detections are re-ranked by using information gathered
by other detectors. True detections (true positives) of each
detector are rewarded and false detections (false positives)
of each detector are penalized within the learning to rank
framework.

• The combined list maintains the strengths of the detec-
tors. Therefore, it is more robust than each individual
detector for varying imaging conditions.

To the best of our knowledge, we are the first to propose
using re-ranking approaches to combine object detectors.
Experiments on VOC07 and VOC10 show that the proposed
method significantly outperforms single detectors. The pro-
posed method (including code and the detector outputs) will
be made publicly available. This allows other researchers to
add new detectors.

Our contributions are the following:
• Detector combination: We provide a new perspective on

how to approach the object detection problem. As there

is no universal object detector, we propose to combine
the state-of-the-art object detectors rather than creating a
new one.

• Formulating detector combination: We formulate the
problem of combining detectors in a learning to rank
framework which has not been considered before in
object detection.

• Detector contextual integration: We propose high-level
context features (e.g. detector-detector relations and
object-saliency cues) to combine detections in a learning
to rank framework.

• Detector consistency: We show that the state-of-the-
art detectors have many detections in common. These
common detections are proven to be very informative to
re-rank detection scores.

• Detector complementarity: We show that existing state-
of-the-art object detectors also have complementary de-
tections. These complementary detections reduce missed
detections of single detectors in a combined list.

II. RELATED WORK

A. Object Detection

In general, papers on object detection aim to design a
single detector, descriptor or classifier [1], [2], [5], [6], [8],
[14], [15]. Felzenszwalb et al. [1] propose a part-based object
detection method using HOG features and a latent SVM. This
algorithm outperforms the state-of-the-art methods for stan-
dard object appearances. The use of template-based models
limits a detector’s ability to detect deformable objects [9].
Moreover, template-based models (using HOG features) are
designed to accommodate for shape information and are less
suited to differentiate visually similar categories (e.g cats and
dogs). In contrast to part-based detection methods, Vedaldi et
al. [2] propose the use of a bag-of-words model for object
detection. Multiple features are used within a multiple kernel
learning framework which is able to distinguish between
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visually similar object categories. However, Hoiem et al. [9]
show that this approach is sensitive to object size due to the
bag-of-words model. Khan et al. [3] propose to use additional
color information for object detection. The color information
contains expressive power for object classes in which the intra-
class color variations are low (e.g. potted-plants or sheep).
However, color may have a negative influence on the detection
of classes in which the intra-class color variations are high
(e.g. bottles or buses) [3].

Malisiewicz et al. [4] propose to learn a linear classifier
per exemplar in the training set. The algorithm benefits from
a large collection of simpler exemplar classifiers. In this
way, the method is tuned to the appearance of the exemplar.
While the detections of this detector cover the objects in
the dataset (high recall), the detector usually provides low
average precision. This is due to the large number of false
detections introduced by each of the exemplar specific clas-
sifiers. Currently, remarkable results for object detection are
obtained by convolutional neural networks [5], [6]. Girshick
et al. [5] employ the CNN of [16] to a set of candidate
windows obtained by selective search [7]. Recently, Hosang et
al. [17] used various object proposals (BING [18], OBJ [19],
CORE [20] etc.) to generate candidate windows and evaluate
their performance for object detection using RCNN detector.
The authors also report the best performance using candidate
windows generated by selective search.

B. Contextual Information for Object Detection

Contextual information for object detection has been ex-
ploited over the past few years. Contextual information in-
cludes the relation between objects [21], [22], scene lay-
out [23] or characteristics [24], [25], surrounding pixels [21],
[26], [27] and background segments [28]. [25] shows that
real-world scene structures can be modeled by inference
rules. Therefore, in addition to the appearance of objects,
contextual information provides useful information for object
detection [29], [30]. For example, Choi et al. [24] model the
object spatial relationships and co-occurrences by employing
a tree-structured graphical model. Desai et al. [23] model
the spatial arrangements between objects to detect objects in
a structured prediction framework. Cinbis and Sclaroff [31]
formulate the object and scene context in terms of relative
spatial locations and relative scores between pairs of detections
as sets of unordered items. Felzenszwalb et al. [1] re-score
their DPM detections by exploiting contextual information as
a post processing. Their re-scoring scheme relies on object co-
occurrences as well as the location and size of the objects. The
above methods show that contextual information is important
for object detection. However, these methods have certain lim-
itations. For example, the above methods rely on object-object
co-occurrences and spatial relationships and hence are suited
for images consisting of (many) different objects. Further, the
context-based methods aim at re-scoring detections. They do
not introduce new detections and hence are not able to recover
from missed detections of single detectors.

C. Score Aggregation

The approach of aggregating the responses of classifiers and
learning a second level SVM to re-score them for different
tasks such as action recognition [32], image retrieval [33]
and object recognition [34], [35] has been exploited in the
literature. The organizers of Pascal VOC12 use seven methods
submitted to the classification challenge. The scores of each
submission are concatenated to form a single vector to train
another linear classifier. Substantial increase for average pre-
cision is reported for classes such as potted plants and bottles.
However, the problem of aggregating scores of different object
detectors is not straightforward as other problems mentioned.
More precisely, for these problems each instance in the dataset
has a response from each classifier. By contrast, the object
detectors do not generate candidate regions (exactly) at the
same locations. Therefore, each candidate region does not
necessarily contain a response from other detectors. Recently,
Xu et al. [36] propose combining different pedestrian detec-
tors through score calibration and detection clustering steps.
The authors reduce false and missed detections of pedestrian
detectors per image. However, they do not aim to perform a
global ranking of detections over the entire dataset for different
object classes. In a different work, Ladicky et al. [37] jointly
estimates object location and segmentation by minimizing a
global energy function on a Conditional Random Field (CRF)
model. [37] combines results from detectors (single detector
trained for different object classes), pairwise relationships
between superpixels, and other low-level cues to perform
better segmentation.

III. OBJECT DETECTORS

In this section, the detectors used in this paper are outlined.
We focus on publicly available detectors. Note that there are
no constraints on the type of detector since the proposed
method only requires detections (bounding box locations with
classifier scores) of a detector.

A. DPM

Felzenszwalb et al. [1] propose an object detector in which
each object category consists of a global template and de-
formable parts. The global template and deformable parts are
represented by HOG features extracted at different scales.
Training of the object models is done in a latent SVM
framework. Each detection {x1, x2, ..., xn} in the training set
is given a corresponding label, yi, which is either +1 or −1.
Each detection x is scored as

fβ(x) = max
z∈Z(x)

β.Φ(x, z). (1)

The set Z(x) defines all possible latent values for detection
x. β and Φ(x, z) is a vector of model parameters and a feature
vector, respectively. β is trained by minimizing the following
objective function:

L(β) =
1

2
||β||2 + C

n∑
i=1

max(0, 1− yifβ(xi)), (2)
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where max(0, 1− yifβ(xi)) is the hinge loss and constant
C is the regularization parameter.

B. CN

Khan et al. [3] propose an object detector which uses color
attributes as an additional feature alongside DPM based HOG
features. The color attributes are combined with HOG features
in a late fusion manner. The proposed color attributes are
compact and efficient. They are proven to be effective for the
object classes in which intra-class color variations are low such
as potted-plants and sheep. Beside extending HOG features
with color attributes, training is done exactly the same as in
DPM.

C. EES

Malisiewicz et al. [4] propose an object detector which is
trained by a parametric SVM for each positive exemplar in
the training set. Consequently, a large collection of simpler
exemplar specific detectors, which are highly tuned to the
appearance of the exemplars, are obtained. Each exemplar
is represented using a rigid HOG template [38] to train a
linear SVM. Then, each Exemplar-SVM, (βE ,bE), is used as
a learned instance-specific HOG weight βE vector to score.
βE is learned by optimizing the following convex objective
function:

ΩE(β, b) = ||βE ||2+C1h(β
TxE+b)+C2

∑
x∈NE

h(−βTx−b),

(3)
where h(x) = max(0, 1 − x) is the hinge loss and C1

and C2 are regularization parameters. Training each detector
allows detectors to be tuned based on variations on the
exemplar’s appearance (viewpoint and object geometry). As
a result, high recall is obtained for object detection.

IV. COMBINING DETECTORS BY LEARNING TO RANK

To combine detections from different detectors, learning
to rank (L2R) is used. L2R aims to rank groups of items
according to their relevance to a given task. Fig. 2 illustrates a
common L2R flow. In our framework, the training set consists
of detections X = {xi}mi=1 (m is the number of the items in
training set) and the ground truth label (y). Feature vector Φ
and y are used in training data to learn a ranking model (g).
To re-score detections, g is described as follows:

g(x) = wΦ(x). (4)

Using varied loss functions ξ (see section V), the weight (w)
is optimized by minimizing the following objective function:

min
w

1

2
wTw + C

l∑
i=1

ξi. (5)

To learn a ranking algorithm that performs re-ranking, the
proposed method starts with the feature extraction step using
detections x from different detectors.
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Fig. 2. Learning to rank framework for detection re-ranking.

A. Context Features

The proposed method starts with high-level context feature
extraction to learn how to combine the ranking of detections
from different detectors into a single detection list. We aim
to extract generic features which exploit the correlation and
consistency between detectors.

1) Detector-Detector Context: We introduce a notion of
detector consistency which measures whether different detec-
tors are generating object detections within the same image
region. Agreement of all object detectors for a certain location
increases the probability of a correct object detection. How-
ever, different detectors may generate detections at different
locations even for the same image. As a result, it is hard to
obtain an exact bounding box location where all detectors
provide a detection. Therefore, a relative detector score is
defined. To obtain a relative score for each detection, a corre-
spondence term is computed by considering the overlapping
ratios between all other detections. In this way, an image is
represented as a collection of detections obtained by different
object detectors j, where j = {1, 2 . . . n} and n is the number
of the detectors used. For the ith detection in the image, the
maximum overlapping detection with each detector is given
by:

Ai,j =
Area(BBi ∩BBj)

Area(BBi ∪BBj)
, (6)

[Γi(j), φi(j)] = max (Ai,j) , (7)

where Γ is the overlap ratio and φ is the index of the
maximum overlapping detection for detector type j. Then,
the corresponding relative score R of a detector j to the ith

detection is Ri,j = Γi(j) × S(φi(j)), where S is the initial
classification score of the detector. Note that if a detection has
no overlap with other detectors (Γi(j) = 0), its relative scores
will be zero. In this way, higher relative scores correspond
to more reliable detections because more detectors agree on
a particular location (see Fig. 3). If a detection has high
relative score from each single detector it corresponds to a
high probability of being a true detection. Whereas a low
relative score corresponds to a false detection. Moreover, a
mid-level consistency in relative score can be considered as a
good indication of poor localization error.
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Fig. 3. The figure illustrates relative score R for each detection in VOC 2007 trainval set. Each sphere represents a detection in the trainval set whereas each
axis represents relative score from detectors namely, DPM, CN and EES. The color blue, green and red holds for true detection, poor localization and false
detection, respectively. Best viewed in color.

Relative score of a detection does not include the informa-
tion of which detector it belongs to. However, some detectors
perform better than others for some classes, hence their
detections should get higher scores than detection of lower-
performing detectors (to emphasize the strength of detectors
on tasks for which they are successful). Therefore, a detector
indicator term is specified. The aim is to provide information
to the learning system for identifying detector preferences for
particular classes. To give an indication of which detector the
detection belongs to, a binary vector ID of three dimensions
(i.e. three detectors in our case) is used. The value of the
dimension is assigned to be one in case of a detection by the
corresponding detector otherwise the value is set to zero. This
feature vector is at the detector level. Therefore, all detections
of the same detector have the same binary coding ID.

The final corresponding score feature Rs, for the ith detec-
tion is denoted by Rsi = {ID,i, Ri,1, Ri,2, ..., Ri,n, Ri,1 +
Ri,2, Ri,1 +Ri,3, Ri,2 +Ri,3, ..., Ri,n−1 +Ri,n, Ri,1 +Ri,2 +
Ri,3 + ...,+Ri,n}. The dimension of Rs is limited to the
number of the detectors.

2) Object-Saliency: A feature vector Os is proposed to
represent how likely it is that a detection contains an object.
EES [4], OBJ [19] and CORE [20] are used to measure the
object-saliency of a detection. OBJ and CORE are category
independent region proposal methods. They are mostly used by
the current object detection algorithms to avoid an exhaustive
sliding window search. These methods provide region can-
didates/proposals (bounding box) which are likely to contain
objects. Both methods result in approximately 1000 candidate
regions per image. In addition to these category independent
region proposal methods, EES [4] is also used to provide
region candidates. The overlap ratios between these different
region proposals and object detections are calculated according
to eq. 6. Then, the feature vector Os for the ith detection is
given by:

Fig. 4. The figure illustrates object likelihood score Os for each detection
in VOC 2007 trainval set. Each sphere represents a detection (randomly sub-
sampled over all classes) in the trainval set whereas each axis represents object
likelihood score from object indicators namely, OBJ, CORE and EES. The
color blue, green and red holds for true detection, poor localization and false
detection, respectively. Best viewed in color.

Ψi,j = sort(Ai,j) , (8)

Os(i, j) =
1

n

n∑
k=1

Ψi,j(k), (9)

where n is the number of neighbors to measure object-
saliency, Ψ is the sorted list of overlaps and j is the indicator
of different regions proposals, namely OBJ, CORE and EES.
Additionally, we use the confidence scores of the maximum
overlapping neighbors of detections by EES [4] in eq. 9 since
these regions proposals are class specific. A detection with a
high object-saliency value is considered to be a good indicator
for a correct detection. These features may be useful for
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Feature Notation Dimension

Detector Relative Score Rs 10
Object Likelihood Measure Os 4
Object-Object Context So 20
Total 34

TABLE I
CONTEXTUAL FEATURES USED IN THE PROPOSED LEARNING TO RANK

FRAMEWORK.

assigning lower confidence scores to false detections. Fig. 4
illustrates that true or false detections are highly correlated
with the object likelihood scores.

3) Object-Object Relation: The likelihood of an object be-
ing present is inferred by using other object class likelihoods.
Let Sc,j be the detection with maximum confidence for object
class c (c = {1, 2, . . . ,m}) by detector j (j={1,2,3}) in an
image, where m denotes the number of object classes. Then,
the object-object context So is given by

So(c) =
3∑

j=1

Sc,j . (10)

This feature exploits the object-object relations. For in-
stance, when three detectors locate a cow with high confi-
dence, it is less likely to have a sofa or tv in the same image.

The compactness of the proposed contextual features used
in this paper is shown in Table I. We normalize each feature
dimension by subtracting its mean and dividing by its standard
deviation.

B. Learning

L2R methods are used to learn the ranking models. L2R
methods used in this paper can be categorized in two
groups [39]. The first type of algorithms is called pointwise
techniques. Pointwise approaches represent the problem of
ranking as a regression or classification problem. These tech-
niques are straightforward approaches to learn the ranking
model. Pointwise algorithms are preferred because of their ef-
ficiency and effectiveness. These methods have been optimized
to work on large scale data.

The second type of L2R algorithms are pairwise techniques.
These methods consider the problem of ranking as a pairwise
classification problem. The aim is to learn a binary classifier
to determine which instance is most relevant from a given pair
of instances. The goal of these algorithms is to minimize the
average number of misorders in ranking rather than the tradi-
tional misclassification in the ordinary pointwise approach.

C. Non-maximum Suppression

Duplicate removal for the same instance is a known problem
for single detectors. Obviously, by combining multiple detec-
tors, the proposed method increases the number of duplicates.
To this end, we propose to suppress these multiple detections
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Fig. 5. Each training is used for learning detector models and context models.
To avoid overfitting, the object detectors for context models are trained on
the train set to generate detections on validation. Further, they are trained on
validation to provide detections on train.

by non-maximum suppression (nms). The common applica-
tion of nms considers all bounding boxes (over a certain over-
lap threshold) for suppression. We use only correspondences
(overlaps between detections of other detectors) obtained for
each detection in eq. 7 for suppression. After applying the re-
ranking system, the corresponding detections are sorted and
the highest among the others remains constant while detections
which are at least 40% covered by the highest detection are
suppressed.

V. EXPERIMENTS

Experiments are conducted on the Pascal VOC07 and
VOC10 datasets. VOC07 dataset consists of 9963 images of 20
different object classes (24640 annotated objects) with 5011
training images and 4952 test images. The VOC10 train/val
dataset contains 10103 images of 20 different categories
(23374 annotated objects). Object detections for the train set
are obtained via models trained on 2007val and detections for
the val set are trained on the 2007train set to learn detector-
detector context. Detections for the test set are obtained
by models trained on the 2007trainval set for both dataset
evaluations. This process is summarized in Fig. 5.

A. Detector Bounds

In this experiment, we evaluate the maximal mAP that
can be achieved by the detections of the baseline detectors
and their combinations. The maximal mAP of a detector is
calculated when all true detections are ranked at the top of
the detection list (precision-recall curve of the maximal AP:
precision is always at 1 and the cut-off is at the maximum
recall). Since AP corresponds to the area under the precision-
recall curve, AP for the maximal AP is (1 × max(Recall)).
Consequently, Table II corresponds to a recall table. Table II
shows that re-ranking DPM , CN and EES detections results
in a substantial performance improvement, 17.5%, 16.2% and
33.1%, respectively. This result shows the positive effect of
re-ranking detection scores of object detectors.

Table II shows that DPM and CN have similar maximal
mAPs of 45.6% and 46.2%, respectively. However, their
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aero bike bird boa bot bus car cat chr cow tab dog hor mbik pers plnt shp sofa tra tv mAP

DPM [1] 26.7 56.9 2.6 12.8 21.9 46.0 55.3 13.7 19.0 19.4 12.6 2.2 58.1 47.3 40.9 6.8 15.0 26.9 43.4 38.8 28.3
CN [3] 28.7 55.9 6.3 11.6 18.2 44.3 55.5 17.7 18.3 20.5 14.9 4.9 57.3 48.9 41.5 15.0 21.8 28.1 44.1 45.7 30.0
EES [4] 17.9 47.2 2.8 10.6 9.1 39.3 40.3 1.6 6.2 15.3 7.0 1.7 44.0 38.1 13.2 4.6 20.0 11.6 35.9 27.6 19.7

M-DPM 39.3 66.5 29.2 25.5 36.2 58.2 73.4 36.3 53.8 33.6 19.9 22.5 74.7 65.5 62.5 35.0 28.5 37.2 66.0 51.6 45.8
M-CN 43.5 61.7 26.1 20.5 34.5 56.8 72.2 39.4 46.3 33.2 22.8 22.5 73.3 63.1 65.0 38.3 38.8 43.9 62.1 60.1 46.2
M-EES 47.7 72.4 38.3 37.3 46.1 64.3 64.1 45.0 44.4 50.8 44.7 43.1 69.5 63.4 54.9 35.6 47.9 50.2 62.8 73.7 52.8

M-(DPM + EES) 60.7 80.4 48.6 46.0 54.6 73.7 80.2 59.5 67.6 58.2 51.9 51.3 82.2 73.8 73.1 49.0 51.7 60.3 76.2 76.0 63.7
M-(DPM + CN) 48.8 68.0 36.8 27.4 40.7 62.9 77.4 49.4 61.5 39.8 31.6 33.7 78.7 70.8 71.2 48.5 42.1 49.4 70.6 61.7 53.5
M-(EES + CN) 59.3 79.5 46.6 43.7 54.6 72.8 78.9 62.0 63.2 55.7 51.5 52.1 82.5 71.7 74.7 50.0 55.8 66.1 73.4 76.3 63.5

M-All 62.5 81.3 52.3 47.5 56.7 76.1 82.3 65.9 71.2 59.0 55.3 56.9 84.2 75.7 77.5 56.0 57.0 67.4 78.4 76.3 67.0

TABLE II
MAP VALUES FOR BASELINE DETECTORS DPM, CN AND EES. CLASS SPECIFIC AND OVERALL MAXIMAL MAP VALUES OF BASELINE DETECTORS
M-DPM, M-CN AND M-EES, AND THEIR COMBINATIONS M-(DPM+CN), M-(CN+EES), M-(DPM+EES) AND M-(ALL) ON PASCAL VOC07.

combination has a significantly higher maximal mAP (53.5%)
than both of them individually. This shows that although
these two detectors are very similar in nature, they have
complementary detections. Furthermore, when the detectors
have intrinsically different designs (e.g. DPM and EES or
CN and EES), they produce more complementary detections.
This can be derived by the performance gain obtained by com-
bining DPM+EES and CN+EES in Table II, 10.9% and 10.7%,
respectively. Consequently, the proposed method would benefit
from more detectors.

Another observation that can be derived from Table II is
that aside from detectors having complementary detections
to each other, they also have detections in common. While
these shared detections are useful to learn consistency in
their output, complementary detections compensate for missed
detections from each individual detector.

Table II shows that the performance of detectors is limited
by their correct detections. Therefore, detector combinations
always show higher mAP values than individual detectors.
The proposed method highly benefits from this, whereas
other context based re-ranking methods lead to a limited
performance improvement (limited to correct detections of a
single detector).

B. Direct Combination of Detections

In this experiment, several ways of combining (without
learning) detector outputs are investigated. Because the de-
tectors are trained independently, detector scores are not
necessarily compatible. A calibration process [40] is applied
before merging different detector outputs. Given a detection
x and the learned sigmoid parameter (α, β), the calibrated
detection score is calculated as

f(x|α, β) = 1

1 + exp(xα+ β)
, (11)

where α and β for each detector are learned on the trainval
set. After the scores are calibrated, we evaluate three different
approaches for combining detections:

• NaiveI, after scores are calibrated, detections are merged
into a single list.

• NaiveII, after scores are calibrated, detections are sorted
in a descending score order for each single detector. Then,
detections are combined by taking one by one from the
top of each sorted detector outputs.

• NaiveIII, the detectors are combined based on their
training set performance. The output of the best perform-
ing detector is first added to the list followed by the others
based on their performance.

After the detections are combined in a single list, nms
(see section IV-C) is applied. It can be derived from Table III
that naively combining detector outputs outperforms baseline
scores. The improvements are due to the increase in recall of
the combined detection list.

The minimum performance improvement is obtained by
NaiveII . NaiveII gives equal importance to each single de-
tector. This means that although EES detections are not pre-
cise, they become as important as DPM and CN . Therefore,
more false positives are introduced at the top of detection list
which negatively affects the detection performance. This result
shows the importance of properly weighting the detections.
NaiveIII is expected to perform better than other naive

methods since it incorporates the training performances of
the baseline detectors. However, the trainval performance
of the baseline detectors explains the lower performance of
NaiveIII . To obtain trainval performance detector models
are: a) trained on train to test on val and b) trained on val to
test on train (see Fig. 5). Since the detectors are trained with
fewer samples for trainval detections, baseline performances
do not necessarily correspond to their test performances.
Training with fewer examples has also an influence on our
context models.

C. Learning to Rank Detectors

In this experiment, four different L2R algorithms are
evaluated. The pointwise methods we use are the L2-
regularized support vector classifier (PoW1), the logistic
regressor (PoW2) and the support vector regressor (PoW3).
The pairwise method is RankSVM [41] (PaW1), since
it is commonly used as a pairwise L2R method. Pointwise
approaches represent the problem of ranking as a regression
(PoW3) or classification (PoW1, PoW2). It takes as input
the feature vectors for individual samples and learns a mapping
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aero bike bird boa bot bus car cat chr cow tab dog hor mbik pers plnt shp sofa tra tv mAP

DPM [1] 26.7 56.9 2.6 12.8 21.9 46.0 55.3 13.7 19.0 19.4 12.6 2.2 58.1 47.3 40.9 6.8 15.0 26.9 43.4 38.8 28.3
CN [3] 28.7 55.9 6.3 11.6 18.2 44.3 55.5 17.7 18.3 20.5 14.9 4.9 57.3 48.9 41.5 15.0 21.8 28.1 44.1 45.7 30.0
EES [4] 17.9 47.2 2.8 10.6 9.1 39.3 40.3 1.6 6.2 15.3 7.0 1.7 44.0 38.1 13.2 4.6 20.0 11.6 35.9 27.6 19.7

NaiveI 31.0 61.6 6.1 13.7 22.7 48.9 58.4 19.6 20.5 22.3 19.3 3.9 63.2 52.1 44.3 14.5 22.7 31.5 47.8 47.4 32.6
NaiveII 30.8 57.7 6.1 14.2 20.2 47.6 55.2 13.3 16.7 22.4 20.0 4.4 61.4 50.2 33.4 11.8 23.4 28.0 46.4 41.6 30.2
NaiveIII 28.3 61.3 2.8 13.3 22.8 48.1 58.7 18.5 19.5 15.3 19.0 1.8 61.7 52.6 41.9 14.8 20.0 29.3 48.9 48.3 31.4

PoW1 36.8 62.7 10.0 18.1 24.3 51.6 59.5 21.2 22.5 25.4 22.4 7.8 64.2 57.3 44.9 18.7 26.7 34.1 54.1 47.8 35.5
PoW2 36.7 62.8 13.3 18.4 27.0 52.3 59.9 24.7 21.9 24.8 25.8 10.6 65.4 55.9 44.7 19.2 21.2 37.5 54.0 46.5 36.2
PoW3 35.6 63.1 9.7 17.0 25.0 51.2 60.0 21.3 22.5 25.1 21.5 8.1 65.0 56.4 43.8 18.2 27.0 33.9 53.5 48.2 35.3
PaW1 34.5 59.4 10.2 16.2 19.8 49.5 54.4 24.6 20.7 19.7 24.0 8.0 61.0 51.5 40.9 16.7 25.9 31.1 48.3 41.5 32.9

Imp 8.1 7.1 6.2 5.6 5.1 6.3 4.5 7.0 3.5 4.9 10.9 5.7 7.4 8.4 3.4 4.2 5.2 9.4 9.9 2.4 6.3

TABLE III
THE RESULTS USING LEARNING TO RANK ALGORITHMS. NAIVE: DIRECT MERGING METHODS WITHOUT LEARNING. IMP: THE IMPROVEMENT OVER

MAXIMUM BASELINE DETECTOR BY MAXIMUM LEARNING ALGORITHM.

to the ground truth labels whereas pairwise approach takes as
input pairs of feature vectors and maps them into binary labels
indicating whether two samples are presented in correct order
or not.

L2R algorithms differ mainly by their loss functions
(ξ(w;xi, yi)) in eq. 5. ξ for (PoW1), (PoW2), (PoW3)
and (PaW1) are max (0, 1− yiw

Txi), log (1 + e−yiw
T xi),

(max (0, |yi − wTxi| − ϵ))2 and max (0, 1 + wTxi − wTxj)
respectively. w represents weights, x instances, y correspond-
ing labels and ϵ parameter to specify the sensitiveness of the
loss.

Liblinear [42] implementations for pointwise approaches
and rankSVM implementation by Joachims [41] are used with
default parameter settings. Ground-truth overlap ratios are
taken as training labels. Pascal VOC (> 0.5) overlap criteria
is used to assign positive and negative labels for PoW1 and
PoW2, while overlap ratios are directly used as training labels
for PoW3 and PaW1. PaW1 requires pairwise preferences
between samples, and these preferences are created based
on their ground-truth overlaps. Since there is no preference
between samples for which the ground-truth overlap equals 0,
we do not generate preferences between those samples.

Table III shows that the proposed learning to rank ap-
proach outperforms the baseline detectors for all classes,
DPM (7.8%), CN (6.2%) and EES(16.5%). While learn-
ing based methods always perform better, logistic regres-
sion (PoW2) based learning method performs slightly better
than other L2R algorithms. Slightly better performance of
classification- over regression-based pointwise methods can
be explained by the fact that regressor methods try to predict
continuous values and do not pay attention to the strict 0.5
overlap boundary of VOC evaluation. Therefore, errors within
this range harm regressor results. However, classifier-based
methods attempt to minimize these errors. The performance of
RankSVM is slightly lower than other L2R methods. This
might be due to unbalanced data. The number of negative sam-
ples is significantly larger than positive samples. RankSVM
treats all the samples equally, therefore some pairs might be
overly emphasized within the model.

Considering the low dimensionality of the proposed feature
vector, the feature space may not be linearly separable. There-

fore, other non-linear kernel options for the classifier could be
tested. However, we avoid learning a non-linear SVM due to
its long learning time and the need for costly parameter valida-
tion. Therefore, we use a feature mapping method proposed by
Vedaldi and Zisserman [43]. A 34 dimensional feature vector
is mapped to a higher dimensional feature space. The best
performing linear classifier in Table III(PoW2) is applied to
this new feature space. Through use of this feature space, the
PoW2 classifier obtains a 0.6% mAP improvement(36.8%).
Increasing the dimensionality results in support vectors which
are better able to separate the feature space. Increasing the
feature vector dimension with additional context features may
further improve the results.

The improvement by the proposed learning scheme over
direct merging methods in Table III indicates that the perfor-
mance gain is not only due to the increased recall but also
the effectiveness of the contextual information and the chosen
learning scheme.

D. Detection Error Analysis
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Fig. 6. Average (over classes) APN for the highest and lowest performing
subsets within each different object characteristics such as occlusion, trunca-
tion, bounding box area, aspect ratio, viewpoint and part visibility.

To provide more insight into the performance obtained by
combining the baseline detectors, we follow the procedure
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introduced by Hoiem et al. [9]. Our first analysis regards
detector sensitivities. The detector sensitivity is calculated
based on the difference between max and min normalized AP
for each characteristic (occlusion, truncation, bounding box
area, aspect ratio, viewpoint, part visibility). Each colored plot
in Fig. 6 shows the mean (over all classes) normalized AP
for specified detectors. The results show that the proposed
method does not reduce the sensitivity. However, it improves
both the highest and lowest performing subsets for nearly
all object characteristics. This indicates that the proposed
method improves robustness for all object characteristics. The
sensitivity is not reduced with the proposed method. This is
due to commonly missed detections (hard detections cannot
be detected easily even for human observers). While some
of these hard detections are covered by one of the baseline
detectors, they mainly remained undiscovered. That is why the
minimum normalized APs for each characteristic increase but
not as much as the maximum normalized APs. Consequently,
the difference between max and min normalized AP increases.

Hoiem et al. [9] show the problem of small objects. Since
small sized objects are mainly missed by all detectors, we
observe that the min normalized AP for category “size” is not
improved even if three baseline detectors are combined.

Fig. 7 shows the changes in the percentage of each false
positive (FP ) types with an increasing total number of FP .
FPs are divided into four categories as follows:

• Poor localization (Loc) occurs when the label of detection
is correct but misaligned with the ground-truth detection
(0.1 ≤ overlap ≤ 0.5 or a duplicate detection.

• Confusion with similar classes (Sim) occurs when a false
detection has an overlap with an instance of a similar
class.

• Confusion with dissimilar object categories (Oth) occurs
when a false detection is obtained for dissimilar classes.

• Confusion with background (BG) occurs when a false
detection has no overlap with an instance of similar or
dissimilar classes.

The errors originate from poor localization rather than
other errors. This shows the effectiveness of relative score
features. For instance, consider an image region where all
detectors generate a detection. All detections belonging to
this region have high classifier scores because of the high
relative score. Consequently, these detections are ranked at
the top of the detection list. However, the proposed method
creates preferences for certain detectors when dealing with
particular classes. Consider a detection by a detector preferred
for a particular class that has a localization error within the
region. The corresponding detections of the other detectors
are suppressed by nms. The suppressed detectors may be true
detections. This explains why top ranked false positives of the
proposed method are mostly the result of poor localization.

Fig. 7 illustrates that the confusion with background er-
ror is significantly reduced. This shows the effectiveness of
the proposed object likelihood features. Such strong object-
saliency cues positively affect the proposed method to detect
false detections.

Another observation shown in Fig. 7 is that the proposed
features could not reduce the confusion caused by similar
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Fig. 7. Figure shows the fraction of false positives of each type (animal,
furniture and vehicle) evolving as the total number of false positives increase.

object categories. However, they are effective on limiting the
confusion between dissimilar object categories.

E. Feature Importance
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Fig. 8. Classifier weights are averaged over different classes to see the
importance of features individually.

In this experiment, we study the influence of each individual
feature. The weights are obtained by averaging the absolute
classifier weights over the classes. The importance of proposed
detector-detector context features (Rs ) is highlighted in Fig. 8.
Moreover, feature weights also emphasize the importance of
proposed object-saliency features (Os). As stated earlier, the
proposed Rs and Os features are more generic and indepen-
dent of the number of object categories. However, object-
object relationships exploited by other state-of-the-art context
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aero bike bird boa bot bus car cat chr cow tab dog hor mbik pers plnt shp sofa tra tv mAP

Rs 33.7 62.4 9.5 15.2 22.9 50.4 59.6 18.8 22.0 22.8 20.3 6.2 62.7 53.7 44.6 16.5 24.4 34.4 50.9 46.7 33.9
Rs + Os 35.6 62.1 10.6 17.4 24.6 50.8 59.3 25.1 21.3 23.2 23.9 10.5 63.1 51.0 45.5 14.7 26.3 37.8 50.6 47.5 35.1
Rs + So 35.4 63.7 10.6 18.2 26.5 51.7 60.3 18.7 22.7 24.1 21.5 6.6 63.8 57.3 43.7 18.5 24.3 34.5 53.0 45.3 35.0
All 36.8 64.2 12.3 20.3 27.3 53.0 60.3 27.0 22.0 25.3 27.1 11.1 63.7 56.6 45.4 19.3 24.0 38.0 54.5 46.8 36.8

TABLE IV
THE INFLUENCE OF SELECTED FEATURES FOR THE FINAL DETECTION PERFORMANCE.

aero bike bird boa bot bus car cat chr cow tab dog hor mbik pers plnt shp sofa tra tv mAP Imp.

DPM + Context 29.8 57.5 9.9 16.4 24.1 46.3 58.0 21.1 19.6 20.4 15.1 7.5 58.3 50.4 42.0 14.3 18.2 28.0 49.0 39.6 31.3 3.0
CN + Context 33.3 55.1 11.4 13.4 22.7 44.9 57.0 22.6 18.6 19.4 17.5 8.5 56.0 50.9 42.1 17.4 20.9 31.3 48.5 45.5 31.9 1.9
EES + Context 31.4 57.2 10.6 16.9 21.0 46.6 51.5 13.3 15.5 20.6 15.2 8.1 57.3 51.5 32.9 14.1 18.0 20.1 46.9 44.5 29.7 10.0

TABLE V
THE RESULTS OF THE RE-RANKED SINGLE BASELINE DETECTOR OUTPUTS USING CONTEXTUAL FEATURES. THE RESULTS OF SINGLE DETECTORS

ARE IMPROVED USING CONTEXT.

aero bike bird boa bot bus car cat chr cow tab dog hor mbik pers plnt shp sofa tra tv mAP

BL1 28.6 55.1 0.6 14.5 26.5 39.7 50.1 16.5 16.5 16.8 24.6 5.0 45.2 38.3 35.8 9.0 17.4 22.7 34.0 38.3 26.8
[23] 1.7 0 0.1 1.4 0 -3.5 1.3 0.5 -2.8 1.2 -0.7 0.2 0.5 1.1 -2.8 -1.1 -2.3 -0.7 0.5 0 -0.3
[24] 2.4 -4.2 2.3 0.8 -1.1 -0.2 -0.4 3.9 1.6 0.9 2.3 6.9 5.6 2.2 0 4.7 3.8 2.8 4.7 -0.1 1.9
[31] 5.6 2.7 9.2 0.8 3.2 1.9 3.4 5.0 0 0.7 1.4 7.9 5.9 4.6 3.5 4.2 3.1 4.9 4.9 0.3 3.6

BL2 27.8 55.9 1.4 14.6 25.7 38.1 47.0 15.1 16.3 16.7 22.8 11.1 43.8 37.3 35.2 14.0 16.9 19.3 31.9 37.3 26.4
[44] 2.4 1.9 0.5 0.2 3.2 2.6 2.9 -0.9 0.9 1.9 0.2 5.3 1.3 3.3 3.6 3.0 3.2 3.7 2.9 -0.5 2.0

BL3 26.7 56.9 2.6 12.8 21.9 46.0 55.3 13.7 19.0 19.4 12.6 2.2 58.1 47.3 40.9 6.8 15.0 26.9 43.4 38.8 28.3
Proposed 10.1 7.3 9.7 7.5 5.4 7.0 5.0 13.3 3.0 5.9 14.5 8.9 5.6 9.3 4.5 12.5 8.9 11.0 11.1 8.1 8.4

TABLE VI
COMPARISON OF THE STATE-OF-THE ART CONTEXT BASED OBJECT DETECTION METHODS ON PASCAL VOC07 DATASET. THE RESULTS OF REFERRED

WORKS [23], [24], [31] AND DPM BASELINE SCORES (BL1) ARE REPORTED IN [31] WHEREAS [44] AND DPM BASELINE SCORES (BL2) ARE
REPORTED IN [44]. BL3 IS DPM BASELINE SCORE OBTAINED IN THIS PAPER. THE RESULTS REPRESENTED AS PROPOSED ARE THE IMPROVEMENTS

OVER DPM BASELINE IN THIS PAPER.

based object detection methods [24], [23], [31] is dependent
on the image characteristics. Therefore, the accuracy gain is
limited to the image characteristics for these methods.

We now investigate the influence of each feature on the
final mAP score. The detector scores are essential for ranking
the detection list. Therefore, it is not possible to evaluate
Os and So individually. We evaluate mAP using only the
Rs feature. For the rest of the features, Rs is also included.
It is shown in Table IV that using only Rs improves the
baseline detectors significantly. An object likelihood measure
also improves the accuracy (e.g. for animal classes such as
cat, dog or sheep). Significant improvement for these classes
is due to the poor representation capacity of template-based
detectors for non-rigid objects. Deformable part based object
detectors are well suited for detecting rigid parts of the objects
(see top ranked visual results of category cat in Fig. 10.) Due
to the homogeneous appearances of cats, dogs, and sheep,
most object proposals contain the full object shape. Therefore,
detections of the entire object receive higher confidence than
detections for object parts. The object size plays role for other
animals, such as horse and cow. Object proposal methods
used in this paper tend to have better performance when
detecting small sized objects. Moreover, it is less likely to
happen that the object proposal methods generate many large
bounding boxes for a specific image region. Therefore, the
average overlap of a detection with these windows becomes

lower. Adding object-object context (So) slightly improves
most of the object classes. However, its contribution to the
average precision increases when it is combined with the
object-saliency. Furthermore, So clearly improves the accuracy
for class “bottle” in which samples usually occur within a
context (usually on a table or in the hand of a person).

F. Re-ranking Detections from a Single Detector

In this experiment, we exploit the effectiveness of context
features without combining detectors into a single list. The
proposed context features are only used to re-rank individual
detectors. It is shown in Table V that the proposed method is
still effective and improves the baseline detectors. However,
the accuracy gain is relatively smaller than using the combined
detector outputs in Table III. These results underline the
importance of combining different detector outputs to recover
from missed detections to improve the overall object detection
performance.

Note that a detector with a high recall and low precision
such as EES can be as powerful as other, more precise
detectors (DPM , CN ) using the proposed context features.

G. Comparison to Other Context Methods:

In this experiment, we compare the proposed method against
the state-of-the-art context based object detection re-ranking
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aero bike bird boa bot bus car cat chr cow tab dog hor mbik pers plnt shp sofa tra tv mAP

DPM [1] 26.7 56.9 2.6 12.8 21.9 46.0 55.3 13.7 19.0 19.4 12.6 2.2 58.1 47.3 40.9 6.8 15.0 26.9 43.4 38.8 28.3
CN [3] 28.7 55.9 6.3 11.6 18.2 44.3 55.5 17.7 18.3 20.5 14.9 4.9 57.3 48.9 41.5 15.0 21.8 28.1 44.1 45.7 30.0
EES [4] 17.9 47.2 2.8 10.6 9.1 39.3 40.3 1.6 6.2 15.3 7.0 1.7 44.0 38.1 13.2 4.6 20.0 11.6 35.9 27.6 19.7

RCNN [5] 62.4 70.9 46.5 37.3 31.8 63.3 72.1 62.3 28.3 64.1 49.2 56.2 66.2 65.2 53.2 28.4 53.1 49.9 57.2 62.2 54.0

Proposed 63.5 74.3 47.1 39.1 38.5 67.1 74.5 62.9 30.7 64.4 50.5 56.3 71.3 68.6 56.4 29.2 53.5 54.2 61.5 63.4 56.4

TABLE VII
THE RESULTS FOR BASELINE DETECTORS CN, DPM, EES, RCNN AND PROPOSED DETECTOR MERGING SCHEME ON VOC07 TEST SET. THE PROPOSED

METHOD OUTPERFORMS ALL BASELINE DETECTORS OVER ALL CLASSES.

aero bike bird boa bot bus car cat chr cow tab dog hor mbik pers plnt shp sofa tra tv mAP

BL1 46.3 49.5 4.8 6.4 22.6 53.5 38.7 24.8 14.2 10.5 10.9 12.9 36.4 38.7 42.6 3.6 26.9 22.7 34.2 31.2 26.6
DPM-Context[1] 0.1 1.3 2.7 1.8 -0.6 1.8 2.9 -4.8 0.5 1.3 0.7 1.0 1.5 1.5 2.5 0.6 -2.8 4.9 6.6 2.7 1.2

[45] 6.5 -0.7 7.2 4.4 6.5 1.7 6.9 7.2 0.0 2.1 2.8 3.7 3.4 5.5 2.5 4.6 8.4 3.3 7.9 3.1 4.2

BL2 37.4 51.8 5.1 3.9 20.3 51.4 39.2 13.3 15.2 9.5 7.2 4.8 40.1 43.4 41.5 9.8 13.2 16.4 31.9 26.5 24.1
Proposed 7.3 2.9 8.5 6.6 2.5 7.1 5.1 15.0 2.8 3.5 5.8 7.1 3.6 7.7 3.5 8.0 8.4 3.4 10.6 11.8 6.6

TABLE VIII
COMPARISON OF THE STATE-OF-THE ART CONTEXT BASED OBJECT DETECTION METHODS ON PASCAL VOC10val. THE RESULTS OF REFERRED

WORKS [45] AND DPM BASELINE SCORES (BL1) ARE REPORTED IN [45]. BL2 IS DPM BASELINE SCORE OBTAINED IN THIS PAPER. THE RESULTS
REPRESENTED AS PROPOSED ARE THE IMPROVEMENTS OVER DPM BASELINE IN THIS PAPER.

aero bike bird boa bot bus car cat chr cow tab dog hor mbik pers plnt shp sofa tra tv mAP

[1] 36.8 50.1 4.3 10.6 14.3 50.0 40.4 13.9 15.9 14.2 9.4 4.7 41.8 43.0 40.9 5.9 11.6 15.3 33.4 31.4 24.4
[3] 34.5 48.8 5.3 10.4 11.4 52.1 40.9 18.7 14.9 15.7 7.1 5.9 41.3 45.5 42.2 10.1 14.0 18.1 36.2 35.8 25.4
[4] 22.6 34.9 3.2 9.4 4.5 45.9 25.0 2.1 7.2 10.7 4.3 2.0 21.7 31.7 10.0 2.1 11.6 8.1 21.3 23.6 15.1

PoW2 44.8 53.3 14.3 14.6 14.2 56.3 44.7 27.2 18.9 19.6 14.5 15.0 44.1 50.0 45.4 13.2 17.6 22.5 42.0 39.1 30.6

[1] 37.4 51.8 5.1 3.9 20.3 51.4 39.2 13.3 15.2 9.5 7.2 4.8 40.1 43.4 41.5 9.8 13.2 16.4 31.9 26.5 24.1
[3] 36.6 45.0 6.0 4.7 17.9 52.5 40.2 18.8 15.3 10.6 6.5 5.2 39.7 44.4 44.0 15.5 16.4 13.0 35.6 33.8 25.1
[4] 19.9 36.8 1.8 3.3 7.2 46.2 23.5 2.0 4.2 6.4 2.1 1.3 20.6 30.4 9.5 2.8 14.5 7.0 24.0 24.7 14.4

PoW2 44.7 54.7 13.6 10.5 22.8 58.5 44.3 28.3 18.0 12.9 13.0 11.9 43.7 51.0 45.0 17.8 21.6 19.8 42.5 38.2 30.7

TABLE IX
THE RESULTS FOR BASELINES (DPM , CN AND EES) AND PROPOSED DETECTOR MERGING SCHEME USING POW2 ON VOC10 (UPPER: train SET

AND LOWER: val SET).

methods. Table VI shows the baseline scores of DPM and
improvements reported by the papers [31], [44] on VOC07.
The gain in performance by our method indicates the impor-
tance of high level contextual features and L2R based detector
merging.

Moreover, the proposed method is compared to the recent
work by Mottaghi et al. [45] on VOC10 dataset (See Ta-
ble VIII). The authors also report on the context re-ranking
method of DPM (See [1] for details) discussed in Section II.

The contextual features proposed by other methods in Ta-
ble VI and Table VIII are from different sources. Hence, they
can be complementary to the proposed features. Combination
of these features may further improve the results.

H. Increasing Number of Detectors:

We performed another experiment to gain more insight into
detector correlations and performance improvement. In this ex-
periment, we focus on the state-of-the-art object detector of [5]
(RCNN) in addition to three baseline detectors. The state-of-
the-art detector of [5] uses the selective search paradigm [7]
to generate object candidates which are classified by con-
volutional neural networks. [5] obtains the highest detection

rate (in the literature) for the Pascal VOC 2007 dataset. The
results are summarized in Table VII. Table VII shows that
the proposed method improves the performance for all classes
and outperforms [5]. This indicates that the proposed method
is still effective when there is one strong detector (RCNN)
which is implemented using substantially different methods
than other detectors (CN, DPM and EES). Moreover, Table VII
shows that RCNN significantly outperforms other detectors for
classes “bird”, “table” and “dog”. However, combining weak
detectors (CN, DPM and EES) still provides an improvement
in the performance of RCNN for those classes. The maximum
gain over RCNN is obtained for classes “bottle” (6.68%) and
“horse” (5.12%). Additionally, 16% recall improvement over
the single RCNN is obtained. This indicates that CN, DPM
and EES still have complementary detections to RCNN.

I. Tests on VOC10

We also evaluate our method on the PASCAL VOC10
dataset. The VOC10 annotations of the test samples are not
publicly available. Therefore, we use only the “train/val”
dataset. All the training is done on the VOC07 trainval
set, including object detection models and detector-detector
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Fig. 9. The first 5 missed objects by single detectors and proposed method
for class “aeroplane”. The missed detections are listed based on ascending
order of dataset image numbers. The first missed object by “CN” is also
missed by “EES”, however it is detected by “DPM”. Therefore, the proposed
method recovers this object. All three baseline detectors missed the objects
outlined by red lines. Therefore, the proposed method misses these objects.
All missed detections of single detectors which are not outlined by a red line
are recovered within the proposed method.

relation models. Table IX shows the results. Table IX indicates
that the proposed method outperforms the baseline detectors
for all classes also on the cross dataset evaluation. The results
show that the learned detector-detector context is generic and
it is not dataset dependent.

VI. DISCUSSION

A. Recall and Precision Improvement:

Missed detections of individual detectors are recovered
when detections of different detectors are combined in a single
list (increased recall). Table II shows that combining multiple
detectors will lead to an increase in true object detections.
This indicates that missed detections of individual detectors
are recovered by the combined list. Fig. 9 also shows that the
proposed method only misses objects which are missed by all
three baseline detectors.

In [9], it has been shown that detectors can detect objects
which contain consistent appearances. They experimentally
derive that object detectors have common detections (Sec-
tion V-A and Table II). Most detector outputs will overlap
for true detections because their aim is to detect the same
objects. Therefore, the overlapping information indicates the
consistency between detectors and can be used to give more
confidence to those detections which overlap with other detec-
tions (increase precision). The overlap information is useless
for “orthogonal detections”. The question is how to derive
more confidence to those “orthogonal detections” to increase
their precision. Therefore, the proposed approach makes use of
other features such as “ID-detector indicator”, “object-saliency
(Os)” and “object-object relations (So)”. These features are
generic and independent of detector orthogonality.

B. Detector Correlation and Diversity:

In this paper, diversity, and thus potential complemen-
tary detections of CN, DPM and EES exist mainly due

to three reasons. First, DPM and CN represent all positive
samples of a given category as a whole (learn models per-
category). However, EES proposes to train a separate linear
SVM classifier for each positive sample in the training set
(learns models per-sample). Accordingly, DPM and CN are
more generic and EES is more discriminative. Second, not
only the type of the feature but also how the features are
used is crucial for object detection. DPM and CN represents
objects using HOG features extracted from object parts and
the whole object whereas EES represents objects using HOG
features extracted only from the whole object. Moreover, CN
uses color information as an additional feature. This results
in complementary detections due to photometric invariance
and discriminative power enabled by the color attributes.
The discriminative power and photometric invariance do not
always guarantee an improved object detection performance.
Therefore, CN and DPM detections are complementary to
each other. Third, the objective functions are different. DPM
and CN minimize the inconsistencies between object parts
using latent SVM whereas EES defines per-exemplar distance
(more like nearest neighbor search) using linear SVM. These
differences have a substantial influence on their final outputs.
Table II, Table III and Fig. 12 represent the differences in
the final outputs. Although these detectors have detections
in common, they have also complementary detections. While
common detections are useful to learn consistency in their
output to increase precision, complementary detections resolve
missed detections for each individual detector.

We also show that when detectors are implemented using
substantially different methods, the proposed method still out-
performs each individual detector. The experiment conducted
in Section V-H indicates that increasing the number of the
detectors will further increase the performance of the proposed
method.

C. Computational Time vs Detection Performance:

There is a tradeoff between computational time and per-
formance improvement. The computational time increases
linearly with the number of detectors (assuming the same
detection time per detector). The computational time can be
reduced either by parallel processing or removing redundant
operations e.g. the computation of HOG features, candidate
regions etc. With a linear increase in time, the improvement
in true object detection (recall) starts to slow down eventually.
This deceleration depends on the complementarity of the
detectors (See Table II). For instance, when CN and DPM
are combined, the gain in recall is 7%. When combining
EES with CN + DPM, the gain is 13.5%. However, detection
performance is not only dependent on the recall. Increasing the
number of detectors will yield a higher precision because of an
enhanced consistency between detectors. Detections which are
supported (overlap) by more detectors are good candidates to
be true detections. Hence, agreement between more detectors
increases the precision of detections (See Table V). Detections
of single detectors become more precise with the help of other
detectors. Eventually, the improvement in precision will also
slow down (stop) when near optimal detections are provided.
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Fig. 10. Top ranked false positives of the proposed method for specified
classes. Blue and red colors indicate the detector type, DPM and CN ,
respectively. Yellow and green colors correspond to poor localization and
multiple detections, respectively. The image frames without color information
indicates no overlap between ground truth object, either due to miss classifi-
cation or background clutter.

Therefore, it can be argued that after a certain detection
performance is obtained, the method may stop including more
detectors.

D. The Choice of Learning to Rank Algorithm:

L2R methods are categorized into three groups: pointwise,
pairwise and listwise. In general, these three methods differ
by their objective functions. All three methods can be used
within the proposed framework. However, there are some
advantages/disadvantages for each method.

The selection of an algorithm is performed based on the fol-
lowing criteria: scalability, computational complexity and per-
formance. Pointwise techniques are the most straightforward
to learn the ranking model. These methods are optimized to
deal with large scale data. Hence, they are fast in training and
testing. Their main drawback is that the order between samples
cannot be considered in the training step. This is because the
algorithm optimizes loss functions based on individual sample
errors.

A major advantage of the pairwise approach over the
pointwise approach is that it focuses on the relative order of
samples. Further, like the pointwise approach, the pairwise
approach does not consider the position of all the samples in
the ranked list. It does not require a quantitative label for each
single sample but it requires pairwise preferences between
samples. However, in our approach, each detection has a real
value (ground truth overlap). Moreover, a pairwise approach is
computationally more expensive than the pointwise approach
due to the number of pairwise preference constraints formed
by the pairs.
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Fig. 11. Top five ranked false positives of baseline detectors and proposed
method with their rankings below (object class car). The color of the detection
yellow, green and red indicates the type of detector DPM , CN and EES
respectively. The false positives of individual detectors are pushed down in
the proposed method.

The listwise approach considers the position of all the
samples in the ranked list when the loss function is optimized.
Consequently, the listwise approach has an exponential num-
ber of ranking permutations yielding an increase in complexity
and computational time. Incorporating the position information
in the loss function may further improve the final results. How-
ever, the tradeoff between complexity and accuracy should be
taken into account.

In fact, accuracy, training speed and memory requirements
are important factors to select the number of detectors, object
classes and number of training samples. For a (moderate size)
dataset such as Pascal VOC (consisting of 20 object classes,
5K samples for training, and three detectors yielding in total
100K detections per class), pairwise solution is still tractable
(since most of the detections do not have ground-truth overlap
and there is no preference generated between those detections).
While it is good to have more training data, it is challenging
for pairwise algorithms to handle big data. For a dataset such
as ImageNET (consisting of 200 object classes and 500K
samples for training) the pairwise approaches need to be
further optimized [46] to make the problem tractable. Pairwise
approaches are still an area of active research and further
improvements are possible by employing recent techniques
such as active learning to rank proposed in [47]. Pointwise
approaches are already capable of handling such large scale
datasets and their performance are proven to be good for this
task on Pascal VOC dataset. Therefore, for such large scale
experiments pointwise approaches should be used.

E. Possible Improvements:

To avoid overfitting, the object detectors are trained on
train to test on val. Subsequently, they are trained on val
to test on train, in which case the detectors are trained
with fewer examples. This has an impact on the performance
of detectors on the train/val set in which we learn the
relationship between detectors. It is observed that for some
classes the performance of object detectors on the train/val
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set are not inline with the test set. Therefore, learning the
models for detectors on a larger dataset may further improve
the proposed learning to rank scheme.

The non-maximum suppression technique is a widely used
ad-hoc method in object detection literature. However, learning
to detect multiple detections from different detectors may be
more appropriate for the proposed method.

The proposed method does not provide new bounding boxes.
Therefore, it cannot recover from poor localization errors.
Error resulting from poor localization becomes problematic
for some cases (See Fig. 10 and Fig. 11 for top ranked false
positives). This problem can be resolved by proposing new
bounding boxes using object proposals or using a method
similar to [5].

With the help of the proposed method, future object detec-
tors can focus on more specific solutions to harder detection
problems. Their results will be combined with other detection
methods to carry object detection algorithms a step further.
The contribution of a new method can be compared against
the combination of the-state-of-the-art methods.

VII. CONCLUSION

No detection algorithm can be considered universal. As
a consequence, we have proposed an approach to combine
different object detectors. The proposed approach uses (single)
object detectors to exploit their correlation by learning a re-
ranking scheme.

The proposed method uses the agreement among the detec-
tions of different detectors to award a detection based on de-
tector correlation and consistency. Furthermore, the proposed
method exploits complementary detections of detectors to help
recover missed detections of individual detectors.

Experiments on the PASCAL VOC07 and VOC10 datasets
show that the proposed method significantly outperforms indi-
vidual object detectors ( DPM (8.4%), CN (6.8%) and EES
(17.0%) on VOC07 and DPM (6.5%), CN (5.5%) and EES
(16.2%) on VOC10.)

We show that there are no constraints on the type of the
detector. The proposed method outperforms (2.4%) a state-of-
the-art object detector (RCNN) on VOC07 when the RCNN
is combined with other detectors used in this paper.
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Fig. 12. Precision-recall curves on PASCAL VOC 2007. The proposed method significantly outperforms all single detectors. Furthermore, it is shown that
detections of baseline detectors have remarkable differences.
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