\&\

.

o

CSA

Computer
Systems
Architecture

N

Introduction to Compiler Design:
optimization and backend issues

Andy Pimentel

Computer Systems Architecture group
andy@science.uva.nl

Introduction to Compiler Design — A. Pimentel — p. 1/127

X

Compilers: Organization Revisited

Machine
Code

Source

t-a- ‘ Frontend Backend

® Optimizer
s Independent part of compiler
s Different optimizations possible
s |IRto IR translation

CSA

Computer
Systems
Architecture

N

Introduction to Compiler Design — A. Pimentel — p. 2/127

X
la?l Intermediate Representation (IR)
UniverSity L —————

of
sterdam

#® Flow graph

» Nodes ar@asic blocks
s Basic blocks are single entry and single exit

» Edges represent control-flow

#® Abstract Machine Code
» Including the notion of functions and procedures

® Symbol table(s) keep track of scope and binding
Information about names

CSA

Computer
Systems
Architecture

Introduction to Compiler Design — A. Pimentel — p. 3/127

X Partitioning into basic blocks
UniverSity L —————

of
sterdam

1. Determine the leaders, which are:
#® The first statement
#® Any statement that is the target of a jump
#® Any statement that immediately follows a jump

2. For each leader its basic block consists of the leader land «
statements up to but not including the next leader

CSA

Computer
Systems
Architecture

Introduction to Compiler Design — A. Pimentel — p. 4/127

Partitioning into basic blocks (cont’d)

d1 ra=1 Bl
(A
if read() <=0 goto B4 By
. J
rdg :b=a]
ds : a=243 B3
L goto B2)

By

CSA

Computer
Systems
Architecture

A\

Introduction to Compiler Design — A. Pimentel — p. 5/127

X

X
la?l Intermediate Representation (cont’d)
UniverSity R

of
Amsterdam

\ Structure within a basic block:

® Abstract Syntax Tree (AST)
o Leaves are labeled by variable names or constants
» Interior nodes are labeled by an operator

#® Directed Acyclic Graph (DAG)
® C-like
#® 3 address statements (like we have already seen)

CSA

Computer
Systems
Architecture

-

Introduction to Compiler Design — A. Pimentel — p. 6/127

X
la?l Directed Acyclic Graph
UniverSity L —————

of
sterdam

® Like ASTs:
o Leaves are labeled by variable names or constants

» Interior nodes are labeled by an operator

® Nodes can have variable names attached that contain the
value of that expression

Common subexpressioase represented by multiple edges
to the same expression

CSA

Computer
Systems
Architecture _ . . .
Introduction to Compiler Design — A. Pimentel — p. 7/127

%
DAG creation

AN
m\;\;} rSity

dalill

Suppose the following three address statements:

1. Xx=yopz
2. X=0py
3. X=Y

1f (i <=20) ... will be treated like case 1 withundefined

CSA

Computer
Systems
Architecture

N

Introduction to Compiler Design — A. Pimentel — p. 8/127

i .
X DAG creation (cont’d)

University
of
sterdam

If node(y) is undefined, create leaf labelgdsame forz if
applicable

Find noden labeledop with childrennode(y) andnode(z)
If applicable. When not found, create nodldn case 3 len

benode(y)

Makenode(x) point ton and update the attached identifiers
for x

CSA

Computer
Systems

Architecture _ . . .
Introduction to Compiler Design — A. Pimentel — p. 9/127

AN
m\;\;} rSity

dalill

© 00 NO O & WDN P

=
o

CSA

Computer
Systems
Architecture

N

DAG example

t1=4%*|

t2 = a[tl]

t3=4*|

ta=b3]

th=t2*t4 \
t6 = prod + t5 ﬂ,’rS ’r7,i 0
prod =6 \i :
t7=1+1

| =7

If 1 <=20)goto 1

Introduction to Compiler Design — A. Pimentel — p. 10/127

X
]
X

niversity
of
Amsterdam

Local optimizations

#® On basic blocks in the intermediate representation
s Machine independent optimizations

#® As a post code-generation step (often cafleephole
optimization)
s On asmall “instruction window” (often a basic block)
» Includes machine specific optimizations

CSA

Computer
Systems
Architecture

-

Introduction to Compiler Design — A. Pimentel — p. 11/127

X
]
X

niversity
of
Amsterdam

Transformations on basic blocks

Examples

#® Function-preserving transformations

o Common subexpression elimination
Constant folding
Copy propagation
Dead-code elimination
Temporary variable renaming
Interchange of independent statements

o o o o o

CSA

Computer
Systems
Architecture

-

Introduction to Compiler Design — A. Pimentel — p. 12/127

X

3

Jnive |ty
N

CSA

Computer
Systems
Architecture

A

Transformations on basic blocks (cont’d)

#® Algebraic transformations

Machine dependent eliminations/transformations
» Removal of redundant loads/stores

o Use of machine idioms

Introduction to Compiler Design — A. Pimentel — p. 13/127

X Common subexpression elimination
UniverSity L —————

of
sterdam

If the same expression is computed more than once it is
called a common subexpression

If the result of the expression is stored, we don’t have to
recompute it

#® Moving to a DAG as IR, common subexpressions are
automatically detected!

X=a-+Db X=a-+Db

y=a+Db y =X

CSA

Computer
Systems
Architecture

Introduction to Compiler Design — A. Pimentel — p. 14/127

Constant folding

1

\/

Compute constant expression at compile time
May require some emulation support

X=3+b5 X=8

Yy =Xx2 y=16

CSA

Computer
Systems
Architecture

N

Introduction to Compiler Design — A. Pimentel — p. 15/127

X

<
\a/
\g

\V%%%

#® Propagate original values when copied
Target for dead-code elimination

X=Y X=Y

Z=Xx%2 Z=Y*2

CSA

Computer
Systems
Architecture

N

Introduction to Compiler Design — A. Pimentel — p. 16/127

Dead-code elimination

x
]
.x.

ol

® A variablexis dead at a statement if it IS not used after tha
statement

An assignmenk =Yy+ zwherex is dead can be safely
eliminated

® Requires live-variable analysis (discussed later on)

CSA

Computer
Systems
Architecture

A

Introduction to Compiler Design — A. Pimentel — p. 17/127

i . .
% Temporary variable renaming
UniverSity e ——————

of
sterdam

tl=a+b tl=a+b
t2=1t1x2 t2=1t1x2
= ..

tl=d-—e t3=d—e
c=tl1+1 c=1t3+1

|If each statement that defines a temporary defines a new
temporary, then the basic block ismermal-form

o Makes some optimizations at BB level a lot simpler
(e.g. common subexpression elimination, copy

CSA propagation, etc.)

Computer
Systems
Architecture

Introduction to Compiler Design — A. Pimentel — p. 18/127

1

Algebraic transformations

There are many possible algebraic transformations
Usually only the common ones are implemented
X=X+0

X=Xx1

X=Xx2=>X=X<<1

® o o o 0 ©

X = X% = X=Xx*xX

CSA

Computer
Systems
Architecture

N

Introduction to Compiler Design — A. Pimentel — p. 19/127

X

X Machine dependent eliminations/transformations
Unlver5|ty L ———

msterdam

N

® Removal of redundant loads/stores
1 mov RO, a

2 mov a, RO /I can be removed

Removal of redundant jumps, for example

1 beq ...,$Lx bne ...,$Ly
2] $Ly = $LX:
3 $Lx:

#® Use of machine idioms, e.qg.,
s Auto increment/decrement addressing modes
CSA » SIMD Instructions

sty e Etc., etc. (see practical assignment)
Systems

Architecture

Introduction to Compiler Design — A. Pimentel — p. 20/127

CSA

Computer
Systems
Architecture

-

Other sources of optimizations

#® Global optimizations
common subexpression elimination

s G
s G
s G

oba
oba
oba

constant folding

copy propagation, etc.

® Loop optimizations

They all need some dataflow analysis on the flow graph

Introduction to Compiler Design — A. Pimentel — p. 21/127

X

3

Jnive |ty
N

Loop optimizations

Code motion

® Decrease amount of code inside loop

® Take aloop-invariant expression and place it before the
loop

while <=1limt—-2) = t=Ilimt—-2
while (I <=t)

CSA

Computer
Systems
Architecture

A

Introduction to Compiler Design — A. Pimentel — p. 22/127

X
L:?' Loop optimizations (cont’d)
Unlver5|ty L ———

Amsterdam

-

Induction variable elimination
#® \Variables that are locked to the iteration of the loop are
calledinduction variables

® Example:infor (i = 0; I < 10; i++) iisan
Induction variable

#® Loops can contain more than one induction variable, for
example, hidden in an array lookup computation

® Often, we can eliminate these extra induction variables

CSA

Computer
Systems

Introduction to Compiler Design — A. Pimentel — p. 23/127

X Loop optimizations (cont’d)
Univei;rsity — ————————————
ms(t)erdam

Strength reduction

#® Strength reduction is the replacement of expensive
operations by cheaper ones (algebraic transformation)

#® Its use is not limited to loops but can be helpful for
Induction variable elimination

N

=141 =141

tl=1%x4 = tl1=t1+4

t2 =altl] t2 = aftl]

If (I < 10) goto top If (< 10) goto top

CSA

Computer
Systems
Architecture _ . . .
Introduction to Compiler Design — A. Pimentel — p. 24/127

X Loop optimizations (cont’d)
of

sterdam

Induction variable elimination (2)

#® Note that in the previous strength reduction we have to
Initialize t1 before the loop

#® After such strength reductions we can eliminate an
Induction variable

I=i+1 tl=t1+4
tl=t1+4 = t2=atl]
t2 =altl] iIf (t1 < 40) goto top

If (1 < 10) goto top

CSA

Computer

Systems
Architecture _ . . .
Introduction to Compiler Design — A. Pimentel — p. 25/127

x(Xx

X Finding loops in flow graphs
S|ty

asterdam

Dominator relation

Node A dominates node B if all paths to node B go throug|
node A

#® A node always dominates itself

We can construct a tree using this relation: the Dominaés tr

CSA

Computer
Systems
Architecture

A

Introduction to Compiler Design — A. Pimentel — p. 26/127

Dominator tree example

Flow graph Dominator tree

CSA

Computer
Systems
Architecture

A\

Introduction to Compiler Design — A. Pimentel — p. 27/127

X Natural loops

UnlverS|ty

msterdam

N

#® Aloop has a single entry pointe headerwhich
dominates the loop

There must be a path back to the header

Loops can be found by searching for edges of which their
heads dominate their tails, called tiheckedges

#® Given a backedge — d, thenatural loopis d plus the
nodes that can reachwithout going throught

| I

CSA

Computer
Systems
Architecture

Introduction to Compiler Design — A. Pimentel — p. 28/127

1

Finding natural loop of n—d

procedure insem) {
If (not me loop) {
loop = loopuUm
push()
}
}

dack =0

loop = {d}
iInsert()
while (sack # 0) {

m = pop()
CSA for (p € pred(m)) insert(p)

Computer
Systems
Architecture

N

Introduction to Compiler Design — A. Pimentel — p. 29/127

X Natural loops (cont’d)

Univei;rsity
0
Amsterdam

-

® When two backedges go to the same header node, we me
join the resulting loops

® When we consider two natural loops, they are either
completely disjoint or one is nested inside the other

The nested loop is called amer loop

| I

A program spends most of its time inside loops, so loops
are a target for optimizations. This especially holds for
iInner loops!

CSA

Computer
Systems
Architecture

Introduction to Compiler Design — A. Pimentel — p. 30/127

Our example revisited

Flow graph

CSA

Computer
Systems
Architecture

A\

Introduction to Compiler Design — A. Pimentel — p. 31/127

Our example revisited

Flow graph

Natural loops:

1. backedge 10 —> 7: {7,8,10} (the inner loop)
2. backedge 7 —> 4: {4,5,6,7,8,10}

3. backedges 4 —-> 3 and 8 —> 3: {3,4,5,6,7,8,10}
4. backedge 9 —> 1: the entire flow graph

CSA

Computer
Systems
Architecture

N

Introduction to Compiler Design — A. Pimentel — p. 31/127

X
]
X

Univefrsity

0
Amsterdam

-

CSA

Computer
Systems
Architecture

Reducible flow graphs

A flow graph is reducible when the edges can be partitione
iInto forward edges and backedges

The forward edges must form an acyclic graph in which
every node can be reached from the initial node

Exclusive use of structured control-flow statements such a

| f -t hen- el se, whi | e andbr eak produces reducible
control-flow

Irreducible control-flow can create loops that cannot be
optimized

Introduction to Compiler Design — A. Pimentel — p. 32/127

Reducible flow graphs (cont’'d)

Irreducible control-flow graphs can always be made
reducible

This usually involves some duplication of code

W o
.

CSA

Computer
Systems
Architecture

N

Introduction to Compiler Design — A. Pimentel — p. 33/127

X

| ¢
NS

. Dataflow abstraction

Unbounded number of execution paths
skip loop, 1 iteration etc..
#® SO abstract details

dl a=1 Bl
if read() <=0 goto B4 By
’dz :b=a
d3 :a =243 B3
goto B2
CSA 5
Computer

Systems
Architecture

N

Introduction to Compiler Design — A. Pimentel — p. 34/127

Abstraction for reaching definitions

| 1A H
UNIVE
)

#® Possible values and definitions of variablat pointp.

® Abstraction:
o Values ofa at pointp: {1,243}
s Definitions reaching: {d4, ds}

d1 ra=1 Bl
()
if read() <= 0 goto B4 Bs
(k J
p >
\(dg :b=a A
ds : a =243 By
goto B2
B
Computer 4
- J

Systems
Architecture

A

Introduction to Compiler Design — A. Pimentel — p. 35/127

X

3

Jnive |ty
N

Abstraction for constant folding

® Check if:
o Variablexis reached by one defintion
s Definition assigns a constantxo

#® Abstraction:ais not a constant gt (NAC)

d1 a=1 Bl

(R
if read() <=0 goto B4 Bs

(k J

p >

\'dg :b=a)

d3 :a=243 B3
goto B2

B
Computer 4

Systems
Architecture

A

Introduction to Compiler Design — A. Pimentel — p. 36/127

1

Dataflow analysis example

int foo(int x, int y) {

if (x)
y += 2;
el se
y += 3;
return y;
}
No dataflow analysis (-O0) With dataflow analysis (-O1)
sw $4, 8($f p) # X nove $2,85 # vy
sw $5,12($fp) # vy beq $4, $0, $L14
lw $2, 8($f p) addu $2, $2, 2
beq $2, $0, $L2] $L15
lw $2, 12($f p) $L14: addu $2,%$2,3 # return val
addu $3, $2, 2 $L15: | $31
sw $3, 12($f p)
j $L3
YW 5120 1w $2,12($fp)
Computer addu $3, $2, 3
Systems sw $3, 12($f p)
Architecture $L3: |w $2,12($fp) # return val Introduction to Compiler Design — A. Pimentel — p. 37/127

N

X
] .
X Dataflow analysis

Univefrsity

0
Amsterdam

-

Data analysis is needed for global code optimization, e.g.:

s Is avariable live on exit from a block? Does a
definition reach a certain point in the code?

Dataflow equationare used to collect dataflow information
s A typical dataflow equation has the form

out|S| = gen|S U (in[S —kill[S)

#® The notion of generation and killing depends on the
dataflow analysis problem to be solved

® Let’s first consideiReaching Definitionanalysis for
structured programs

CSA

Computer
Systems
Architecture

Introduction to Compiler Design — A. Pimentel — p. 38/127

X
]
X

niversity
of
Amsterdam

Reaching definitions

#® A definition of a variablecis a statement that assigns or
may assign a value to

An assignhment ta is anunambiguousglefinition ofx

An ambiguousassignment ta can be an assignment to a
pointer or a function call wheneis passed by reference

| I

CSA

Computer
Systems
Architecture

-

Introduction to Compiler Design — A. Pimentel — p. 39/127

X

X . o
La?' Reaching definitions (cont’d)
Univei;rsity ————————————————————————
Ams(t)erdam
® Whenxis defined, we say the definition is generated
\ #® An unambiguous definition of kills all other definitions of

When all definitions ok are the same at a certain point, we
can use this information to do some optimizations

® Example: all definitions ok definex to be 1. Now, by

performing constant folding, we can do strength reduction
If Xis used inz=yxX

CSA

Computer
Systems
Architecture

Introduction to Compiler Design — A. Pimentel — p. 40/127

X

X Dataflow analysis for reaching definitions
Ams?erdam

#® During dataflow analysis we have to examine every path
that can be taken to see which definitions reach a point in
the code

#® Sometimes a certain path will never be taken, even if it is
part of the flow graph

#® Since it is undecidable whether a path can be taken, we
simply examine all paths

#® This won't cause false assumptions to be made for the
code: it is a conservative simplification

s It merely causes optimizations not to be performed

-

CSA

Computer
Systems
Architecture

Introduction to Compiler Design — A. Pimentel — p. 41/127

x
]
x .

The building blocks

gen[S]<d}
kill[S]=D4 — {d}
out[S]=gen[SP(in[S]-kill[S])

— | d: o=b+c

gen[S]=gen[S2)(gen[S1]-kill[S2])
kill[S]=kill[S2] U(kill[S1]-gen[S2])
iN[S1]=in[S]

IN[S2]=out[S1]

out[S]=out[S2]

sV
)
gen[S]=gen[S1]gen[S2]
. @ @ kill[S]=kill[S1] Nkill[S2]
iN[S1]=in[S2]=In[S]
out[S]=out[S1]out[S2]

gen[S]=gen[S1]
kill[S]=kill[S1]
iN[S1]=in[S]ugen[S1]
out[S]=out[S1]

CSA

Computer
Systems
Architecture

A

Introduction to Compiler Design — A. Pimentel — p. 42/127

X Dealing with loops
University —— ————————————

of
sterdam

#® The in-set to the code inside the loop is the in-set of the
loop plus the out-set of the loom|S1] = in|S Uout S]]

#® The out-set of the loop is the out-set of the code inside:
out|S = out|S1]

Fortunately, we can also compuget |S1] in terms ofin[SLl]:
out|Sl| = gen[S1] U (in[S1] — kill[S1))

CSA

Computer
Systems
Architecture

Introduction to Compiler Design — A. Pimentel — p. 43/127

Dealing with loops (cont’d)

| =in[S1],0 = out[S1],J = in[§], G = gen[S1] andK = kill [S]]
| =JUO
O=GU(l —K)

AssumeO = 0, thenl! = J
Ol=GuU(I'-K)=GU(J—K)
12=JUuO'=JUGUJ-K)=JUG
0’=GU(I?-K)=GU(JUG—-K)=GU(J—K)

O! = O? s0in[Sl1] = in[S Ugen[S1] andout[§ = out [Sl]

© o oo oo 0 @

CSA

Computer
Systems
Architecture

N

Introduction to Compiler Design — A. Pimentel — p. 44/127

X
X Reaching definitions example

University
of

Amsterdam
\ di 1=m-1 001 1111
. 110 0000
d2] =N 111 0000
d; a=ul 110 0000 990 1111/
f 0001101
(@) 100 0000 001 OOOO
o 000 1001 / \ SOCION T
das I=1+1 010 0000 000 1111
g =1 000 0100 110 0000_do
5 j — j 000 1111

e2

. 110 00Q0 -
if (e1) //0 i
g~ a=u2 B g T

000 01oo
else 010 0000 ooo 0001
& i=u3 omme 1

while (e2)

@AV |n reality, dataflow analysis is often performed at the glarity

o lnic® of basic blocks rather than statements
Systems

Architecture

-

Introduction to Compiler Design — A. Pimentel — p. 45/127

& . .
e Iterative solutions
University 5

of
sterdam

#® Programs in general need not be made up out of structure
control-flow statements

#® \We can do dataflow analysis on these programs using an
iterative algorithm

#® The equations (at basic block level) for reaching defingion
are:

inBl= [out[P]
Pcpred(B)

out|B| = gen|B] U (in[B] — kill |B])

CSA

Computer
Systems

Architecture _ . . .
Introduction to Compiler Design — A. Pimentel — p. 46/127

Iterative algorithm for reaching definitions

for (each block Bout|B| = gen|B]
do {
change= false
for (each block B) {
inBl= | oulP]
Pcpred(B)
oldout= out B
out|B| = gen|B| U (in[B] — kill |B])
If (out|B| # oldout) change= true

CSA J

Computer } while (Change)

Systems
Architecture

A

Introduction to Compiler Design — A. Pimentel — p. 47/127

% Reaching definitions: an example
University
of
sterdam
di: I =m-1 gen[B1] = {d1,d2,d3}
B1|d2:j=n kill[B1] = {d4,d5,d6,d7}
d3:a=ul

gen[B2] = {d4,d5}
kill[B2] = {d1,d2,d7}

dd:i=i+1

B2l d5:j=j-1

gen[B3] = {d6}
kill[B3] = {d3}

\

gen[B4] = {d7}

B4[d7:i=u3_| Kill[B4] = {d1,d4}
Block B Initial Pass 1 Pass 2
in[B] out[B| in[B] out[B| in[B] out[B|

Bl 000 0000 | 111 0000| OO0 0000 | 1110000 | OO0 0000 | 111 0000
CSA B2 000 0000| 0001100 1110011| 0011110} 11711111 0011110

B3 000 0000 | 0000010 | 001 1110| OO0 1110 | 0011110 0OOO 1110
Computer
SystF()ems B4 000 0000 | 0000001 | 0011110| 0010111 0011110 00101112

Architecture

Introduction to Compiler Design — A. Pimentel — p. 48/127

X
i . .
X Avallable expressions

Univefrsity

0
Amsterdam

-

® An expressioreis available at a poinp if every path from
the initial node top evaluate®, and the variables used lay
are not changed after the last evaluations

#® An available expressioais killed if one of the variables
used byeis assigned to

°

An available expressioais generated if it Is evaluated

Note that if an expressioais assigned to a variable used
by e, this expression will not be generated

°

CSA

Computer
Systems
Architecture

Introduction to Compiler Design — A. Pimentel — p. 49/127

\&

\

\\\\\

\\ \\\\

CSA

Computer
Systems
Architecture

N

Avallable expression: example

Instruction sequence Available expressions

o))
[

o
[

O
[

o
[

0
{b+c}
{a—dj
{a—dj

0

Introduction to Compiler Design — A. Pimentel — p. 50/127

X
]
X

niversity
of
Amsterdam

Input sets for Available expressions

® e gensetfor B:
s Loop through instructions in B in order
s Foreveryinstructiom: x =y + z
o Add expressioly + z toe gen set
» Remove all expressions containing x from e_gen set

® e kill setforB
» All expressions containing variables defined in B.

CSA

Computer
Systems
Architecture

-

Introduction to Compiler Design — A. Pimentel — p. 51/127

Avallable expressions (cont’'d)

#® Avallable expressions are mainly used to find common
subexpressions

Bl t1=4*]| Bl [t1=4*]|
B2 ? B2 l0=4+i

\v \v

B3 [t2 =4 *| B3 [t2 =4 *|

CSA

Computer
Systems
Architecture

N

Introduction to Compiler Design — A. Pimentel — p. 52/127

X
QSl
%

Avallable expressions (cont’'d)

Dataflow equations:

out[B] = e_gen[B] U (in[B] — e kill [B])

inBj= () out[P] for B not initial
Pcpred(B)

in[B1] = 0 where B1 is the initial block

The confluence operator is intersection instead of the Uinio

CSA

Computer
Systems
Architecture

A

Introduction to Compiler Design — A. Pimentel — p. 53/127

&3 . .
X Liveness analysis
UniverSity L —————

of
sterdam

#® Avariable is live at a certain point in the code if it holds a
value that may be needed in the future

® Solve backwards:
s Find use of a variable
o This variable is live between statements that have
found use as next statement
» Recurse until you find a definition of the variable

CSA

Computer

Systems
Architecture _ . . .
Introduction to Compiler Design — A. Pimentel — p. 54/127

&1

% Dataflow for liveness

Univei;rsity
0
Amsterdam

Using the setsise|B| anddef B]

s def[B]| is the set of variables assigned value8iprior
to any use of that variable

» UuselB| is the set of variables whose values may be use
In B prior to any definition of the variable

A variable comes live into a block (im[B)), if it is either
used before redefinition or it is live coming out of the block
and is not redefined in the block

A variable comes live out of a block (iout [B]) if and only
If it Is live coming into one of its successors

CSA

Computer
Systems
Architecture

Introduction to Compiler Design — A. Pimentel — p. 55/127

X

3

nive |ty

Dataflow equations for liveness

in[B| = use|B| U (outB| — def[B])
out(B]= | J in[g

Sesucc|B]

Note the relation between reaching-definitions equations:
the roles ofin andout are interchanged

CSA

Computer
Systems
Architecture

A

Introduction to Compiler Design — A. Pimentel — p. 56/127

Data flow analysis summary

Reaching definitions Available expressions Live variables
Domain Set of definitions Set of expressions Set of variables
Direction Forward Forward Backwards

Transfer function gen[BJU (x—kill[B]) e gen[BJ]U(x—e kill[B]) useB]U (x—def[B])

Boundary OUT [entry] =0 OUT[entry] =0 IN[exit] =0
Meet operator U U N
Initialize OUT[B] =0 OUT[B]=U IN[B] = 0

CSA

Computer
Systems
Architecture

A

Introduction to Compiler Design — A. Pimentel — p. 57/127

X Algorithms for global optimizations

Univei;rsity
0
Amsterdam

Global common subexpression elimination
#® First calculate the sets of available expressions
® For every statemerstof the formx =y -+ zwherey+zis
available do the following

s Search backwards in the graph for the evaluations of
y+2

s Create a new variable
» Replace statemenig=y+zbyu=y+z w=u
» Replace statemesthy x = u

CSA

Computer
Systems
Architecture

Introduction to Compiler Design — A. Pimentel — p. 58/127

GCSE example

B B
T e}
\ _/

N

[eb+c B, [et Ba

CSA Before global common subexpression elimination After global common subexpression elimination
Computer
Systems

Architecture

N

Introduction to Compiler Design — A. Pimentel — p. 59/127

X
]
X

niversity
of
Amsterdam

Copy propagation

® Suppose a copy statemetf the formx =y s
encountered. We may now substitute a use loy a use of
y If
o Statemensis the only definition ok reaching the use

» On every path from statemesito the use, there are no
assignments tg

CSA

Computer
Systems
Architecture

-

Introduction to Compiler Design — A. Pimentel — p. 60/127

e Copy propagation (cont’d)
niversity R

of
msterdam

-

To find the set of copy statements we can use, we define ¢
new dataflow problem

°

An occurrence of a copy statement generates this stateme
An assignment ta or y kills the copy statement=y
Dataflow equations:

| I

out[B] = ¢_gen[B] U (in[B] — c_kill[B])

inBj= () out[P] for B not initial
Pcpred(B)

CSA in[B1] = 0 where B1 is the initial block

Computer
Systems
Architecture

Introduction to Compiler Design — A. Pimentel — p. 61/127

X Copy propagation (cont’d)

#® For each copy statemesitx =y do
o Determine the uses afreached by this definition of
o Determine if for each of those uses this is the only
definition reaching it-& s € in|Byg))
o If so, removes and replace the uses by uses ofy

CSA

Computer
Systems
Architecture

-

Introduction to Compiler Design — A. Pimentel — p. 62/127

CSA

Computer
Systems
Architecture

N

B2

Copy propagation example

d « a+ 2 | B2

(b)

Introduction to Compiler Design — A. Pimentel — p. 63/127

X Detection of loop-invariant computations
University e ———————.

of
Amsterdam

-

1. Markinvariantthose statements whose operands are
constant or have all reaching definitions outside the loop

2. Repeat step 3 until no new statements are marked invaria

3. Mark invariant those statements whose operands either al
constant, have reaching definitions outside the loop, og ha
exactly one reaching definition that is marked invariant

CSA

Computer
Systems
Architecture

Introduction to Compiler Design — A. Pimentel — p. 64/127

] .

“o 3N Code motion
Unlve%rsny e ———
Ams(t)erdam

1. Create a pre-header for the loop

2. Find loop-invariant statements
3. For each statemestefiningx found in step 2, check that
(a) itisin a block that dominate all exits of the loop

(b) xis not defined elsewhere in the loop
(c) all uses ok in the loop can only be reached from
this statemens

4. Move the statements that conform to the pre-header

-

CSA

Computer
Systems
Architecture _ . . .
Introduction to Compiler Design — A. Pimentel — p. 65/127

Code motion (cont’'d)

I=1| Bl

i=1| Bl

i=1| Bl

i=3
if u <vgoto B3|B2

if u <vgoto B3|B2

~

if u <vgoto B3|B2

=2 =2
B3 u=u+1B3 u=u+1B3
Y T Y T~y
v=v-1 v=v-1 N
L B4 o B4 k=i
if v <= 20 goto BS if v <= 20 goto B5 v=v-1 B4
if v <= 20 goto B5

i=i|B5 j=i|B5

i=i|B5

Condition (b) Condition (c)

CSA Condition (a)

Computer
Systems
Architecture

N

Introduction to Compiler Design — A. Pimentel — p. 66/127

X Detection of induction variables

Univei;rsity
0
Amsterdam

-

#® A basic induction variableis a variable that only has
assignments of the form=1+c

#® Associated with each induction varialjlés a triple(i,c,d)
wherel Is a basic induction variable ammcandd are
constants such that=cxi+d

°

In this caseg belongs to the family off

°

The basic induction variablebelongs to its own family,
with the associated triplg, 1,0)

CSA

Computer
Systems
Architecture

Introduction to Compiler Design — A. Pimentel — p. 67/127

X Detection of induction variables (cont’d)

Univefrsity
0
Amsterdam

Find all basic induction variables in the loop
#® Find variablek with a single assignment in the loop with
one of the following forms:
s k=jxb,k=bx],k=j/b,k=j+Db, k=Db—+ |, where
b is a constant anglis an induction variable
If jis not basic and in the family ofthen there must be
» No assignment af between the assignment pandk
» No definition of | outside the loop that reachks

CSA

Computer
Systems
Architecture

Introduction to Compiler Design — A. Pimentel — p. 68/127

X . .
La?' Strength reduction for induction variables

UnlverS|ty

msterdam

N

#® Consider each basic induction variabla turn. For each
variablej in the family ofi with triple (i,c,d):
o Create a new variabe
» Replace the assignment by | = s

s Immediately after each assignment i - n append
S=S+C*N

» Placesin the family ofi with triple (i,c,d)
o Initialize sin the preheades=cxi1+d

CSA

Computer
Systems
Architecture

Introduction to Compiler Design — A. Pimentel — p. 69/127

X

| ¢
<
\a.
"~

CSA

Computer
Systems
Architecture

N

X Strengthr

Bl

I=m-1
tl1=4*n
v = a[tl]

B2

i=i+1
t2=4%*|
t3 = a[t2]

if t3 <v goto B2

Strength reduction
e

Y B3
if i < n goto B5
B4 B5

eduction for induction variables (cont’d)

Bl

S2=s2+4

t2 =s2

t3 = a[t2]

if t3 <v goto B2

Y B3
if 1 < n goto B5
B4 B5

Introduction to Compiler Design — A. Pimentel — p. 70/127

% Elimination of induction variables

Univei;rsity
0
Amsterdam

-

#® Consider each basic induction variablenly used to
compute other induction variables and tests

® Take somg ini’s family such that andd from the triple
(i,c,d) are simple

® Rewritetestsf (irelopx) to
r=cxx+d;if (jrelopr)

Delete assignments tdrom the loop

| I

Do some copy propagation to elimingte- sassignments
formed during strength reduction

CSA

Computer
Systems
Architecture

Introduction to Compiler Design — A. Pimentel — p. 71/127

X Introducing Aliases

Univei;rsity
0
Amsterdam

® Aliases, e.g. caused by pointers, make dataflow analysis
more complex (uncertainty regarding what is defined and
used:x = xp might use any variable)

Call by reference parameters will also introduce aliases

Use dataflow analysis to determine what a pointer might
point to

| I

Without alias analysis optimization possibilities will be
limited

CSA

Computer
Systems
Architecture

Introduction to Compiler Design — A. Pimentel — p. 72/127

\\

D

<
N
N

a)

i\\

CSA

Computer
Systems
Architecture

A\

a. Program fragment

u

M
W
b

X

%

%
%
%

Mt
r

Mt]
u-+w

Alias analysis example

Introduction to Compiler Design — A. Pimentel — p. 73/127

\&\

\ Alias example

\\\\
a. Program fragment b. After GCSE
u — Mit] 1: z — Mit]
M[X]| <« r 2: U — z
W — Mit] 3: M| « r
b — u+w 4. w — Z
5. b — u+w

CSA

Computer
Systems
Architecture

N

Introduction to Compiler Design — A. Pimentel — p. 74/127

Alias example

a. Program fragment b. After GCSE
u — Mit] 1: z — Mit]
M[X]| <« r 2: U — z
W — Mit] 3: M[X] <« r
b — u+w 4. W — Z
5. b — u+w

c. Copy Prop o<+ z
1: z — M[t]
3: M[X] <« r

gmspf‘ter 4: w — Z

Systems 5 b — Z+W

Architecture
N

Introduction to Compiler Design — A. Pimentel — p. 75/127

Alias example

a. Program fragment b. After GCSE
u — Mit] 1: z — Mit]
M[X]| <« r 2: U — z
W — Mt] 3: M[X] <« r
b — uU+w 4. W — Z
5. b — u+w

c. Copy Proponmu <z d. Copy Prop onw « z
1: z — M[t] 1: z — Mit]
3: M[X] <« r 3: M[X] « r
CSA 4. w — Z 5. b — z+z
Computer
Systems 5 b — Z+W

Architecture

A

Introduction to Compiler Design — A. Pimentel — p. 76/127

X

X . .
la?l Alias Analysis
UniverSity e ———————

of
Amsterdam

- # in|BJ contains for each pointgy the set of variables to
which p could point at the beginning of blodk

» Elements ofn|B| are pairg p,a) wherep is a pointer
anda a variable, meaning thgmight point toa

out|B] is defined similarly for the end d

CSA

Computer
Systems
Architecture

-

Introduction to Compiler Design — A. Pimentel — p. 77/127

X Alias Analysis (cont’d)
Ams?erdam

Define a functioriransg such thatransg(in|B|) = out|B]

® transg is composed ofranss, for each stms of block B

s If sisp=&aorp=~&a+cincaseais an array, then
transs(S) =
(S—{(p,b)[any variable &) U {(p,a)}
s |If sis p= q=cfor pointerqand nonzero intege,
then
transs(S) = (S—{(p,b)|any variable B)

U{(p,b)l(a,b) €
Sand b is an array variabje

-

CSA s If sisp=q,then |
Compute] transs(S) = (S— {(p,b)|any variable B)
Systems U{(p7 b)|(q, b) < S}

Architecture

-

Introduction to Compiler Design — A. Pimentel — p. 78/127

X
U l§| | Alias Analysis (cont’d)
niversity -

of
sterdam

— If sassigns to pointep any other expression, then
transs(S) = S— {(p,b)|any variable B

— If sis not an assignment to a pointer, theanss(S) = S
#® Dataflow equations for alias analysis:

out|B| =transg(in|BJ)

inBl= | J out[P)
Pcpred(B)

wheretransg(S) = transg (transs,_, (- - - (transs, (S))))

CSA

Computer
Systems
Architecture

Introduction to Compiler Design — A. Pimentel — p. 79/127

>_

¢
»
N
N

\\\\;:
y

CSA

Computer
Systems
Architecture

A\

Alias dataflow example

p :=&c
[q :=&(a[2])] B

Introduction to Compiler Design — A. Pimentel — p. 80/127

| 4
<
\
N

T

CSA

Computer
Systems
Architecture

A\

Alias dataflow example

p :=&c
[q :=&(a[2])] B

Introduction to Compiler Design — A. Pimentel — p. 81/127

Alias dataflow example

{(a. / N c)}

p 1= &c
Bs [p :=&(al0]) a —&(a[2])]

{(p,a), q\ /c q,a)}

CSA [

Computer
Systems
Architecture

N

Introduction to Compiler Design — A. Pimentel — p. 82/127

Alias dataflow example

[q 1= &c] By
{(g / N o)}

o p :=&c
Bs [p :=&(al0]) [q :=&(a[2])] B

{(. a>,<q,N A), (g,a)}

[p =p+1] By
{(p,a),(g,a),(q,c)}
CSA []
p:=q Bs
Computer

Systems
Architecture

N

{(p,a),(q,0a),(q,c)}

Introduction to Compiler Design — A. Pimentel — p. 83/127

) 4
"QIT

CSA

Computer
Systems
Architecture

N

Alias dataflow example

{(p,a),(q,a),(q,¢)}

Bs [p = &(al0])

Ty

{(p’ a)? (Q7 a)7 (Qa C

p 1= &c
q = &(al2])

{(p,a), q\ /C)qa

{(p,a), (p,c),(q,a),(q,c)}

Introduction to Compiler Design — A. Pimentel — p. 84/127

) 4
"QIT

CSA

Computer
Systems
Architecture

N

Alias dataflow example

{(p,a),(q,a),(q,¢)}

Bs [p = &(al0])

Ty

{(p’ a)? (Q7 a)7 (Qa C

- e
oy N

p 1= &c
q = &(al2])

{(p,a), q\ /C)qa

{(p,a), (p,c),(q,a),(q,c)}

Introduction to Compiler Design — A. Pimentel — p. 85/127

X

%
U anl | Alias Analysis (cont’d)
niversity -

of
Amsterdam

#® How to use the alias dataflow information? Examples:

» Inreaching definitions analysis (to determupem and
kill)
— statemenkp = a generates a definition of every
variableb such thatp could point tob
— xp = akills definition of b only if b is not an array
and is the only variable could possibly point to (to
be conservative)

s Inliveness analysis (to determidef anduse)

— xp=ausesp anda. It definesb only if b is the
unique variable thap might point to (to be
conservative)

CSA — a= xpdefinesa, and represents the usewénd a

Computer : :
Sysi use of any variable thai could point to

Architecture

Introduction to Compiler Design — A. Pimentel — p. 86/127

MIPS example: CSE

-
C-code MIPS assembly (-O1)
int X,V; . ent f oo
i nt *p; f oo:
| w $2, x
int foo() { | w $3,y
int r; addu $2, $2, $3
#use
r = x +vy; | w $3,p
asmvolatile ("#use"::"r"(r)); | i $2, 0x0000000a
*p = 10; SwW $2, 0($3)
r = x +vy; | w $3, x
return r; | w $2,y
} addu $2, $3, $2
CSA j $31
Computer . end foo

Systems
Architecture

N

Introduction to Compiler Design — A. Pimentel — p. 87/127

\§§§§

dam

CSA

Computer
Systems
Architecture

N

MIPS example: CP

C-code

i nt *p;

int foo(int x, int vy)
int r;

X = 1;

asmvol atile ("#use"::

*p = 10;
r=Xx +y,;
return r;

{

MIPS assembly (-O1)

. ent
f oo:

| i

#use

| w

| i
"r"(x)); SW

addu

. end

Introduction to Compiler Design — A. Pimentel — p. 88/127

f oo
$4, 0x00000001

$3, p
$2, 0x0000000a
$2, 0($3)
$2,%$5,1
$31
f oo

X

| ¢
NS

\
i&a“‘NNN‘

\t\\\x LY

Ualrl

MIPS example: CP cont'd

C-code MIPS assembly (-O1)
i nt *p; . ent foo
f oo:
int foo(int x, int y) { | i $2, 0x00000001
int r; SW $2, 0($sp)
#use
X = 1: | w $3, p
&X; | i $2, 0x0000000a
asmvolatile ("#use"::"r"(x)); SW $2, 0($3)
xp = 10; | w $2, 0($sp)
r =X + y; addu $2, $5, $2
return r; j $31
} . end f oo

CSA

Computer
Systems
Architecture

N

Introduction to Compiler Design — A. Pimentel — p. 89/127

X Code generation

University
of
sterdam

Instruction selection

#® \Was a problem in the CISC era (e.g., lots of addressing
modes)

#® RISC instructions mean simpler instruction selection

°

However, new instruction sets introduce new, complicated
Instructions (e.g., multimedia instruction sets)

CSA

Computer
Systems
Architecture

Introduction to Compiler Design — A. Pimentel — p. 90/127

] . .
. Instruction selection methods
ms(t)erdam

N

#® Tree-based methods (IR is a tree)
s Maximal Munch
» Dynamic programming
o T[ree grammars
s Input tree treated as string using prefix notation

s Rewrite string using an LR parser and generate
Instructions as side effect of rewriting rules

#® |[fthe DAG is not a tree, then it can be partitioned into
multiple trees

CSA

Computer
Systems
Architecture

Introduction to Compiler Design — A. Pimentel — p. 91/127

] .
X Tree pattern based selection
UniverSity R

of
sterdam

°

Every target instruction is represented by a tree pattern
Such a tree pattern often has an associated cost

Instruction selection is done hying the IR tree with the
Instruction tree patterns

#® There may be many different ways an IR tree can be tiled,
depending on the instruction set

| I

CSA

Computer
Systems

Architecture _ . . .
Introduction to Compiler Design — A. Pimentel — p. 92/127

Tree pattern based selection (cont’d)

Name Effect Trees Cycles

move
/ \ _ ri temp 0

mem mem
+

| ADD rj 1 +rg VRN !
*
mem const b e const d MUL M« rj=rg / \ 1

\
AN
/ N\

|
*
+
/ \ temp 2 constc ADDI ri <—rj+c / \

const
emp 1 consta

+
n/ \ const 1
cohst

LOAD ¢ M[rj+(m mgmomm mym 3
+

i const
/ snsf 004 \

ove ove ove ove
STORE MIrj+¢ + i mfg\ mg\mfgv\ mfgv\ 3
u + const
/kns‘r Coé\

MOVEM M[r;] ¢ MIrj] ?702 6
mem mem

CSA

Computer
Systems
Architecture

N

Introduction to Compiler Design — A. Pimentel — p. 93/127

Tree pattern based selection (cont’d)

CSA

Computer
Systems
Architecture

N

Name Effect Trees Cycles
— ri temp 0
ADD rj ¢ rj N 1

*

MUL rj 1 sy VAN 1
ADDI fj < rj+cC SN N const 1
cons cons
LOAD f ¢ M[rj+(T mgmomm mym 3

/+ +\ const
&nsf 004
ove ove ove ove
STORE M[rj +¢] i mgv\ mg\mfgv\ mfgv\ 3
W + const
/ gnsf 004 \
6

MOVEM M[r] + MIrj]

ove
mém %m

Introduction to Compiler Design — A. Pimentel — p. 94/127

Tree pattern based selection (cont’d)

CSA

Computer
Systems
Architecture

N

Name Effect Trees Cycles
— ri temp 0
ADD rj ¢ rj N 1

*

MUL rj 1 sy VAN 1
ADDI fj < rj+cC SN N const 1
cons cons
LOAD f ¢ M[rj+(T mgmomm mym 3

/+ +\ const
&nsf 004
ove ove ove ove
STORE M[rj +¢] i mgv\ mg\mfgv\ mfgv\ 3
W + const
/ gnsf 004 \
6

MOVEM M[r] + MIrj]

ove
mém %m

Introduction to Compiler Design — A. Pimentel — p. 95/127

Tree pattern based selection (cont’d)

CSA

Computer
Systems
Architecture

N

Name Effect Trees Cycleg
— ri temp 0
ADD rj ¢ rj N 1
*
MUL rj 1 sy VAN 1
ADDI fj < rj+cC SN LN const 1
const cohst
LOAD fj ¢ M[rj+(T memo Ty mym 3
/+ +\ const
&nsf 004
ove ove ove ove
STORE M[rj +¢] i mgv\ mfz\mfz\ mfgv\ 3
W + const
/ gnsf 004 \
6

MOVEM M[r] + MIrj]

ove
mém %m

Introduction to Compiler Design — A. Pimentel — p. 96/127

Tiling examples

CSA

Computer
Systems
Architecture

N

X

x Optimal and optimum tilings
UniverSity L ———————————————

of
Amsterdam

\ The cost of a tiling is the sum of the costs of the tree patterns

#® An optimal tiling iIs one where no two adjacent tiles can be
combined into a single tile of lower cost

#® An optimum tilingis a tiling with lowest possible cost
An optimum tiling is also optimal, but not vice-versa

CSA

Computer
Systems
Architecture

-

Introduction to Compiler Design — A. Pimentel — p. 98/127

1

2. ADDI r2z «< r0 + a

3. ML rie < tl * r2
4: LOAD r2 <« Mrl]

6: ADD r3 < t2 + c¢

7: LOAD r3 <« Mr3 + d]
8: STORE Mr2 + b] < r3

CSA

Computer
Systems
Architecture

N

O

ADDI
IMUL
LGAD
ADDI
ADDI
ADDI
MOVEM

Optimal Tilings

rz < r0 + a
rl < tl + a
r2 « Mrl]

r3 < r2 + 0
r2 <« t2 + c
r2 < r2 +d
Mr3 < Mr2]

Introduction to Compiler Design — A. Pimentel — p. 99/127

Optimum tiling

2: ADDI r2 < r0 + a (1) 2: ADDI r2 <~ r0 + a (1)
3: MJL rli < tl = r2 (1) 3: ML rl < tl = r2 (1)
4: LOAD r2 « Mrlij (3) 4: LOAD r2 < Mr1ij (3)
6: ADDI r3 « t2 +c (1) 5: ADDI r3 < r2 +m5o (1)
7. LOAD r3 < Mr3 +d] (3) 7: ADD r2 < t2 +c (1)
CSA 8 STORE Mr2 +b] < r3 (3) 8: ADD r2 <~ r2 +d (1)
Computer 8: MOVEM Mr3] «+ Mr2] (6)
Systems total 12 total 14

Architecture

A

Introduction to Compiler Design — A. Pimentel — p. 100/127

% Maximal Munch

UnlverS|ty

msterdam

-

Maximal Munch is an algorithm for optimal tiling
» Start at the root of the tree
» Find the largest pattern that fits

o Cover the root node plus the other nodes in the patterr
the instruction corresponding to the tile is generated

» Do the same for the resulting subtrees
Maximal Munch generates the instructions in reverse orde

CSA

Computer
Systems

Introduction to Compiler Design — A. Pimentel — p. 101/127

X

] . .
x Dynamic programming
Ams?erdam

#® Dynamic programming is a technique for finding optimum
solutions
s Bottom up approach
s For each noda the costs of all children are found
recursively.
o Then the minimum cost for nodeis determined.

® After cost assignment of the entire tree, instruction
emission follows:
o Em ssi on(node n): for each leavel of the tile
selected at node, performEm ssi on(l;) . Then emit
CSA the instruction matched at node

-

Computer
Systems

Architecture _ . . .
Introduction to Compiler Design — A. Pimentel — p. 102/127

X Register allocation...a graph coloring problem
Ams(t)erdam

#® First do instruction selection assuming an infinite number

of symbolic registers
Build aninterference graph

o Each node is a symbolic register

» Two nodes are connected when they are live at the

same time
#® Color the interference graph
o Connected nodes cannot have the same color

s Minimize the number of colors (maximum is the
number of actual registers)

CSA

Computer
Systems
Architecture

Introduction to Compiler Design — A. Pimentel — p. 103/127

|x|
x Coloring by simplification

msterdam

N

Simplify interference grapks using heuristic method
(K-coloring a graph is NP-complete)
o Find a nodenwith less tharK neighbors

s Remove noden and its edges fror, resulting inG'.
Storemon a stack

s Color the grapiG’

s GraphG can be colored sincm has less thaK
neighbors

CSA

Computer
Systems
Architecture

Introduction to Compiler Design — A. Pimentel — p. 104/127

X

X . . e L
La?' Coloring by simplification (cont’d)
Univei;rsity —————————————————————————
Ams?erdam
o Spill
\ s If a node with less thaK neigbors cannot be found in
G

s Mark a noden to be spilled, remova and its edges
from G (and staclkn) and continue simplification

® Select
» Assign colors by popping the stack

s Arriving at a spill node, check whether it can be
colored. If not:
s The variable represented by this node will reside in
memory (i.e. is spilled to memory)
s Actual spill code is inserted in the program

CSA

Computer
Systems
Architecture

Introduction to Compiler Design — A. Pimentel — p. 105/127

i .
% Coalescing
s(t)erdam

Ifthere is no interference edge between the source and
destination of a move, the move is redundant

#® Removing the move and joining the nodes is called
coalescing

Coalescing increases the degree of a node

A graph that wa¥ colorable before coalescing might not
be afterwards

| I

CSA

Computer
Systems

Architecture _ . . .
Introduction to Compiler Design — A. Pimentel — p. 106/127

X

]

X Sketch of the algorithm with coalescing
of
Amsterdam

#® Label move-related nodes in interference graph

#® While interference graph is nonempty
s Simplify, using non-move-related nodes

» Coalesce move-related nodes using conservative

coalescing
s Coalesce only when the resulting node has less tha

K neighbors with a significant degree
» No simplifications/coalescings: “freeze” a
move-related node of a low degree do not consider
Its moves for coalescing anymore

ey ® Select
Systems

Architecture _ . . .
Introduction to Compiler Design — A. Pimentel — p. 107/127

-

Register allocation: an example

Live in: k,j

g = mem[j+12]
h=k-1
f=g*h

e = mem[j+8] _ .
m = mem|[j+16] J K b m

b = mem(f]
c=e+8 \
d=c

k=m+4 d
J=b

goto d
Live out: d,k,j h g

® Assume a 4-coloring = 4)
CSA

Compurm T Simplify by removing and stacking nodes wikh4
Systems neighbors (g,h,k,f,e,m)

Architecture

A

Introduction to Compiler Design — A. Pimentel — p. 108/127

X

| ¢
NS

\
\V/ “\\

CSA

Computer
Systems
Architecture

N

Register allocation: an example (cont’d)

® After removing and stacking the nodes g,h,k,f,e,m:

i&b

@] |bsssssad

After simplification

® Coalesce now and simplify again

d&c

After coalescing

Introduction to Compiler Design — A. Pimentel — p. 109/127

CSA

Computer
Systems
Architecture

N

Register allocation: an example (cont’'d)

Stacked elements:

d&c
j&b

oSSKQ x o

Introduction to Compiler Design — A. Pimentel — p. 110/127

Register allocation: an example (cont’d)

Stacked elementS.U 4 registers available: m - -

m
e
f

k
g
h

h g ETC., ETC.

&SN No spills are required and both moves were optimized away

Computer
Systems
Architecture

A

Introduction to Compiler Design — A. Pimentel — p. 111/127

X
&3 . .
X Instruction scheduling

Univefrsity
0
Amsterdam

#® Increase ILP (e.g., by avoiding pipeline hazards)
s Essential for VLIW processors
#® Scheduling at basic block levelst scheduling
s System resources represented by mad@sources<
Time
» Position in matrix is true or false, indicating whether
the resource is in use at that time

» Instructions represented by matrideéssources<
Instruction duration

» Using dependency analysis, the schedule is made by
CSA fitting instructions as tight as possible

Computer
Systems
Architecture _ . . .
\ Introduction to Compiler Design — A. Pimentel — p. 112/127

X
) L’?I List scheduling (cont’'d)
nlverS|ty A I I I I

msterdam

-

Finding optimal schedule is NP-complete problesuse
heuristics, e.g. at an operation conflict schedule the most
time-critical first

#® For a VLIW processor, themaximuminstruction duration
IS used for scheduling> painful for memory loads!

#® Basic blocks usually are small (5 operations on the averag
= benefit of scheduling limitees> Trace Scheduling

CSA

Computer
Systems

Introduction to Compiler Design — A. Pimentel — p. 113/127

] .

X Trace scheduling
Univei;rsity ————————————————
Ams(t)erdam

#® Schedule instructions over code sections larger than basic
blocks, so-calledraces

-

® Atrace is a series of basic blocks that does not extend
beyond loop boundaries

°

Apply list scheduling to whole trace

Scheduling code inside a trace can move code beyond ba
block boundariess> compensate this by adding code to the
off-trace edges

°

CSA

Computer
Systems
Architecture

Introduction to Compiler Design — A. Pimentel — p. 114/127

CSA

Computer
Systems
Architecture

N

Trace scheduling (cont’d)

Introduction to Compiler Design — A. Pimentel — p. 115/127

Trace scheduling (cont’d)

Operation to be moved
below Branch in

t
Basic Block | Op A/ race Branch Copied code

in Trace Branch

e
Op A
_ OpC Basic Block | op A OpC
Basic Block in Trace
in Trace | OP B OpB
ek ook
asic Bloc @
in Trace Operation to be moved 4 Moved code only
Branch | ziove Branch OpA allowed if no side-
Branch | effects in Off trace
code

¥ OpC -
Op A OpC
OpB Off Trace OpB
In Trace (b)

Op A OpC Op
CSA — =
Vg .
| Operation to be moved
CsompUter OpB <« bepfore OpA ’—' Copied code in
ystems In Trace off Trace Basic Block

(©)

Architecture
N

Introduction to Compiler Design — A. Pimentel — p. 116/127

] : ,

X Trace scheduling (cont’d)
Univefrsity e ————
Ams(t)erdam

Trace selection

® Because of the code copies, the trace that is most often
executed has to be scheduled first

#® A longer trace brings more opportunities for ILP (loop
unrolling!)

#® Use heuristics about how often a basic block is executed
and which paths to and from a block have the most chancc
of being taken (e.g. inner-loops) or use profiling (input
dependent)

-

CSA

Computer
Systems
Architecture

Introduction to Compiler Design — A. Pimentel — p. 117/127

%
] .
X Other methods to increase ILP

Univei;rsity

0
Amsterdam

-

Loop unrolling

#® Technigue for increasing the amount of code available
Inside a loop: make several copies of the loop body

#® Reduces loop control overhead and increases ILP (more
Instructions to schedule)

#® When using trace scheduling this results in longer traces
and thus more opportunities for better schedules

#® In general, the more copies, the better the job the schedul
can do but the gain becomes minimal

CSA

Computer
Systems
Architecture

Introduction to Compiler Design — A. Pimentel — p. 118/127

»”
»

b
RaJ

‘\\\

. Loop unrolling (cont’d)

'SITV

Example
for (i =0; i <100; i += 4) {

ali] = a[i] + b[i];
for (i =0; i < 100; i++) a[i+1] = a[i+1] + Db[i+1];
ali] = a[i] + b[i]: becomes 1i+2] = a[i+2] + b[i+2]:
a[i+3] = a[i+3] + b[i+3]:
}

CSA

Computer
Systems
Architecture

N

Introduction to Compiler Design — A. Pimentel — p. 119/127

x
X Software pipelining

University
of
Amsterdam

\ #® Also atechnique for using the parallelism available in
several loop iterations

Software pipelining simulates a hardware pipeline, hence
Its name

Iterattion O

Iteration 1

Iteration 2

Iteration 3

Iteration 4

Software
pipelined
iteration

gy * There are three phases: Prologue, Steady state and Epilot

Computer
Systems
Architecture

-

Introduction to Compiler Design — A. Pimentel — p. 120/127

CSA

Computer
Systems
Architecture

N

Software pipelining (cont’'d)

Prologue

Steady state |

Epilogue

ADDD F4,F0,F2
SD 0(R1),F4
SBGEZ R1, Loop 1 Loop control

\/

Loop: LD FO,0(R1)
Body

T0 LD
T1 : LD
T2 ADDD : LD

T... Loop: SD ADDD : LD SBGEZ Loop

n SO ADDD
Tn+l SD ADDD
Tn+2 SD

Introduction to Compiler Design — A. Pimentel — p. 121/127

X Modulo scheduling
Unlver5|ty e ———
Amsterdam

#® Scheduling multiple loop iterations using software
pipelining can create false dependencies between vasiable

used in different iterations

#® Renaming the variables used in different iterations isecall
modulo scheduling

#® When usingn variables for representing the same variable,
the steady state of the loop has to be unrofi¢nes

-

CSA

Computer
Systems

Introduction to Compiler Design — A. Pimentel — p. 122/127

Compiler optimizations for cache performance

x
]
.x.

ol

Merging arrays (better spatial locality)

Int val[SIZE], struct merge {
Int key[SIZE]; = intval, key; };

struct merge m_array[SIZE]

e

Loop interchange

e

Loop fusion and fission

°

Blocking (better temporal locality)

CSA

Computer
Systems
Architecture

A

Introduction to Compiler Design — A. Pimentel — p. 123/127

X

| ¢
NS

\
\V/ “\\

Loop interchange

#® Exchanging of nested loops to change the memory footpri
o Better spatial locality

for (i = 0; i < 50; i++) for (j =0; j < 100; j++)
for (j =0; j < 100; j++) becomes for (i =0; i < 50; i++4)
alj]1[i] =bjIli] = cljIli]; alj]1[i] =DbljIli] = c[jlli];

CSA

Computer
Systems
Architecture

N

Introduction to Compiler Design — A. Pimentel — p. 124/127

X

3

Jnive |ty
N

Loop fusion

#® Fuse multiple loops together
o Less loop control
o Bigger basic blocks (scheduling)
o Possibly better temporal locality

for (i = 0; i < n; i++) for (i =0; i <n; i++) {
c[i] = a[i] + b[i]; c[i] =a[i] + b[i];

o B R [y SSeE d[i] = a[i] * e[i]:
dij] =a[j] ~ e[jl; }

CSA

Computer
Systems
Architecture

A

Introduction to Compiler Design — A. Pimentel — p. 125/127

X

La?' Loop fission

efrsity

ferdam

X

N\

Split aloop with independent statements into multiple Bop
o Enables other transformations (e.g. vectorization)
» Results in smaller cache footprint (better temporal

locality)
for (i =0; i <n; i++) {
for (i =0; i <n; i++) { a[i] =Db[i] + c[i];
af[i] =Db[i] + c[i]; }
d[i] = e[i] * f[i]: L R R
} dii] =-e[i] = f[i];
}

CSA

Computer
Systems
Architecture

-

Introduction to Compiler Design — A. Pimentel — p. 126/127

X
]
X

niversity
of
Amsterdam

Blocking

Perform computations on sub-matricesoCks, e.g. when
multiple matrices are accessed both row by row and column by

column

Matrix multiplication x = y*z
X j Y K Z

for (i=0; i < N; i++)

r=0;
for (k = 0; k < N; k++) { i i k
r=r+ y[il[k]*z[K][i];
17
X[y =r;
%
|| not touched older access Bl recent access
Blocking
X j Y Kk Z]
CSA | | ;
Computer
Systems
Architecture _ . . .
Introduction to Compiler Design — A. Pimentel — p. 127/127

-

	Compilers: Organization Revisited
	Intermediate Representation (IR)
	Partitioning into basic blocks
	Partitioning into basic blocks (cont'd)
	Intermediate Representation (cont'd)
	Directed Acyclic Graph
	DAG creation
	DAG creation (cont'd)
	DAG example
	Local optimizations
	Transformations on basic blocks
	Transformations on basic blocks (cont'd)
	Common subexpression elimination
	Constant folding
	Copy propagation
	Dead-code elimination
	Temporary variable renaming
	Algebraic transformations
	Machine dependent eliminations/transformations
	Other sources of optimizations
	Loop optimizations
	Loop optimizations (cont'd)
	Loop optimizations (cont'd)
	Loop optimizations (cont'd)
	Finding loops in flow graphs
	Dominator tree example
	Natural loops
	Finding natural loop of $n
ightarrow d$
	Natural loops (cont'd)
	Our example revisited
	Our example revisited

	Reducible flow graphs
	Reducible flow graphs (cont'd)
	Dataflow abstraction
	Abstraction for reaching definitions
	Abstraction for constant folding
	Dataflow analysis example
	Dataflow analysis
	Reaching definitions
	Reaching definitions (cont'd)
	Dataflow analysis for reaching definitions
	The building blocks
	Dealing with loops
	Dealing with loops (cont'd)
	Reaching definitions example
	Iterative solutions
	Iterative algorithm for reaching definitions
	Reaching definitions: an example
	Available expressions
	Available expression: example
	Input sets for Available expressions
	Available expressions (cont'd)
	Available expressions (cont'd)
	Liveness analysis
	Dataflow for liveness
	Dataflow equations for liveness
	Data flow analysis summary
	Algorithms for global optimizations
	GCSE example
	Copy propagation
	Copy propagation (cont'd)
	Copy propagation (cont'd)
	Copy propagation example
	Detection of loop-invariant computations
	Code motion
	Code motion (cont'd)
	Detection of induction variables
	Detection of induction variables (cont'd)
	Strength reduction for induction variables
	Strength reduction for induction variables (cont'd)
	Elimination of induction variables
	Introducing Aliases
	Alias analysis example
	Alias example
	Alias example
	Alias example
	Alias Analysis
	Alias Analysis (cont'd)
	Alias Analysis (cont'd)
	Alias dataflow example
	Alias dataflow example
	Alias dataflow example
	Alias dataflow example
	Alias dataflow example
	Alias dataflow example
	Alias Analysis (cont'd)
	MIPS example: CSE
	MIPS example: CP
	MIPS example: CP cont'd
	Code generation
	Instruction selection methods
	Tree pattern based selection
	Tree pattern based selection (cont'd)
	Tree pattern based selection (cont'd)
	Tree pattern based selection (cont'd)
	Tree pattern based selection (cont'd)
	Tiling examples
	Optimal and optimum tilings
	Optimal Tilings
	Optimum tiling
	Maximal Munch
	Dynamic programming
	Register allocation...a graph coloring problem
	Coloring by simplification
	Coloring by simplification (cont'd)
	Coalescing
	Sketch of the algorithm with coalescing
	Register allocation: an example
	Register allocation: an example (cont'd)
	Register allocation: an example (cont'd)
	Register allocation: an example (cont'd)
	Instruction scheduling
	List scheduling (cont'd)
	Trace scheduling
	Trace scheduling (cont'd)
	Trace scheduling (cont'd)
	Trace scheduling (cont'd)
	Other methods to increase ILP
	Loop unrolling (cont'd)
	Software pipelining
	Software pipelining (cont'd)
	Modulo scheduling
	Compiler optimizations for cache performance
	Loop interchange
	Loop fusion
	Loop fission
	Blocking

