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Abstract—Light source position estimation is a difficult yet an
important problem in computer vision. A common approach for
estimating the light source position (LSP) assumes Lambert’s
law. However, in real-world scenes, Lambert’s law does not hold
for all different types of surfaces. Instead of assuming all that
surfaces follow Lambert’s law, our approach classifies image
surface segments based on their photometric and geometric
surface attributes (i.e. glossy, matte, curved etc.) and assigns
weights to image surface segments based on their suitability
for LSP estimation. In addition, we propose the use of the
estimated camera pose to globally constrain LSP for RGB-D
video sequences.

Experiments on Boom and a newly collected RGB-D video
datasets show that the state-of-the-art methods are outperformed
by the proposed method. The results demonstrate that weighting
image surface segments based on their attributes outperforms
the state-of-the-art methods in which the image surface segments
are considered to equally contribute. In particular, by using the
proposed surface weighting, the angular error for light source
position estimation is reduced from 12.6° to 8.2° and 24.6° to
4.8° for Boom and RGB-D video datasets respectively. Moreover,
using the camera pose to globally constrain LSP provides higher
accuracy (4.8°) compared to using single frames (8.5°).

I. INTRODUCTION

Images are the result of complex interactions between the
light source, objects and recording devices. Being the creator
of the image before anything else, the light source is often
ignored as an important cue to its understanding. The light
source may reveal low-level (e.g. surface structure [1], [2], [3],
[4]) and high-level (e.g. material property [5]) information.
Such information is used by humans in their daily activi-
ties. For instance, we can distinguish whether a surface is
matte/glossy and what material the surface is made of (e.g.
a matte plastic or a shiny metal) [6]. Or we can interpret the
underlying geometry of objects (due to shading cues). The
interaction between the light source and objects is also used
in visual art where artists exploit the characteristics of light
in different ways. Specular reflections in an human eye give
the lively twinkle but are in fact a direct reflection of the light
source. Shading indicates the curvature of the body and reveals
collimation and direction of the light. Spotlight steers salience,
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(a)

Fig. 1. (Best viewed in color) (a) An image sample taken from [7]. (b) Image
surface segments and their individual angular errors. The color represents
the angular error of each image surface segment. The corresponding angular
error for each color is at the colorbar next to each plot. Dark blue regions
represent smaller angular errors whereas dark red regions represent larger
angular errors. The figure illustrates that curved (such as ball and bowl) and
less textured (such as table and toy castle) image surface segments have lower
LSP estimation errors. Moreover, regions with shadows or highlights have
difficulties to estimate LSP.

and backlight in art photography renders the subject radiant.
We consider that light source is an inevitable factor of forming
and understanding images. Therefore, in this paper, we focus
on detecting the light source position.

Light Source Position (LSP) estimation has caught attention
in references such as [8], [9], [10], [11], [12], [13], [14]. Most
of these algorithms are based on Lambert’s law, assuming that
the pixel intensity is proportional to the angle between the light
and surface (normal) direction. LSP estimation algorithms
infer the position by assuming certain 3D-shapes of objects
in the scene [8] (to obtain surface normals). Often these
assumptions fail, and hence the applicability of these methods
is limited.

A recent approach is to use low cost RGB-D cameras
(e.g. Kinect and Asus Xtion) as they acquire color images
with their depth in real-time. The use of RGB-D cameras
alleviates the requirement of assuming certain object shapes,
because the surface normals can be readily computed [7], [15],
[16], [14], [17]. Assuming Lambert’s law, the light source
position can be estimated using the surface normals and pixel
intensities. In particular, LSP is obtained by minimizing the
residuals between the re-rendered (scene generated using a
hypothesized light source position) and the original scene.
This is straight-forward as long as Lambert’s law holds, such
as for matte surfaces. However, a glossy surface is prone to
specular highlights and material-to-material inter-reflections
which are not considered by Lambert’s law. Moreover, due to
imperfections of recording devices, the surface normals may
be noisy on rough, crinkled and grained surfaces. Hence, these
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Fig. 2. The flow of the proposed approach. First, the image is divided into image surface segments. Surface attributes (e.g. glossy, matte, highlight, curved
etc) are extracted from these regions aiming to rank them based on their suitability for proper LSP estimation. The proposed method assigns more importance
to image surface segments which are more suitable for LSP estimation. This is in contrast to the state-of-the-art methods [7], [15] which assume equal
importance to all image surface segments. Moreover, to improve the performance further, we introduce temporal constraints (for video sequences).

type of surfaces may negatively influence the LSP estimation.
In Fig. 1, we estimate the LSP for each image surface segment
(obtained by [18]). We measure the angular error between the
estimated LSP and ground-truth LSP. The figure illustrates that
different image surface segments have varying LSP estimation
errors.

In this paper, we propose a method which exploits the in-
fluence of various surface attributes for LSP estimation. First,
surface attributes are computed from image surface segments.
These attributes are used in a supervised learning scheme to
rank the suitability of each surface for proper LSP estimation.
Higher importance is assigned to image surface segments
which have proper photometric (i.e. Lambertian reflectance)
and geometric surface attributes. This is an advantage over
the state-of-the-art methods [7], [16] which assume equal
importance to all surfaces. To improve the performance further,
we introduce temporal constraints, extending the method to
video sequences. For static objects, it is assumed that the
light source position does not change during the recording
of the video. We derive a temporal constraint by estimating
the camera pose. The camera pose is used to estimate a global
LSP which minimizes the residuals between the re-rendered
video frames and the original video frames. See Fig. 2 for
the outline of the proposed method. The proposed method is
tested on two different datasets (BoomlI3 [7] and our newly
collected video dataset). Experiments on these datasets show
that surface weighting provides a significant improvement over
the state-of-the-art methods.

The paper has the following contributions. First, surface
attributes are differentiated according to their importance
for LSP estimation. Second, in contrast to state-of-the-art
methods, which declare all surface contributions as equally
important, we derive weights for individual image surface
segments based on their suitability. Third, a geometry-based
initialization is proposed to make the light source LSP estima-
tion specific to the underlying image and to ensure fast conver-
gence. Fourth, for videos, we introduce a global consistency
term to constrain the light source positioning by estimating
the camera pose. Finally, we prove the viability of the method
on a new (video) dataset, to be made publicly available.

II. RELATED WORK

In general, light source positioning algorithms assume cer-
tain 3D object shapes or known objects in the scene. For

instance, [11] assumes that the position of objects in the
scene is known and uses cast shadows to estimate the light
source direction. [19] uses a fisheye camera to recover the
position of the light source for indoor scenes. Hara et al. [20]
proposed two different methods to estimate light source posi-
tion. The first method has strong requirements such that (1)
inter-reflection and cast shadows are avoided. Therefore, the
proposed method is limited to convex objects. (2) saturated
pixel values are avoided, (3) 3D geometric model of an object
is given and (4) at least one specular peak is visible on the
surface of the target object. The method tries to iteratively fit
Lambertian reflection model and uses the difference between
original and reconstructed diffuse component images to fit
specular component. Finally, the iterative process is repeated
until the light source position does not change. To eliminate the
limitation caused by the lambertian approximation of diffuse
reflection of the first method, the second method assumes that
in addition to 3D geometric model, specular component image
is given as input. Then the light source position is estimated by
minimizing the linearity of log-transformed Torrance-Sparrow
model using the given specular component image. The second
method also has similar requirements like the first method
(1) inter-reflection and cast shadows are avoided. Therefore,
the proposed method is limited to convex objects, (2) 3D
geometric model of an object is given, (3) specular component
image is given and (3) the specular reflectance can be modelled
by the Torrance-Sparrow model. These methods considers dif-
fuse and specular reflections separately while minimizing the
reconstruction error. However, to consider diffuse and specular
image components separately, the algorithm either requires an
information as input (e.g. requiring specular component) or
constrains the imaging condition (e.g. at least one specular
peak is visible, inter-reflection, cast shadows avoided and
saturated pixel values are avoided). Others, e.g. [13], use GPS
and compass information to determine the sun position in
outdoor scenes. In [12], various cues are extracted from the
sky, vertical surfaces and the ground to estimate the direction
of the sun. Although these methods may be suited to estimate
the light source position, they impose strong assumptions on
the imaging conditions.

More recently, a number of methods have been proposed
that use depth information. For instance, [15] decompose the
image into specular, diffuse and albedo layers. The specular
and diffuse layers are used to constrain the difference between
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the re-rendered and original image. However, detecting spec-
ular parts in a 2D still image is a difficult problem. Moreover,
each surface segment is considered to equally contribute to
LSP estimation. [21] also makes use of specular and diffuse
image components. [21] combines separately estimated light
source positions from diffuse and specular components into
final light source positions. [14] tries to estimate the lighting
environment using spherical harmonics. The authors assume
the entire scene obeying a diffuse Lambertian reflectance
model. In [22] the illumination is estimated based on inverse
rendering. However, the algorithm requires an off-line process
to recover the reflectance and manually select sample points
to estimate the illuminant in the target scene. [7] assumes that
image surface segments with the same color have the same
albedo. The authors re-render the scene from a hypothesized
LSP while minimizing the error between the synthesized and
original image. Moreover, the authors gain substantial speed
by enabling the power of GPU processing in [23]. There is a
certain performance drop, however performing under 1seconds
makes this approach attractive for real-time application.

In contrast to the previous methods, we propose to learn
the suitability of surfaces to estimate the LSP based on their
surface attributes. We assign weights to the image surface
segments rather than treating them all equally.

Some recent works solve the problem of lighting esti-
mation as intrinsic image decomposition and try to decom-
pose RGB — D scenes into reflectance and shading compo-
nents [24], [25]. Barron et al. [24] formulates the problem as a
non-convex function and iteratively decompose the RGB — D
scenes into reflectance and shading images and smooth the
depth geometry while using the mixture of the shape and the
mixture of the illuminant as priors. Chen et al. [25] smooths
the depth image using an off-line smoothing algorithm. Then
formulates the problem as a convex function by not consid-
ering smoothing the depth image during optimization. Thus
the objective function can be reliably optimized and generate
more robust results.

III. LSP ESTIMATION USING SURFACE SUITABILITY

According to Lambert’s law, an intensity pixel value I can
be modeled by:

L — p(u)
L — p(u)||

where ¢ represents the transpose. The intensity value [ at
pixel u, depends on the surface albedo p, the surface normal
n, the light source direction and the intensity 2 of the light.
The light source direction is defined as the direction between
the light source position L and the point p in 3D coordinates.
From the RGB-D sensor, both the intensity / and the depth
images are provided. Further, n is computed from the depth
image using integral images and average 3D gradient method
provided by PCL library [26]. For LSP estimation, the albedo
p and the light intensity ¢ are unknown. Hence, it is necessary
to estimate p and :. Image surface segments are generated
by using [18]. It is assumed that image surface segments have
uniform albedo [7], [16], [15]. Thus, p does not change within

I(u) = p(u)ymin(n(u)(;7———7)",0) (D
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an image surface segment. Moreover, it is assumed in [7]
that ¢ remains constant because the light source distance does
not vary significantly over neighboring pixels (image surface
segment). We also do not use the inverse square law to adjust .
We set 2 to be 1. Under these assumptions, the LSP is estimated
by minimizing the error between the reconstructed and original
image surface segments based on the hypothesized LSP.

A. Surface Reconstruction Using Surface Suitability

To reconstruct the image surface segment S, p values are
required. Given an arbitrary L, p values for surface s; are
computed by:

I(u)
L—p(u)
() (z=par)"
The median of p values are used to obtain a single p value
for image surface segment s;. Then, the reconstructed image
I, for s; is computed by:

plu) = uEs; . )

L —p(u)
IL = p(u)]
we obtain the light source position L by minimizing the
error X between the original intensity values I and the
reconstructed intensity values I,..

Ei=> f(s:)lT(u

UES;

I (u) = ps;min(n(u)( )1,0),ucs;, (3

=Ll )

E = Z E; . (5)
i€S

Unlike other methods [7], [15], where each image surface
segment contributes equally to the total reconstruction error,
we propose to assign weights f to each image surface segment
based on its suitability to compute the LSP. The aim is to
assign more importance to image surface segments which are
more suitable for LSP estimation under the assumption of
Lambert’s law. To this end, surface attributes, characterize the
surface suitability for LSP estimation, are extracted. Then, the
weights f are learned using these attributes in a supervised
learning. The surface attributes and learning procedure are

detailed in sections III-B and III-C.

B. Surface Attributes for LSP Estimation

Lambert’s law assumes a surface which diffusely reflects
the light. The surfaces which satisfy this condition are more
suited to estimate LSP. For instance, matte surfaces are pre-
ferred over glossy surfaces to estimate the LSP. The specular
reflections are not considered by Lambert’s law. Consequently
the surfaces with highlight will negatively influence the LSP
estimation. A cast shadow is caused by the occlusion of the
light source position. That means that there are no light rays
reaching the surface directly coming from the light source.
Hence, intensity values would be misleading for LSP esti-
mation (assuming Lambert’s law). Therefore, LSP estimation
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- . Normalized
Intensity ~ Chromatic Chromatic Hue
Representation O3 [O1,02] [g—;, %] g—;
. Lo Highlights
Invariant to - Highlights ~ Shadows Shadows
TABLE 1

OPPONENT COLOR SPACE IMAGE REPRESENTATIONS AND INVARIANT
PROPERTIES [29].

from a shadow region would be prohibitive. Not only the
photometric attributes, but also the geometric attributes of
a surface is influential to estimate LSP. For instance, the
surface normals on rough surfaces are prone to be more noisy
than smooth surfaces. The intensity value is determined by
the angle between the surface normal and the incident light
direction. Therefore, noisy surface normals will negatively
influence LSP estimation. Subsequently, smooth surfaces are
preferred over rough surfaces.

It is clear that some surfaces have preferred attributes to
estimate LSP. To this end, we define surface attributes. These
attributes are further used in a learning scheme to measure
the suitability of a surface to estimate LSP.

1) Photometric Representations: We aim to represent
surfaces by their photometric attributes (e.g. glossiness).
Moreover, it is important to identify surfaces under different
photometric changes (e.g. highlights and shadows). The
opponent color space is used to represent different photometric
invariants [27], [28], [29]. The transformation of RGB to
0105043 is given by:

R-G
01 (\55
O _ R+G—2B (6)
. bs |
) R+
Os V3

The different properties of the opponent color and their
combinations are summarized in Table I. The intensity
information is represented by Osz. It has no invariant
properties. Therefore, changes due to shadows and highlights
are represented [27], [29]. Color information is contained
in O; and Os. Due to the subtraction in Oy and Os, they
are invariant to shifts in illumination such as highlights [27],
[29]. In addition, we use hue = 8—2 to account for both
shadow and highlight invariances.

2) Surface Attributes: Extracting material characteristics
from images has been studied in [29], [30], [31], [32],
[33]. These works consider material recognition as a texture
classification problem. [34], [35] perform a detection in
the image for common materials such as stone, wood,
metal, fabric etc. Material characterization of a surface
reveals important information about the surface property.
For instance, in general, metal is hard and glossy whereas
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plastic is soft and matte. Surface attributes would highly
benefit from material characterization. Therefore, in this
paper, material characterization is used to extract surface
attributes to assign importance to the surfaces based on
their suitability to estimate LSP. The opponent color and
combinations (see section III-B1), RGB and depth images
are used to extract surface attributes (surface attributes related
to [29] are extracted). We detail these attributes in this section.

Invariant Response. A cast shadow is caused by occlusion
of the light source. Therefore, the light source position cannot
be derived from a shadow region (assuming Lambert’s law).
Moreover, highlights are generated by specular reflections.
The assumption of Lambert’s law does not hold for highlight
regions. To be able to distinguish image surface segments
with shadows and highlights, we use the method proposed
by [28] which measures the average gradient magnitude

ratio defining the invariant response ( V05|
) — VIVRPHIVGEHVB?
where | . | stands for gradient magnitude). The image surface

segments consist of uniform colors. Hence, the average
gradient magnitude is expected to be low. However, shadows
and highlights cause photometric edges. Therefore, the image
surface segments with shadows and highlights are expected
to have high invariant response.

Photometric Stability. Invariant representations contain
instabilities. For instance, hue is unstable for colors with low
saturation 8—; [29]. The surface reflection characteristics make
the instabilities to vary for different surfaces. To account for
the influence of instabilities, we use the method proposed
by Everts et al. [29]. Mean intensity (1(O3)) and saturation
(u(\/O3? + O32)) statistics are considered to measure the
photometric stability of a surface.

Interface Reflectance. Lambert’s law assumes a surface
which diffusely reflects the light. Interface (specular)
reflectance is not defined by Lambert’s law. Therefore, it is
difficult to estimate the LSP from glossy surfaces. Moreover,
the depth sensor is sensitive to glossy surfaces (e.g. shiny
metal, mirror). The depth estimation becomes unstable on
glossy surfaces. Therefore, surface normals are mostly noisy.
To this end, we propose to extract an attribute which aims to
detect glossiness of surfaces. Motoyoshi et al. [33] propose
that the skewness (third-moment) of the intensity histogram
is highly correlated with interface reflectance (gloss) and
inversely correlated with diffuse reflectance (matte). Others,
such as Sharan et al. [32] use the standard deviation whereas
Dror et al. [30] use the kurtosis to account for interface
reflectance. We also use skewness, standard deviation and
kurtosis to measure the amount of interface reflectance using
the O3 component.

Colorfulness. Hue is invariant to shadows and highlights.
Therefore, these photometrical changes should not influence
the hue distribution of a surface segment. The assumption is
that the albedo does not change within a surface segment (see
section III-A eq. 2). However, the variation in hue distribution
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most likely corresponds to the albedo change. Thus, the same
albedo assumption may mislead the light source position
estimation. To this end, we propose to use colorfulness by
computing the hue entropy as in [29] (— > (Plog, P)). P
represents the histogram of hue pixels.

Softness. Softness is useful to distinguish surfaces
having diffuse (i.e. soft-plastic) or specular (i.e. hard-metal)
reflection. Hu et al. [35] state that metal tends to have hard
edges and sharp corners whereas plastic has soft edges and
round corners. To this end, we measure the softness using the
standard deviation of the gradient orientation (o(5703)) and
magnitude (o(| 703 |)).

Texturedness. Most of the LSP algorithms use
segmentation to group similar colored surfaces assuming
that the pixels of the same surface segment have the same
albedo. However, surfaces may also contain similarly colored
textures such as crinkles in leather or grains in paper. These
crinkles or grains will cause sharp intensity changes which
may negatively effect the light source position estimation. To
this end, we compute two Weibull parameters for the O3 as
proposed by Yanulevskaya and Geusebroek [31] to measure
the amount of texturedness of a surface.

Micro-texture. The local non-uniformities on surfaces
can be used to describe surface structure. Less micro-texture
indicates polished glossy surfaces (e.g. metal) whereas more
micro-texture indicates matte surfaces (e.g. fabric). Because
of the diffuse reflection assumption of Lambert’s law, these
two types of surfaces are expected to influence the LSP
estimation differently. The method proposed by Liu et al. [34]
is used to measure the amount of micro-texture, In particular,
we use the sum of residuals between a bilaterally smoothed

O3, h(Os3), and the original O3 (3 (h(O3) — O3)).

Smoothness. Due to the imperfections of recording devices,
the surface normals may be noisy on rough, crinkled and
grained surfaces. Lambert’ law uses the angle between the
surface normals and light source position to minimize the
error between re-rendered and original image. Noisy surface
normals will negatively influence the error minimization.
Smoothness aims at differentiating between rough and smooth
surfaces. Unlike micro-texture, we do not consider smoothness
in micro-scale. The smoothness term is defined by larger
scale geometry changes. Smooth surfaces do not consists of
convex and concave shapes at the same time. We use the
statistics of the surface normals (from the depth image) to

measure surface smoothness (\/ * Zj\;l(n,— —p®))?) (N
is the number of the points in a segment) and the mean of
the gradient magnitude (u(| syn |)) of the surface normals.
The first statistic is useful to observe overall deviation on an
image surface segment whereas the second one is useful to
observe local deviations. High values correspond to rougher
surfaces. The surface normals are computed from the depth
image using [26].
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Attribute Definition Information Channel
Invariant Response w0 [O3, RGB]
VIVRIE+Iv G2 +[vB|?
Photometric Stability ~ (O3), u(+/O? + O3) [O1,02,03]
Interface Reflectance Skew., o, Kurt. O3
Colorfulness — > (Plog, P) g—;
Softness o(v0s), o(| VO3 |) Os
Texturedness [v, 8] = weibull [31] Os
Micro-texture S (h(03) — O3) Os
Smoothness \/% SN (ns — p(n))2, depth
u(| vn )
Area #pizels RGB
Surface Consistency L— (L") [O3, depth]
Curvedness ol wn|) depth
TABLE II

DEFINITIONS OF EXTRACTED ATTRIBUTES.

Area. The surface normals and intensity values may be
noisy due to imperfections of recording devices. The variation
of intensity distributions is important to alleviate these errors.
Therefore, larger image segments are expected to contribute
more to proper LSP estimation than smaller segments.

Surface Consistency. Estimated light source positions
L' = {L;}7, (m is the number of the image surface
segments in an image) should be consistent. Therefore, we
express the surface consistency attributes by measuring the
deviation from the average estimation for each image surface
segment. For the i*" surface segment, surface consistency is

measured by L; — p(L').

Curvedness. Curvedness distinguishes surfaces which
have non-flat surfaces. Considering the richer surface normal
representations of curved regions, we expect LSP estimation
to be more precise for highly curved surfaces. To this end,
using surface normals, the curvedness attribute is expressed by
the standard deviation of the gradient magnitude (o (| /n |)).

C. Image Surface Segment Suitability by Ranking

The suitability of an image surface segment is defined by the
angular error between the estimated and the ground-truth light
source position. The aim is to measure which image surface
segment is preferred over others. Therefore, we consider the
learning process as a ranking problem.
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Fig. 3. Initial light position L; based on 3D geometry constraint. O is
the point with maximum intensity on the surface. A is a random point on the
surface of which the intensity is known. L; is estimated as an initial guess for
LSP which is on the direction of the surface normal of point O and satisfies
Lambert’s law for both points.

We use learning to rank (L2R) [36] to measure the suit-
ability of different image surface segments for LSP estima-
tion. The training set consists of image surface segments
S = {s;}; (m is the number of image surface segments)
and ground-truth label y expressed in terms of angular error
between ground-truth and estimated light source positions.
Image surface segments are generated by using [18]. Attributes
® are extracted from image surface segments as explained in
section III-B. ® and y are used to learn f which is described
as follows:

f(si) = w'd(s;). @)

The objective function to optimize the weight w is described
as follows:

N : .

Irql;n2ww+C;£(w,(I>(sl),yl), (8)
where C' and £ represent regularization parameter and loss
function respectively. The default value for the C parameter
(=1) is used without tuning whereas various loss functions
are used based on the choice of the learning to rank al-
gorithm (i.e. pointwise, pairwise). Support vector classifier
SV C and support vector regressor SV R are used as pointwise
methods. RankSV M [37] is used as a pairwise method.
Their loss functions £ for SVC, SVR and RankSV M are
max (0,1 — y;w'®(s;)), (max (0,|y; — w!®(s;)| —€))? and
max (0,1 + w'®(s;) — w'®(s;)) respectively [38]. The sensi-
tiveness of the loss functions are determined by e parameters.
The scores of f are used in eq. 4 to assign importance
to the image surface segments. The image surface segments
with high scores are more suitable for light source position
estimation. Image surface segments which have a negative
influence on LSP estimation (surfaces which have negative

scores) are filtered out.

D. LSP Initialization and Search

The downhill simplex method [39] is used to minimize F
in eq. 4. The state-of-the-art method [7] uses the camera view-
point to initialize the light source position. However, to solve
the minimization problem, a proper initial light source position
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is important to obtain fast convergence. Unlike the state-of-
the-art [7], we propose to use constraints imposed by the 3D
geometry to select the initial points. Assuming Lambert’s law,
the points on the object surface that receive the light close
to a perpendicular angle have maximum intensity. Let O be
the perpendicular projection of L on the planar surface. 6 is
the angle between the light source direction and the surface
normal at surface point A. Then, cos(d) = I(0)/I(A), where
I(O) and I(A) are intensity values at positions O and A. The
distance d between points O and A is computed by the 3D
coordinates, see Fig. 3. Finally, the height A of the light source
is given by:

hea 0 ©)
1 — cos(6)?

The perpendicular projection point O may not always be
available on a surface. That is the reason to still run the full
optimization. Otherwise, it would be possible to estimate
light source position directly based on above equation 9.
Nevertheless, the point with the maximum intensity on a
surface will still be the closest to have minimum angle to the
light source position (due to Lambert’s Law). Therefore, the
position provided by the light source position initialization
will be closer to light source than random positions. This is
visualized in Fig. 3 (sample on the right).

Initial light source positions are estimated for all the image
surface segments in an image. These estimations are used
to initialize the arbitrary light source position in eq. 3 by
a weighted average. Moreover, to obtain surface consistency
(see section III-B1), it is necessary to have a LSP estimation
for each image surface segment. The light source position
estimation accuracy should not change with or without good
initialization because the optimization is allowed to run until
convergence. However, 3D geometry-based initialization al-
lows a speed-up of convergence for each individual estimation
(5% faster convergence).

IV. LSP ESTIMATION FROM RGB-D SEQUENCES

Temporal information can be used to improve the accuracy
of the single frame-based LSP estimation. We assume that L,
with respect to static objects in the scene, does not change
during a single video recording. Hence, the only change is the
relative position of L with respect to the camera. Therefore,
we propose to use the camera pose to provide temporal
constraints in RGB — D sequences. First, we estimate the
camera pose to build correspondences between frames. Then,
images are transformed to the same coordinate system to create
consistency between estimations of different frames.

A. Camera Pose Estimation

Considering static objects in the scene, we propose to
estimate the camera pose as a rigid body movement. In our
framework, the iterative closest point (ICP) algorithm is used
to estimate the camera pose [40]. ICP estimates the camera
pose by aligning the data. Data alignment problem is treated
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as a nonlinear optimization problem in which correspondences
between recordings (depth images) are approximated using
the closest pairs of points found between successive depth
images [41], [40]. After the computation of corresponding
points, ICP aims to find a single transformation matrix T with
minimal point-to-plane error [40]:

argmin Y [|(Toi(u) — of_,(u)'nd_,(W)[*.  (10)
u

The error is measured by how good each point v;(u) in the
current frame fits the tangent plane at its corresponding point
v{_ (u) in the previous frame [41], [40]. nY_, (u) is the surface
normal of the corresponding point v{ ;(u) in the previous
frame. Using a global coordinate g, the camera pose T is
used to transform point v;(u) from the image coordinate to the
global coordinate. Then, a linear approximation is adopted to
solve this system. In our approach, a GPU-based implemen-
tation of ICP is used which provides real-time camera pose
estimation.

B. Global LSP Refinement

After the camera pose is estimated by ICP, the proposed
LSP estimation method is applied. To incorporate all video
frames, L is transformed from local image coordinates to a
global one. As a result, given an image I;, its corresponding
T and L, p values in s; of eq. 2 are modified as follows:

TL—p(u
() (rr—par)"

p(u,T) = (1D

, U € Sj.
Then, I, for a given s;, is computed by:

TL — p(u)

]M%T):m%TﬁmMMWﬁﬁfigﬁﬂ

)1,0),u € 55,
(12)

Eij(u,T) =Y f(s)lLi(w) = L(u, T),

UES;

13)

and the residual error of I; is computed as follows:

>

SjEIz'

Given an image sequences I, the energy function for the
light source position is then defined by:

E= Y Ei(u,T).

Iel.

15)

The estimated light source position is obtained by minimiz-
ing I given by eq. 15. Finally, the light source position which
minimizes the residuals between the reconstructed and original
video sequence is selected as the final estimation.

http://dx.doi.org/10.1109/TIP.2017.2731619

Reference 2
.

Fig. 4. A sample scene of the setup of the recorded RG B — D Video dataset
and three manually picked salient points on this sample image.

V. EXPERIMENTS

Datasets and Evaluation Metric. The proposed light posi-
tion estimation algorithm is evaluated on the dataset proposed
by [7] and our newly collected dataset. Thanks to the authors
of [7], they have provided Boom13 dataset with ground-truth
annotations. Currently, the dataset is publicly available'.

Our RGB-D video dataset is collected using Kinect in a
dark room. The room is isolated from light sources. First,
we have placed the objects and a Philips daylight simulator
bulb in the room (See Fig. 4). The room is lightened only
using this bulb. The light source position and objects are
fixed for each video sequence but vary between different
video sequences. The relative light source position with respect
to the objects varies within 3 meters. We have selected
three salient control points (e.g. color checker white patch,
book corner and bottom of white plastic). We have manually
measured (using ruler) x, y and z distances between the light
source and the control points (in real world). Then, we have
performed video recordings. For each frame, we have obtained
the coordinates of the control points with respect to camera.
Accordingly, we have transformed the light source position
to camera coordinates using the measured distances between
light source position and control points. Three video sequences
are recorded (approximately around 15 fps). The length of the
videos vary between 20 to 60 seconds. While building the
dataset, we randomly subsample (i.e. 1fps) the videos for the
simplicity of the annotation process. At the end, the dataset
consists of 71 frames.

The angular and euclidean distance error between the es-
timated and ground-truth light source positions are used to
measure the accuracy.

Implementation. Two types of learning to rank (L2R)
methods are used, namely, pointwise and pairwise [36]. The
main difference between these methods are their objective
functions [38]. Pointwise methods aim to minimize the error
based on single instances, whereas pairwise methods minimize
the disorder between pairs. Pointwise methods require numer-
ical scores for training labels, whereas pairwise methods use
preferences between pairs. For pointwise and pairwise meth-
ods the Liblinear [42] and Joachims [37] implementations
are used respectively. The default parameter settings are used
as provided by the implementations. Leave-one-out is used for
training and testing the performance of the proposed method.

Uhttp://www.dtic.ua.es/jgpul2/lightEstimation/
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Performance
Method (Mean Angular Error)
Boom et al. [7] 12.6°+6.4°
Proposed-SVC20 9.9°1+6.1°
Proposed-SVC25 8.6°+5.6°
Proposed-SVC30 9.8°+6.3°
Proposed-SVR 9.9°4+5.7°
Proposed-RankSVM 8.2°+5.1°

TABLE III
LSP ESTIMATION PERFORMANCE ON Boom13 dataset. THERE IS NO
THRESHOLD FOR ANGULAR ERROR TO CONSIDER AN IMAGE SURFACE
SEGMENT TO BE GOOD/BAD. VARYING THRESHOLDS ARE USED TO
SPECIFY POSITIVE OR NEGATIVE LABELS. THE NUMBERS NEXT TO SV C
REPRESENT THE ANGULAR ERROR THRESHOLD USED. THE PROPOSED
ATTRIBUTE-BASED LSP ALGORITHM OUTPERFORMS [7] WHICH ASSUMES
EQUAL IMPORTANCE TO ALL SURFACES. VARIOUS LEARNING
ALGORITHMS ARE ALSO TESTED, NAMELY, SUPPORT VECTOR CLASSIFIER
SV C, SUPPORT VECTOR REGRESSOR SV R AND RankSV M. THE
RESULTS SHOW THAT LEARNING THE SURFACE ATTRIBUTES
OUTPERFORMS THE METHOD WITHOUT LEARNING [7] REGARDLESS THE
CHOICE OF THE LEARNING ALGORITHM. RankSV M PERFORMS BEST.

A. LSP Estimation from a Single RGB-D Frame

Experiment I : Influence of Learning Surface Attributes
We evaluate our attribute-based LSP algorithm on the Boom13
dataset [7] and compare it with [7]. We follow the same
steps for both algorithms. The main difference between the
obtained results is that [7] gives equal weights to all image
surface segments whereas our method assigns a weight to
the each image surface segment based on its suitability
to contribute to a correct LSP estimation. The results are
summarized in Table III. The results show that the proposed
algorithm outperforms [7]. The significant improvement
over [7] indicates the importance of surface attributes to
estimate LSP. Hence, image surface segments influence LSP
estimation differently based on their appropriateness.

Experiment I1: Influence of Learning Algorithms In this
experiment, we evaluate three different learning algorithms
to rank the image surface segments. Support vector classi-
fier SVC and support vector regressor SV R are used as
pointwise methods. RankSV M [37] is used as a pairwise
method. These algorithms differ mainly by their loss functions
E(w; D(s;),y;) of eq. 8. € for SVC, SV R and RankSV M are
max (0,1 — y;w'®(s;)), (max (0,]y; — w'®(s;)| —€))? and
max (0,1 + w'®(s;) — w'®(s;)) respectively [38]. The sensi-
tiveness of the loss functions are determined by e parameters.
®(s), w and y stand for the surface attribute, the weights and
the labels respectively.

The angular error between the estimated and ground-truth
light source positions are used as training labels. Since there
is no threshold for the angular error to determine an image
surface segment to be good/bad, we use varying thresholds
for the angular error to specify image surface segments to be
positive or negative labels for SV C. The angular errors are

http://dx.doi.org/10.1109/TIP.2017.2731619
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Fig. 5. Attribute weights: The weights are obtained by averaging the summed
classifier weights of different dimensions of the same attributes. It illustrates
that surface attributes influence the LSP estimation differently.

directly used as training labels for SV R. RankSV M requires
pairwise preferences between image surface segments. These
preferences are created based on their angular errors.

The results show that learning the surface attributes
outperforms the method without learning [7] regardless
the choice of the learning algorithm (See Table III). This
indicates the importance of learning surface relevance for
LSP estimation. SV C using 25° error threshold performs
comparable results to RankSV M. However, the necessity
of choosing a labeling threshold makes SV C less practical.
RankSV M performs the best without introducing any
hand-crafted rules for labeling. Therefore, RankSV M is
used for the rest of the paper.

In addition, we also evaluated mean Euclidean distance
between estimated and ground-truth light source position as
error measure. The proposed method reaches 1.2m £ 0.6m
mean Euclidean distance error whereas [7] reaches
1.7m + 0.8m.

Experiment III: Influence of Surface Attributes In this
experiment, we study the influence of each individual sur-
face attributes. The weights are obtained by averaging the
summed classifier weights of different dimensions of the same
attributes. The attribute importance is summarized in Fig. 5.

Surface consistency is defined by the deviation of an image
surface segment LSP estimation from the average estimation
of the other image surface segments in the image. The results
show the importance of a global consistency condition. An-
other conclusion is that proper image surface segments vote
for similar light source positions. Deviating from the average
estimation of image surface segments negatively influence the
importance of an image surface segment.

Deviation from smoothness of a surface is observed to be
negatively related to the correctness of the estimation. This is
due to noisy surface normals extracted from rough surfaces
mislead the optimization algorithm. Moreover, rough surfaces
are more prone to cast shadows due to the occlusion of the
light source.
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Fig. 6. Sample images from our RGB — D video dataset. Images are from
different video sequences.

The surfaces are segmented based on their color. Shadows
and highlights cause gradient changes within the same colored
segments. Invariant response takes into account this. Higher
average gradient ratio corresponds to shadows and highlights.
Considering Lambert’s law, it is expected that light source po-
sition estimation is negatively affected by invariant response.

The amount of texturedness on LSP estimation is important.
This is due to the surface homogeneity assumption of LSP
algorithms. They assume that the intensity changes are caused
by shading. However, changes caused by the surface texture
negatively influence the optimization algorithm to reach con-
vergence. Therefore, as expected, less textured regions are
more useful for LSP estimation.

Interface reflectance is highly correlated with surface prop-
erty of being matte or glossy. Surfaces become more glossy
with an increasing amount of interface reflectance. Since
Lamberts law assumes a surface which diffusely reflects the
light, the light position estimation is negatively affected by
interface reflectance.

The increase in colorfulness most likely indicates albedo
change within a surface. This conflicts with the assumption,
albedo does not change within a surface segment. Thus, light
source position estimation is negatively affected by colorful-
ness.

The surfaces being photometrically stable has a positive
influence on the light source position estimation.

Less micro-texture mostly indicates polished, glossy sur-
faces (e.g. metal) whereas more micro-texture indicates matte
surfaces (e.g. fabric). Because glossy surfaces are more prone
to be affected by interface reflectance, the amount of micro-
texture positively influences the LSP estimation.

The amount of curvedness has a positive affect on the LSP
estimation accuracy. Curved surfaces create more variations
of surface normals. This provides intensity variations even
for small regions. Whereas a flat surface usually changes
monotonically and does not create such intensity variation.

B. LSP Estimation from a RGB-D Video Sequence

Experiment I: Influence of Temporal Constraints In
this experiment, we conduct two experiments. First, we
compare the performance of the proposed attribute-based
LSP estimation algorithm with [7]. Second, we compare the
performance of LSP estimation based on a single frame with
video sequence. The results are summarized in Table IV: The

http://dx.doi.org/10.1109/TIP.2017.2731619

Performance
Method (Mean Angular Error)
Boom et al. [7] 24.6°+6.0°
Proposed Attribute 8.5°+£2.4°
Boom et al. [7] + Proposed Temporal 6.3°+4.1°
Proposed Attribute+Temporal 4.8°+2.9°

TABLE IV
LSP ESTIMATION PERFORMANCE ON QOur dataset. THE PROPOSED
ATTRIBUTE-BASED METHOD OUTPERFORMS [7]. THE PROPOSED
TEMPORAL CONSTRAINTS IMPROVES THE ACCURACY OF THE PROPOSED
ATTRIBUTE-BASED METHOD AND AN OFE-THE-SHELF LSP ESTIMATION
METHOD [7].

results for the first experiment show that our attribute-based
method (mean angular error 8.5°) outperforms [7] (mean
angular error 24.6°). For the second experiment, we estimate
a single global light source position for the whole video
sequence using the proposed temporal constraints. To obtain
the light source position for a single image, the estimated
global light source position is transformed into local image
coordinates (using the estimated camera pose). Then, the
errors are measured. For each sequence, our temporally
constrained LSP algorithm reduces the LSP estimation error
from 8.5° to 4.8°.

In addition, we evaluated mean Euclidean distance between
estimated and ground-truth light source position as error
measure. The proposed method reaches 0.5m + 0.2m mean
Euclidean distance error whereas [7] reaches 1.9m + 5.8m.

Experiment II: Improving off-the-shelf LSP Estimation
Method In this experiment, we use a state-of-the-art LSP
algorithm [7] and apply the proposed global refinement step.
The objective function is replaced by the proposed temporal
constraint. The mean error is reduced from 24.6° to 6.3° with
respect to the original LSP algorithm [7] (See Table IV).

C. Influence of the Segmentation Algorithm on LSP Estimation

The light source position estimation error minimization
function heavily relies on the homogeneous segments due to
the assumption that the pixels in the same segments have the
same albedo. Therefore, the errors caused by the segmentation
algorithm are expected to harm the light source position
estimation. In this experiment, we compare the results of the
proposed method and [7] using graph-based [18] and quick
shift [43] segmentation algorithms. The results are reported in
Table V.

It can be noted that the result of the proposed method
is influenced by the choice of the segmentation algorithm
whereas depending on the segmentation algorithm, the result
of [7] significantly varies in RGB — D Video dataset. The
proposed surface attributes (i.e. colorfulness and texturedness)
helps the proposed algorithm to give less importance to those
surfaces with segmentation failures. Therefore, the proposed
algorithm is less sensitive to segmentation algorithm and
segmentation errors.
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Proposed RGB-D
Video Dataset

Segmentation Boom13 Dataset

Method
Proposed | Boom et al. [7] | Proposed | Boom et al. [7]
Felzenszwalb [18] | 8.2°+5.1° | 12.6°+£6.4° 4.8°£2.9° | 24.6°+£6.0°
quick-shift [43] 8.8°+£5.1° | 12.9°£10.6° 6.0°+£2.5° | 12.9°4+6.0°
TABLE V

THE LSP RESULTS ON Boom13 AND RGB — D VIDEO DATASETS USING
DIFFERENT SEGMENTATION ALGORITHMS. THE RESULTS SHOW THAT THE
PROPOSED METHOD IS LESS SENSITIVE TO SEGMENTATION ALGORITHM
AND SEGMENTATION ERRORS.

D. Discussion

Complexity Analysis: In this paper, we focus only on
the theoretical contributions rather than practical contribu-
tions (real-time applicability). Therefore, the proposed method
would highly benefit from a careful engineering. Given that,
the proposed method has been tested on a desktop machine
with an Intel(R) Core(TM) i7 — 4810 M QC PU @2.803Ghz.
The operations and their time consumptions are reported in
Table VI

At this moment, the most time consuming step is the feature
extraction. By exploiting the computing power of GPU, feature
extraction can be computed in a parallel architecture, which
will help to reduce the computing time significantly. A signif-
icant speed gain could be obtained in the error minimization
step by minimizing the reconstruction error of each segment
using different GPU threads.

The total execution time of [7] is reported as 25 seconds,
however [23] shows that using the power of GPU and a
compromise in performance can lead this algorithm to perform
in less than one second. Therefore, for a real-time augmented
reality application the total execution time (4 seconds) can be
drastically drop by carefully revising the steps.

We note that the importance score introduced in the opti-
mization function does not only improve light source position
estimation but also it reduces the time consumed for error
minimization. The error minimization for the proposed method
takes 344.7ms whereas error minimization takes 8351.3ms
for [7] (using multi-thread).

Number of Training Samples: The proposed RGB — D
video dataset is the largest light source position estimation
dataset. However, the number of frames in the dataset can
still be considered as small. The proposed method would learn
ranking surfaces better by increasing the number of samples
and varying the surface attributes in training. Moreover, larger
number of video frames would also help to minimize the error
of individual frame errors while using temporally constrained
LSP estimation. Therefore, our method would additionally
benefit from datasets with larger number of images.

On the other hand, not only number of frames but the
variety of surface attributes would help our algorithm. Our
surface attribute weighting method would benefit from more
complex scenes (e.g. surfaces with photometric changes which
do not obey lambertian reflectance rule and surfaces with
more geometric variations). Moreover, camera pose estimation
would also be more accurate in a more complex scene (i.e. I[CP
algorithm to estimate camera pose would benefit from surface
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Operation Time Consumed)
Point Cloud Generation 3ms
Normal Estimation 42ms
Surface Segmentation 195.8ms
Light Source Position Initialization 1.07ms
Feature Extraction 3016ms
Importance Score Prediction 0.127ms
Error minimization 344.7Tms
Total 3602.697ms
TABLE VI
DIFFERENT STEPS OF THE PROPOSED METHOD AND THEIR TIME
CONSUMPTIONS.

variations). Therefore, a complex scene would also help to
improve our results.

VI. CONCLUSION

In this paper, we have exploited the influence of surface
attributes on the accuracy of LSP estimation. Given a single
RGB — D image, we first analyzed the effects of photometric
and geometric surface attributes. Then, surfaces are ranked
using a supervised learning scheme. The ranking results are
used to decide the contribution of an image surface segment
for LSP estimation. Higher importance is assigned to those
image surface segments which have suitable photometric (i.e.
Lambertian reflectance) and geometric surface attributes. To
speed up the LSP estimation, a geometry constrain has been
introduced to initialize point selection. Moreover, the image
surface segments which have a negative influence on LSP es-
timation are filtered out. Additionally, we introduce a temporal
constraint to estimate LSP from a RGB — D video sequence.
LSP is optimized using the camera poses between successive
frames. The results show that our method based on weighting
image surface segments using their attributes outperforms
the state-of-the-art methods. By using the proposed surface
weighting, the angular error is reduced from 12.6° to 8.2°
and 24.6° to 8.5° for Boom and our newly collected datasets
respectively. Moreover, using the camera pose to temporally
constrain LSP provides higher accuracy (4.8°) compared to
using single frames (8.5°).
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