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Compilers: Organization Revisited

IRSource Machine
Code

IR
Frontend BackendOptimizer

Optimizer
Independent part of compiler
Different optimizations possible
IR to IR translation
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Intermediate Representation (IR)

Flow graph
Nodes arebasic blocks

Basic blocks are single entry and single exit
Edges represent control-flow

Abstract Machine Code
Including the notion of functions and procedures

Symbol table(s) keep track of scope and binding
information about names
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Partitioning into basic blocks

1. Determine the leaders, which are:
The first statement
Any statement that is the target of a jump
Any statement that immediately follows a jump

2. For each leader its basic block consists of the leader and all
statements up to but not including the next leader
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Partitioning into basic blocks (cont’d)

d1 : a = 1 B1

if read() <= 0 goto B4 B2

d2 : b = a

d3 : a = 243

goto B2

B3

B4
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Intermediate Representation (cont’d)

Structure within a basic block:

Abstract Syntax Tree (AST)
Leaves are labeled by variable names or constants
Interior nodes are labeled by an operator

Directed Acyclic Graph (DAG)

C-like

3 address statements (like we have already seen)

Introduction to Compiler Design – A. Pimentel – p. 6/127



University
of

Amsterdam

CSACSA
Computer
Systems

Architecture

Directed Acyclic Graph

Like ASTs:
Leaves are labeled by variable names or constants
Interior nodes are labeled by an operator

Nodes can have variable names attached that contain the
value of that expression

Common subexpressionsare represented by multiple edges
to the same expression
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DAG creation

Suppose the following three address statements:

1. x = y op z

2. x = op y

3. x = y

i f (i <= 20) ... will be treated like case 1 withx undefined
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DAG creation (cont’d)

If node(y) is undefined, create leaf labeledy, same forz if
applicable

Find noden labeledop with childrennode(y) andnode(z)
if applicable. When not found, create noden. In case 3 letn
benode(y)

Makenode(x) point ton and update the attached identifiers
for x

Introduction to Compiler Design – A. Pimentel – p. 9/127



University
of

Amsterdam

CSACSA
Computer
Systems

Architecture

DAG example

1 t1 = 4 * i

2 t2 = a[t1]

3 t3 = 4 * i

4 t4 = b[t3]

5 t5 = t2 * t4

6 t6 = prod + t5

7 prod = t6

8 t7 = i + 1

9 i = t7

10 if (i <= 20) goto 1

[ ] [ ]

*

* +

+

<=

prod

t6, prod

t5

t2 t4

t1, t3 t7, i
20

1i4ba

Introduction to Compiler Design – A. Pimentel – p. 10/127



University
of

Amsterdam

CSACSA
Computer
Systems

Architecture

Local optimizations

On basic blocks in the intermediate representation
Machine independent optimizations

As a post code-generation step (often calledpeephole
optimization)

On a small “instruction window” (often a basic block)
Includes machine specific optimizations
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Transformations on basic blocks

Examples

Function-preserving transformations
Common subexpression elimination
Constant folding
Copy propagation
Dead-code elimination
Temporary variable renaming
Interchange of independent statements
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Transformations on basic blocks (cont’d)

Algebraic transformations

Machine dependent eliminations/transformations
Removal of redundant loads/stores
Use of machine idioms
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Common subexpression elimination

If the same expression is computed more than once it is
called a common subexpression

If the result of the expression is stored, we don’t have to
recompute it

Moving to a DAG as IR, common subexpressions are
automatically detected!

x = a+b x = a+b

... ⇒ ...

y = a+b y = x
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Constant folding

Compute constant expression at compile time

May require some emulation support

x = 3+5 x = 8

... ⇒ ...

y = x∗2 y = 16
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Copy propagation

Propagate original values when copied

Target for dead-code elimination

x = y x = y

... ⇒ ...

z = x∗2 z = y∗2
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Dead-code elimination

A variablex is dead at a statement if it is not used after that
statement

An assignmentx = y+ z wherex is dead can be safely
eliminated

Requires live-variable analysis (discussed later on)
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Temporary variable renaming

t1= a+b t1= a+b

t2= t1∗2 t2= t1∗2

... ⇒ ...

t1= d− e t3= d− e

c = t1+1 c = t3+1

If each statement that defines a temporary defines a new
temporary, then the basic block is innormal-form

Makes some optimizations at BB level a lot simpler
(e.g. common subexpression elimination, copy
propagation, etc.)
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Algebraic transformations

There are many possible algebraic transformations

Usually only the common ones are implemented

x = x+0

x = x∗1

x = x∗2⇒ x = x << 1

x = x2⇒ x = x∗ x
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Machine dependent eliminations/transformations

Removal of redundant loads/stores
1 mov R0, a

2 mov a, R0 // can be removed

Removal of redundant jumps, for example

1 beq ...,$Lx bne ...,$Ly

2 j $Ly ⇒ $Lx: ...

3 $Lx: ...

Use of machine idioms, e.g.,
Auto increment/decrement addressing modes
SIMD instructions

Etc., etc. (see practical assignment)

Introduction to Compiler Design – A. Pimentel – p. 20/127



University
of

Amsterdam

CSACSA
Computer
Systems

Architecture

Other sources of optimizations

Global optimizations
Global common subexpression elimination
Global constant folding
Global copy propagation, etc.

Loop optimizations

They all need some dataflow analysis on the flow graph
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Loop optimizations

Code motion

Decrease amount of code inside loop

Take a loop-invariant expression and place it before the
loop

while (i <= limit−2) ⇒ t = limit−2

while (i <= t)
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Loop optimizations (cont’d)

Induction variable elimination

Variables that are locked to the iteration of the loop are
calledinduction variables

Example: infor (i = 0; i < 10; i++) i is an
induction variable

Loops can contain more than one induction variable, for
example, hidden in an array lookup computation

Often, we can eliminate these extra induction variables
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Loop optimizations (cont’d)

Strength reduction

Strength reduction is the replacement of expensive
operations by cheaper ones (algebraic transformation)

Its use is not limited to loops but can be helpful for
induction variable elimination

i = i+1 i = i+1

t1= i∗4 ⇒ t1= t1+4

t2= a[t1] t2= a[t1]

if ( i < 10) goto top if (i < 10) goto top
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Loop optimizations (cont’d)

Induction variable elimination (2)

Note that in the previous strength reduction we have to
initialize t1 before the loop

After such strength reductions we can eliminate an
induction variable

i = i+1 t1= t1+4

t1= t1+4 ⇒ t2= a[t1]

t2= a[t1] if ( t1< 40) goto top

if ( i < 10) goto top
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Finding loops in flow graphs

Dominator relation

Node A dominates node B if all paths to node B go through
node A

A node always dominates itself

We can construct a tree using this relation: the Dominator tree
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Dominator tree example
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Flow graph Dominator tree
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Natural loops

A loop has a single entry point,the header, which
dominates the loop

There must be a path back to the header

Loops can be found by searching for edges of which their
heads dominate their tails, called thebackedges

Given a backedgen→ d, thenatural loopis d plus the
nodes that can reachn without going throughd
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Finding natural loop of n→ d

procedure insert(m) {
if (not m ∈ loop) {

loop = loop∪m
push(m)

}
}

stack = /0
loop = {d}
insert(n)
while (stack 6= /0) {

m = pop()
for (p ∈ pred(m)) insert(p)

}
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Natural loops (cont’d)

When two backedges go to the same header node, we may
join the resulting loops

When we consider two natural loops, they are either
completely disjoint or one is nested inside the other

The nested loop is called aninner loop

A program spends most of its time inside loops, so loops
are a target for optimizations. This especially holds for
inner loops!

Introduction to Compiler Design – A. Pimentel – p. 30/127



University
of

Amsterdam

CSACSA
Computer
Systems

Architecture

Our example revisited
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Flow graph
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Our example revisited

1
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Flow graph

Natural loops:

    1. backedge 10 −> 7:  {7,8,10}  (the inner loop)
    2. backedge 7 −> 4: {4,5,6,7,8,10}
    3. backedges 4 −> 3 and 8 −> 3: {3,4,5,6,7,8,10}
    4. backedge 9 −> 1: the entire flow graph
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Reducible flow graphs

A flow graph is reducible when the edges can be partitioned
into forward edges and backedges

The forward edges must form an acyclic graph in which
every node can be reached from the initial node

Exclusive use of structured control-flow statements such as
if-then-else, while andbreak produces reducible
control-flow

Irreducible control-flow can create loops that cannot be
optimized
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Reducible flow graphs (cont’d)

Irreducible control-flow graphs can always be made
reducible

This usually involves some duplication of code

a

cb

a

cb

c’
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Dataflow abstraction

Unbounded number of execution paths

skip loop, 1 iteration etc..

So abstract details

d1 : a = 1 B1

if read() <= 0 goto B4 B2

d2 : b = a

d3 : a = 243

goto B2

B3

B4
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Abstraction for reaching definitions

Possible values and definitions of variablea at pointp.

Abstraction:
Values ofa at pointp: {1,243}
Definitions reachingp: { d1,d3}

d1 : a = 1 B1

if read() <= 0 goto B4 B2

d2 : b = a

d3 : a = 243

goto B2

B3

B4

p
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Abstraction for constant folding

Check if:
Variablex is reached by one defintion
Definition assigns a constant tox

Abstraction:a is not a constant atp (NAC)

d1 : a = 1 B1

if read() <= 0 goto B4 B2

d2 : b = a

d3 : a = 243

goto B2

B3

B4

p
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Dataflow analysis example
int foo(int x, int y) {

if (x)

y += 2;

else

y += 3;

return y;

}

No dataflow analysis (-O0)

sw $4,8($fp) # x

sw $5,12($fp) # y

lw $2,8($fp)

beq $2,$0,$L2

lw $2,12($fp)

addu $3,$2,2

sw $3,12($fp)

j $L3

$L2: lw $2,12($fp)

addu $3,$2,3

sw $3,12($fp)

$L3: lw $2,12($fp) # return val

With dataflow analysis (-O1)

move $2,$5 # y

beq $4,$0,$L14

addu $2,$2,2

j $L15

$L14: addu $2,$2,3 # return val

$L15: j $31
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Dataflow analysis

Data analysis is needed for global code optimization, e.g.:
Is a variable live on exit from a block? Does a
definition reach a certain point in the code?

Dataflow equationsare used to collect dataflow information
A typical dataflow equation has the form
out[S] = gen[S]∪ (in[S]− kill[S])

The notion of generation and killing depends on the
dataflow analysis problem to be solved

Let’s first considerReaching Definitionsanalysis for
structured programs
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Reaching definitions

A definition of a variablex is a statement that assigns or
may assign a value tox

An assignment tox is anunambiguousdefinition ofx

An ambiguousassignment tox can be an assignment to a
pointer or a function call wherex is passed by reference
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Reaching definitions (cont’d)

Whenx is defined, we say the definition is generated

An unambiguous definition ofx kills all other definitions of
x

When all definitions ofx are the same at a certain point, we
can use this information to do some optimizations

Example: all definitions ofx definex to be 1. Now, by
performing constant folding, we can do strength reduction
if x is used inz = y∗ x
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Dataflow analysis for reaching definitions

During dataflow analysis we have to examine every path
that can be taken to see which definitions reach a point in
the code

Sometimes a certain path will never be taken, even if it is
part of the flow graph

Since it is undecidable whether a path can be taken, we
simply examine all paths

This won’t cause false assumptions to be made for the
code: it is a conservative simplification

It merely causes optimizations not to be performed
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The building blocks

S

S

S

S

d: a=b+c

S1

S2

S1 S2

S1

gen[S]={d}

kill[S]= Da−{d}

out[S]=gen[S]∪(in[S]-kill[S])

gen[S]=gen[S2]∪(gen[S1]-kill[S2])

kill[S]=kill[S2] ∪(kill[S1]-gen[S2])

in[S1]=in[S]

in[S2]=out[S1]

out[S]=out[S2]

gen[S]=gen[S1]∪gen[S2]

kill[S]=kill[S1] ∩kill[S2]

in[S1]=in[S2]=in[S]

out[S]=out[S1]∪out[S2]

gen[S]=gen[S1]

kill[S]=kill[S1]

in[S1]=in[S]∪gen[S1]

out[S]=out[S1]
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Dealing with loops

The in-set to the code inside the loop is the in-set of the
loop plus the out-set of the loop:in[S1] = in[S]∪out[S1]

The out-set of the loop is the out-set of the code inside:
out[S] = out[S1]

Fortunately, we can also computeout[S1] in terms ofin[S1]:
out[S1] = gen[S1]∪ (in[S1]− kill[S1])
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Dealing with loops (cont’d)

I = in[S1],O = out[S1],J = in[S],G = gen[S1] andK = kill[S1]

I = J∪O

O = G∪ (I−K)

AssumeO = /0, thenI1 = J

O1 = G∪ (I1−K) = G∪ (J−K)

I2 = J∪O1 = J∪G∪ (J−K) = J∪G

O2 = G∪ (I2−K) = G∪ (J∪G−K) = G∪ (J−K)

O1 = O2 so in[S1] = in[S]∪gen[S1] andout[S] = out[S1]
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Reaching definitions example

d1 i = m - 1
d2 j = n
d3 a = u1

do
d4 i = i + 1
d5 j = j - 1

if (e1)
d6 a = u2

else
d7 i = u3

while (e2)

001 1111
110 0000

;
000 1111
111 0000

;
000 1101
110 0000

100 0000
000 1001

d1 d2010 0000
000 0100

d3001 0000
000 0010

do
000 1111
110 0000

;

;

d4

110 0000
000 1111

000 1100
110 0001

000 1000
100 0001 d5

000 0100
010 0000

if

e1

000 0011
000 0000

d6 d7

000 0010 100 1000
000 0001

001 0000

e2

;

In reality, dataflow analysis is often performed at the granularity
of basic blocks rather than statements
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Iterative solutions

Programs in general need not be made up out of structured
control-flow statements

We can do dataflow analysis on these programs using an
iterative algorithm

The equations (at basic block level) for reaching definitions
are:

in[B] =
⋃

P∈pred(B)

out[P]

out[B] = gen[B]∪ (in[B]− kill[B])
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Iterative algorithm for reaching definitions

for (each block B)out[B] = gen[B]

do {

change= false

for (each block B) {

in[B] =
⋃

P∈pred(B)

out[P]

oldout= out[B]

out[B] = gen[B]∪ (in[B]− kill[B])

if (out[B] 6= oldout) change= true

}

} while (change)
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Reaching definitions: an example

d1: i = m −1
d2: j = n
d3: a = u1

d4: i = i + 1
d5: j = j − 1

d6: a = u2

d7: i = u3

B3

B1

B2

B4

gen[B1] = {d1,d2,d3}
kill[B1] = {d4,d5,d6,d7}

kill[B2] = {d1,d2,d7}
gen[B2] = {d4,d5}

gen[B3] = {d6}
kill[B3] = {d3}

gen[B4] = {d7}
kill[B4] = {d1,d4}

Block B Initial Pass 1 Pass 2

in[B] out[B] in[B] out[B] in[B] out[B]

B1 000 0000 111 0000 000 0000 111 0000 000 0000 111 0000

B2 000 0000 000 1100 111 0011 001 1110 111 1111 001 1110

B3 000 0000 000 0010 001 1110 000 1110 001 1110 000 1110

B4 000 0000 000 0001 001 1110 001 0111 001 1110 001 0111
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Available expressions

An expressione is available at a pointp if every path from
the initial node top evaluatese, and the variables used bye
are not changed after the last evaluations

An available expressione is killed if one of the variables
used bye is assigned to

An available expressione is generated if it is evaluated

Note that if an expressione is assigned to a variable used
by e, this expression will not be generated
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Available expression: example

Instruction sequence Available expressions

/0
a = b + c

{b+ c}

b = a - d

{a−d}

c = b + c

{a−d}

d = a - d

/0
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Input sets for Available expressions

e_gen set for B:
Loop through instructions in B in order
For every instructioni: x = y + z

Add expressiony + z to e_gen set
Remove all expressions containing x from e_gen set

e_kill set for B
All expressions containing variables defined in B.
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Available expressions (cont’d)

Available expressions are mainly used to find common
subexpressions

t1 = 4 * i

?

t2 = 4 * i

B2

B3

B1 t1 = 4 * i

t2 = 4 * i

t0 = 4 * i
i = ...

B1

B2

B3
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Available expressions (cont’d)

Dataflow equations:

out[B] = e_gen[B]∪ (in[B]− e_kill[B])

in[B] =
⋂

P∈pred(B)

out[P] for B not initial

in[B1] = /0 where B1 is the initial block

The confluence operator is intersection instead of the union!
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Liveness analysis

A variable is live at a certain point in the code if it holds a
value that may be needed in the future

Solve backwards:
Find use of a variable
This variable is live between statements that have
found use as next statement
Recurse until you find a definition of the variable
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Dataflow for liveness

Using the setsuse[B] andde f [B]

de f [B] is the set of variables assigned values inB prior
to any use of that variable inB
use[B] is the set of variables whose values may be used
in B prior to any definition of the variable

A variable comes live into a block (inin[B]), if it is either
used before redefinition or it is live coming out of the block
and is not redefined in the block

A variable comes live out of a block (inout[B]) if and only
if it is live coming into one of its successors
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Dataflow equations for liveness

in[B] = use[B]∪ (out[B]−de f [B])

out[B] =
⋃

S∈succ[B]

in[S]

Note the relation between reaching-definitions equations:
the roles ofin andout are interchanged
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Data flow analysis summary

Reaching definitions Available expressions Live variables

Domain Set of definitions Set of expressions Set of variables

Direction Forward Forward Backwards

Transfer function gen[B]∪ (x− kill[B]) e_gen[B]∪ (x− e_kill[B]) use[B]∪ (x−de f [B])

Boundary OUT [entry] = /0 OUT [entry] = /0 IN[exit] = /0

Meet operator ∪ ∪ ∩

Initialize OUT [B] = /0 OUT [B] =U IN[B] = /0

Introduction to Compiler Design – A. Pimentel – p. 57/127



University
of

Amsterdam

CSACSA
Computer
Systems

Architecture

Algorithms for global optimizations

Global common subexpression elimination

First calculate the sets of available expressions

For every statements of the formx = y+ z wherey+ z is
available do the following

Search backwards in the graph for the evaluations of
y+ z
Create a new variableu
Replace statementsw = y+ z by u = y+ z; w = u
Replace statements by x = u
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GCSE example

B1

B2 a = b + c
b = 7

d = b + c
B3

e = b + c B4

B1

B2

t = b + c

a = t

b = 7

t = b + c

d = t

B3

e = t B4

Before global common subexpression elimination After global common subexpression elimination
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Copy propagation

Suppose a copy statements of the formx = y is
encountered. We may now substitute a use ofx by a use of
y if

Statements is the only definition ofx reaching the use
On every path from statements to the use, there are no
assignments toy
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Copy propagation (cont’d)

To find the set of copy statements we can use, we define a
new dataflow problem

An occurrence of a copy statement generates this statement

An assignment tox or y kills the copy statementx = y

Dataflow equations:

out[B] = c_gen[B]∪ (in[B]− c_kill[B])

in[B] =
⋂

P∈pred(B)

out[P] for B not initial

in[B1] = /0 where B1 is the initial block

Introduction to Compiler Design – A. Pimentel – p. 61/127



University
of

Amsterdam

CSACSA
Computer
Systems

Architecture

Copy propagation (cont’d)

For each copy statements: x = y do
Determine the uses ofx reached by this definition ofx
Determine if for each of those uses this is the only
definition reaching it (→ s ∈ in[Buse])
If so, removes and replace the uses ofx by uses ofy
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Copy propagation example
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Detection of loop-invariant computations

1. Markinvariantthose statements whose operands are
constant or have all reaching definitions outside the loop

2. Repeat step 3 until no new statements are marked invariant

3. Mark invariant those statements whose operands either are
constant, have reaching definitions outside the loop, or have
exactly one reaching definition that is marked invariant
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Code motion

1. Create a pre-header for the loop

2. Find loop-invariant statements

3. For each statements definingx found in step 2, check that
(a) it is in a block that dominate all exits of the loop
(b) x is not defined elsewhere in the loop
(c) all uses ofx in the loop can only be reached from

this statements

4. Move the statements that conform to the pre-header
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Code motion (cont’d)

i = 2
u = u + 1

i = 1

if u < v goto B3

v = v − 1
if v <= 20 goto B5

j = i

B3

B2

B4

B5

B1

i = 1 B1

i = 2
u = u + 1

if u < v goto B3

v = v − 1
if v <= 20 goto B5

j = i

B3

B2

B4

B5

i = 3

i = 2
u = u + 1

i = 1

if u < v goto B3

B3

B2

B1

v = v − 1
if v <= 20 goto B5

j = i B5

k = i
B4

Condition (a) Condition (b) Condition (c)
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Detection of induction variables

A basic induction variablei is a variable that only has
assignments of the formi = i± c

Associated with each induction variablej is a triple(i,c,d)
wherei is a basic induction variable andc andd are
constants such thatj = c∗ i+d

In this casej belongs to the family ofi

The basic induction variablei belongs to its own family,
with the associated triple(i,1,0)
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Detection of induction variables (cont’d)

Find all basic induction variables in the loop

Find variablesk with a single assignment in the loop with
one of the following forms:

k = j ∗b, k = b∗ j, k = j/b, k = j+b, k = b+ j, where
b is a constant andj is an induction variable

If j is not basic and in the family ofi then there must be
No assignment ofi between the assignment ofj andk
No definition of j outside the loop that reachesk
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Strength reduction for induction variables

Consider each basic induction variablei in turn. For each
variable j in the family ofi with triple (i,c,d):

Create a new variables
Replace the assignment toj by j = s
Immediately after each assignmenti = i±n append
s = s+ c∗n
Places in the family ofi with triple (i,c,d)
Initialize s in the preheader:s = c∗ i+d
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Strength reduction for induction variables (cont’d)

i = i + 1
t2 = 4 * i
t3 = a[t2]
if t3 < v goto B2

Strength reduction

i = m − 1
t1 = 4 * n
v = a[t1]

if i < n goto B5

B5

B1

B2

B3

B4

i = m − 1
t1 = 4 * n
v = a[t1]

s2 = 4 * i

t3 = a[t2]
if t3 < v goto B2

t2 = s2
s2 = s2 + 4
i = i + 1

if i < n goto B5

B5

B3

B2

B1

B4
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Elimination of induction variables

Consider each basic induction variablei only used to
compute other induction variables and tests

Take somej in i’s family such thatc andd from the triple
(i,c,d) are simple

Rewrite testsif (i relop x) to
r = c∗ x+d; if ( j relop r)

Delete assignments toi from the loop

Do some copy propagation to eliminatej = s assignments
formed during strength reduction
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Introducing Aliases

Aliases, e.g. caused by pointers, make dataflow analysis
more complex (uncertainty regarding what is defined and
used:x = ∗p might use any variable)

Call by reference parameters will also introduce aliases

Use dataflow analysis to determine what a pointer might
point to

Without alias analysis optimization possibilities will be
limited
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Alias analysis example

a. Program fragment

u ← M[t]

M[x] ← r

w ← M[t]

b ← u+w
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Alias example

a. Program fragment

u ← M[t]

M[x] ← r

w ← M[t]

b ← u+w

b. After GCSE

1: z ← M[t]

2: u ← z

3: M[x] ← r

4: w ← z

5: b ← u+w

Introduction to Compiler Design – A. Pimentel – p. 74/127



University
of

Amsterdam

CSACSA
Computer
Systems

Architecture

Alias example

a. Program fragment

u ← M[t]

M[x] ← r

w ← M[t]

b ← u+w

b. After GCSE

1: z ← M[t]

2: u ← z

3: M[x] ← r

4: w ← z

5: b ← u+w

c. Copy Prop onu← z

1: z ← M[t]

3: M[x] ← r

4: w ← z

5: b ← z+w
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Alias example

a. Program fragment

u ← M[t]

M[x] ← r

w ← M[t]

b ← u+w

b. After GCSE

1: z ← M[t]

2: u ← z

3: M[x] ← r

4: w ← z

5: b ← u+w

c. Copy Prop onu← z

1: z ← M[t]

3: M[x] ← r

4: w ← z

5: b ← z+w

d. Copy Prop onw← z

1: z ← M[t]

3: M[x] ← r

5: b ← z+ z
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Alias Analysis

in[B] contains for each pointerp the set of variables to
which p could point at the beginning of blockB

Elements ofin[B] are pairs(p,a) wherep is a pointer
anda a variable, meaning thatp might point toa

out[B] is defined similarly for the end ofB
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Alias Analysis (cont’d)

Define a functiontransB such thattransB(in[B]) = out[B]

transB is composed oftranss, for each stmts of block B
If s is p = &a or p = &a± c in casea is an array, then

transs(S) =
(S−{(p,b)|any variable b})∪{(p,a)}
If s is p = q± c for pointerq and nonzero integerc,
then

transs(S) = (S−{(p,b)|any variable b})
∪{(p,b)|(q,b) ∈

S and b is an array variable}
If s is p = q, then

transs(S) = (S−{(p,b)|any variable b})
∪{(p,b)|(q,b) ∈ S}
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Alias Analysis (cont’d)

– If s assigns to pointerp any other expression, then
transs(S) = S−{(p,b)|any variable b}

– If s is not an assignment to a pointer, thentranss(S) = S

Dataflow equations for alias analysis:

out[B] = transB(in[B])

in[B] =
⋃

P∈pred(B)

out[P]

wheretransB(S) = transsk(transsk−1(· · ·(transs1(S))))
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Alias dataflow example

q := &c B1

B3 p := &(a[0])
p := &c

q := &(a[2])
B2

p := p + 1 B4

p := q B5
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Alias dataflow example

q := &c B1

B3 p := &(a[0])
p := &c

q := &(a[2])
B2

p := p + 1 B4

p := q B5

{(q, c)}{(q, c)}
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Alias dataflow example

q := &c B1

B3 p := &(a[0])
p := &c

q := &(a[2])
B2

p := p + 1 B4

p := q B5

{(q, c)}{(q, c)}

{(p, c), (q, a)}{(p, a), (q, c)}
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Alias dataflow example

q := &c B1

B3 p := &(a[0])
p := &c

q := &(a[2])
B2

p := p + 1 B4

p := q B5

{(q, c)}{(q, c)}

{(p, c), (q, a)}{(p, a), (q, c)}

{(p, a), (q, a), (q, c)}

{(p, a), (q, a), (q, c)}
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Alias dataflow example

q := &c B1

B3 p := &(a[0])
p := &c

q := &(a[2])
B2

p := p + 1 B4

p := q B5

{(q, c)}{(q, c)}

{(p, c), (q, a)}{(p, a), (q, c)}

{(p, a), (q, a), (q, c)} {(p, a), (p, c), (q, a), (q, c)}

{(p, a), (q, a), (q, c)}
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Alias dataflow example

q := &c B1

B3 p := &(a[0])
p := &c

q := &(a[2])
B2

p := p + 1 B4

p := q B5

{(q, c), (p, a)}{(q, c), (p, a)}

{(p, c), (q, a)}{(p, a), (q, c)}

{(p, a), (q, a), (q, c)} {(p, a), (p, c), (q, a), (q, c)}

{(p, a), (q, a), (q, c)}
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Alias Analysis (cont’d)

How to use the alias dataflow information? Examples:
In reaching definitions analysis (to determinegen and
kill)
→ statement∗p = a generates a definition of every

variableb such thatp could point tob
→ ∗p = a kills definition of b only if b is not an array

and is the only variablep could possibly point to (to
be conservative)

In liveness analysis (to determinede f anduse)
→ ∗p = a usesp anda. It definesb only if b is the

unique variable thatp might point to (to be
conservative)

→ a = ∗p definesa, and represents the use ofp and a
use of any variable thatp could point to
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MIPS example: CSE

C-code MIPS assembly (-O1)

int x,y;

int *p;

int foo() {

int r;

r = x + y;

asm volatile ("#use"::"r"(r));

*p = 10;

r = x + y;

return r;

}

.ent foo

foo:

lw $2,x

lw $3,y

addu $2,$2,$3

#use

lw $3,p

li $2,0x0000000a

sw $2,0($3)

lw $3,x

lw $2,y

addu $2,$3,$2

j $31

.end foo
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MIPS example: CP

C-code MIPS assembly (-O1)

int *p;

int foo(int x, int y) {

int r;

x = 1;

asm volatile ("#use"::"r"(x));

*p = 10;

r = x + y;

return r;

}

.ent foo

foo:

li $4,0x00000001

#use

lw $3,p

li $2,0x0000000a

sw $2,0($3)

addu $2,$5,1

j $31

.end foo
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MIPS example: CP cont’d

C-code MIPS assembly (-O1)

int *p;

int foo(int x, int y) {

int r;

x = 1;

&x;

asm volatile ("#use"::"r"(x));

*p = 10;

r = x + y;

return r;

}

.ent foo

foo:

li $2,0x00000001

sw $2,0($sp)

#use

lw $3,p

li $2,0x0000000a

sw $2,0($3)

lw $2,0($sp)

addu $2,$5,$2

j $31

.end foo
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Code generation

Instruction selection

Was a problem in the CISC era (e.g., lots of addressing
modes)

RISC instructions mean simpler instruction selection

However, new instruction sets introduce new, complicated
instructions (e.g., multimedia instruction sets)
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Instruction selection methods

Tree-based methods (IR is a tree)
Maximal Munch
Dynamic programming
Tree grammars

Input tree treated as string using prefix notation
Rewrite string using an LR parser and generate
instructions as side effect of rewriting rules

If the DAG is not a tree, then it can be partitioned into
multiple trees
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Tree pattern based selection

Every target instruction is represented by a tree pattern

Such a tree pattern often has an associated cost

Instruction selection is done bytiling the IR tree with the
instruction tree patterns

There may be many different ways an IR tree can be tiled,
depending on the instruction set
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Tree pattern based selection (cont’d)

+

mem

const d

+

mem

mem

move

const b

temp 1 const a

*
temp 2 const c

+

Name Effect Trees Cycles

— ri
temp 0

ADD ri ← r j + rk
+

1

MUL ri ← r j ∗ rk
*

1

ADDI ri ← r j + c
+

const

+

const
const 1

LOAD ri ←M[r j + c]
+

const

mem

+

mem

const

mem

const

mem
3

STORE M[r j + c]← ri

+

const

mem

move

+

mem

move

const

mem

move

const

mem

move
3

MOVEM M[r j ]←M[ri ]
mem

move

mem
6
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Tree pattern based selection (cont’d)

+

mem

const d

+

mem

mem

move

const b

temp 1 const a

*
temp 2 const c

+

1 2

3

4

5

6 7

8

9

10

Name Effect Trees Cycles

— ri
temp 0

ADD ri ← r j + rk
+

1

MUL ri ← r j ∗ rk
*

1

ADDI ri ← r j + c
+

const

+

const
const 1

LOAD ri ←M[r j + c]
+

const

mem

+

mem

const

mem

const

mem
3

STORE M[r j + c]← ri

+

const

mem

move

+

mem

move

const

mem

move

const

mem

move
3

MOVEM M[r j ]←M[ri ]
mem

move

mem
6
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Tree pattern based selection (cont’d)

+

mem

const d

+

mem

mem

move

const b

temp 1 const a

*
temp 2 const c

+

1 2

3

4

5

6

7

8

9

Name Effect Trees Cycles

— ri
temp 0

ADD ri ← r j + rk
+

1

MUL ri ← r j ∗ rk
*

1

ADDI ri ← r j + c
+

const

+

const
const 1

LOAD ri ←M[r j + c]
+

const

mem

+

mem

const

mem

const

mem
3

STORE M[r j + c]← ri

+

const

mem

move

+

mem

move

const

mem

move

const

mem

move
3

MOVEM M[r j ]←M[ri ]
mem

move

mem
6
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Tree pattern based selection (cont’d)

+

mem

const d

+

mem

mem

move

const b

temp 1 const a

*
temp 2 const c

+

1 2

3

4

5

6

8

7

Name Effect Trees Cycles

— ri
temp 0

ADD ri ← r j + rk
+

1

MUL ri ← r j ∗ rk
*

1

ADDI ri ← r j + c
+

const

+

const
const 1

LOAD ri ←M[r j + c]
+

const

mem

+

mem

const

mem

const

mem
3

STORE M[r j + c]← ri

+

const

mem

move

+

mem

move

const

mem

move

const

mem

move
3

MOVEM M[r j ]←M[ri ]
mem

move

mem
6
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Tiling examples

+

mem

const d

+

mem

mem

move

const b

temp 1 const a

*
temp 2 const c

+

1 2

3

4

5

6 7

8

9

10

+

mem

const d

+

mem

mem

move

const b

temp 1 const a

*
temp 2 const c

+

1 2

3

4

5

6

7

8

9

+

mem

const d

+

mem

mem

move

const b

temp 1 const a

*
temp 2 const c

+

1 2

3

4

5

6

8

7
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Optimal and optimum tilings

The cost of a tiling is the sum of the costs of the tree patterns

An optimal tiling is one where no two adjacent tiles can be
combined into a single tile of lower cost

An optimum tilingis a tiling with lowest possible cost

An optimum tiling is also optimal, but not vice-versa
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Optimal Tilings

+

mem

const d

+

mem

mem

move

const b

temp 1 const a

*
temp 2 const c

+

1 2

3

4

5

6

8

7

+

mem

const d

+

mem

mem

move

const b

temp 1 const a

*
temp 2 const c

+

1
2

3

4

5

6

7

8

9

2: ADDI r2 ← r0 + a

3: MUL r1 ← t1 * r2

4: LOAD r2 ← M[r1]

6: ADDI r3 ← t2 + c

7: LOAD r3 ← M[r3 + d]

8: STORE M[r2 + b] ← r3

2: ADDI r2 ← r0 + a

3: MUL r1 ← t1 * a

4: LOAD r2 ← M[r1]

5: ADDI r3 ← r2 + b

7: ADDI r2 ← t2 + c

8: ADDI r2 ← r2 + d

8: MOVEM M[r3] ← M[r2]
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Optimum tiling

+

mem

const d

+

mem

mem

move

const b

temp 1 const a

*
temp 2 const c

+

1 2

3

4

5

6

8

7

+

mem

const d

+

mem

mem

move

const b

temp 1 const a

*
temp 2 const c

+

1
2

3

4

5

6

7

8

9

2: ADDI r2 ← r0 + a (1)

3: MUL r1 ← t1 * r2 (1)

4: LOAD r2 ← M[r1] (3)

6: ADDI r3 ← t2 + c (1)

7: LOAD r3 ← M[r3 + d] (3)

8: STORE M[r2 + b] ← r3 (3)

total 12

2: ADDI r2 ← r0 + a (1)

3: MUL r1 ← t1 * r2 (1)

4: LOAD r2 ← M[r1] (3)

5: ADDI r3 ← r2 + b (1)

7: ADDI r2 ← t2 + c (1)

8: ADDI r2 ← r2 + d (1)

8: MOVEM M[r3] ← M[r2] (6)

total 14
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Maximal Munch

Maximal Munch is an algorithm for optimal tiling
Start at the root of the tree
Find the largest pattern that fits
Cover the root node plus the other nodes in the pattern;
the instruction corresponding to the tile is generated
Do the same for the resulting subtrees

Maximal Munch generates the instructions in reverse order!
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Dynamic programming

Dynamic programming is a technique for finding optimum
solutions

Bottom up approach
For each noden the costs of all children are found
recursively.
Then the minimum cost for noden is determined.

After cost assignment of the entire tree, instruction
emission follows:

Emission(node n): for each leavesli of the tile
selected at noden, performEmission(li). Then emit
the instruction matched at noden
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Register allocation...a graph coloring problem

First do instruction selection assuming an infinite number
of symbolic registers

Build aninterference graph
Each node is a symbolic register
Two nodes are connected when they are live at the
same time

Color the interference graph
Connected nodes cannot have the same color
Minimize the number of colors (maximum is the
number of actual registers)
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Coloring by simplification

Simplify interference graphG using heuristic method
(K-coloring a graph is NP-complete)

Find a nodem with less thanK neighbors
Remove nodem and its edges fromG, resulting inG′.
Storem on a stack
Color the graphG′

GraphG can be colored sincem has less thanK
neighbors
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Coloring by simplification (cont’d)

Spill
If a node with less thanK neigbors cannot be found in
G

Mark a noden to be spilled, removen and its edges
from G (and stackn) and continue simplification

Select
Assign colors by popping the stack
Arriving at a spill node, check whether it can be
colored. If not:

The variable represented by this node will reside in
memory (i.e. is spilled to memory)
Actual spill code is inserted in the program
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Coalescing

If there is no interference edge between the source and
destination of a move, the move is redundant

Removing the move and joining the nodes is called
coalescing

Coalescing increases the degree of a node

A graph that wasK colorable before coalescing might not
be afterwards
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Sketch of the algorithm with coalescing

Label move-related nodes in interference graph

While interference graph is nonempty
Simplify, using non-move-related nodes
Coalesce move-related nodes using conservative
coalescing

Coalesce only when the resulting node has less than
K neighbors with a significant degree

No simplifications/coalescings: “freeze” a
move-related node of a low degree→ do not consider
its moves for coalescing anymore
Spill

Select
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Register allocation: an example

Live in: k,j
g = mem[j+12]
h = k −1
f = g * h
e = mem[j+8]
m = mem[j+16]
b = mem[f]
c = e + 8
d = c
k = m + 4
j = b
goto d
Live out: d,k,j

e

d

h g

kj b

f

m

c

Assume a 4-coloring (K = 4)

Simplify by removing and stacking nodes with< 4
neighbors (g,h,k,f,e,m)

Introduction to Compiler Design – A. Pimentel – p. 108/127



University
of

Amsterdam

CSACSA
Computer
Systems

Architecture

Register allocation: an example (cont’d)

After removing and stacking the nodes g,h,k,f,e,m:

After simplification

d

j b

c

j&b d&c

After coalescing

Coalesce now and simplify again

Introduction to Compiler Design – A. Pimentel – p. 109/127



University
of

Amsterdam

CSACSA
Computer
Systems

Architecture

Register allocation: an example (cont’d)

R0 R1 R2 R3Stacked elements:   d&c
j&b
 m
e
f
k
g
h

4 registers available:

e

d

h g

kj b

f

m

c

e

d

h g

kj b

f

m

c
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Register allocation: an example (cont’d)

R0 R1 R2 R3
e
f
k
g
h

4 registers available:

e

d

h g

kj b

f

m

c

e

d

h g

kj b

f

m

c

Stacked elements:   m

ETC., ETC.

No spills are required and both moves were optimized away
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Instruction scheduling

Increase ILP (e.g., by avoiding pipeline hazards)
Essential for VLIW processors

Scheduling at basic block level:list scheduling
System resources represented by matrixResources×
Time
Position in matrix is true or false, indicating whether
the resource is in use at that time
Instructions represented by matricesResources×
Instruction duration
Using dependency analysis, the schedule is made by
fitting instructions as tight as possible
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List scheduling (cont’d)

Finding optimal schedule is NP-complete problem⇒ use
heuristics, e.g. at an operation conflict schedule the most
time-critical first

For a VLIW processor, themaximuminstruction duration
is used for scheduling⇒ painful for memory loads!

Basic blocks usually are small (5 operations on the average)
⇒ benefit of scheduling limited⇒ Trace Scheduling
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Trace scheduling

Schedule instructions over code sections larger than basic
blocks, so-calledtraces

A trace is a series of basic blocks that does not extend
beyond loop boundaries

Apply list scheduling to whole trace

Scheduling code inside a trace can move code beyond basic
block boundaries⇒ compensate this by adding code to the
off-trace edges
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Trace scheduling (cont’d)

BB1

BB2 BB3

BB4
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Trace scheduling (cont’d)

Operation to be moved
before Op A

Op COp A
Op B

Off Trace

Off Trace

in Trace
Basic Block

in Trace
Basic Block

in Trace
Basic Block

(c)

(b)

(a)

Copied code

Basic Block
Off Trace

trace
Op A
Branch

Op B
Op C

Branch

Op A

Branch

Op B

Op B

below Branch in

Op C
Op A
Op B Op B

Op C

Branch
Op A

Op A Op C Op B
Op A

Op C

In Trace

allowed if no side-

In Trace
Copied code in
off Trace Basic Block

code
effects in Off trace

Moved code onlyOperation to be moved
above Branch

In Trace

In Trace

Operation to be moved
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Trace scheduling (cont’d)

Trace selection

Because of the code copies, the trace that is most often
executed has to be scheduled first

A longer trace brings more opportunities for ILP (loop
unrolling!)

Use heuristics about how often a basic block is executed
and which paths to and from a block have the most chance
of being taken (e.g. inner-loops) or use profiling (input
dependent)
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Other methods to increase ILP

Loop unrolling

Technique for increasing the amount of code available
inside a loop: make several copies of the loop body

Reduces loop control overhead and increases ILP (more
instructions to schedule)

When using trace scheduling this results in longer traces
and thus more opportunities for better schedules

In general, the more copies, the better the job the scheduler
can do but the gain becomes minimal
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Loop unrolling (cont’d)

Example

for (i = 0; i < 100; i++)

a[i] = a[i] + b[i];
becomes

for (i = 0; i < 100; i += 4) {

a[i] = a[i] + b[i];

a[i+1] = a[i+1] + b[i+1];

a[i+2] = a[i+2] + b[i+2];

a[i+3] = a[i+3] + b[i+3];

}
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Software pipelining

Also a technique for using the parallelism available in
several loop iterations

Software pipelining simulates a hardware pipeline, hence
its name

pipelined
Software

iteration

Iterattion 0
Iteration 1

Iteration 2
Iteration 3

Iteration 4

There are three phases: Prologue, Steady state and Epilogue
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Software pipelining (cont’d)

Loop: LD
ADDD F4,F0,F2

SD

F0,0(R1)

0(R1),F4

Body

SBGEZ R1, Loop Loop control

T0

T1

T2

T... Loop:

LD

ADDD .

.

SD

LD

LD SBGEZ Loop.ADDD

LD

SD ADDD .
Steady state

Prologue

Epilogue

Tn

Tn+1

Tn+2

SD ADDD

SD
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Modulo scheduling

Scheduling multiple loop iterations using software
pipelining can create false dependencies between variables
used in different iterations

Renaming the variables used in different iterations is called
modulo scheduling

When usingn variables for representing the same variable,
the steady state of the loop has to be unrolledn times
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Compiler optimizations for cache performance

Merging arrays (better spatial locality)

int val[SIZE]; struct merge {

int key[SIZE]; ⇒ int val, key; };

struct merge m_array[SIZE]

Loop interchange

Loop fusion and fission

Blocking (better temporal locality)
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Loop interchange

Exchanging of nested loops to change the memory footprint
Better spatial locality

for (i = 0; i < 50; i++)

for (j = 0; j < 100; j++)

a[j][i] = b[j][i] * c[j][i];

becomes
for (j = 0; j < 100; j++)

for (i = 0; i < 50; i++)

a[j][i] = b[j][i] * c[j][i];
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Loop fusion

Fuse multiple loops together
Less loop control
Bigger basic blocks (scheduling)
Possibly better temporal locality

for (i = 0; i < n; i++)

c[i] = a[i] + b[i];

for (j = 0; j < n; j++)

d[j] = a[j] * e[j];

becomes

for (i = 0; i < n; i++) {

c[i] = a[i] + b[i];

d[i] = a[i] * e[i];

}
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Loop fission

Split a loop with independent statements into multiple loops
Enables other transformations (e.g. vectorization)
Results in smaller cache footprint (better temporal
locality)

for (i = 0; i < n; i++) {

a[i] = b[i] + c[i];

d[i] = e[i] * f[i];

}

becomes

for (i = 0; i < n; i++) {

a[i] = b[i] + c[i];

}

for (i = 0; i < n; i++) {

d[i] = e[i] * f[i];

}
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Blocking

Perform computations on sub-matrices (blocks), e.g. when
multiple matrices are accessed both row by row and column by
column

i

j

i

k j

k

X Y Zfor (i=0; i < N; i++) 
for (j=0; j < N; j++) {

r = 0;
for (k = 0; k < N; k++) {

r = r + y[i][k]*z[k][j];
};
x[i][j] = r;

};

Matrix multiplication x = y*z

not touched older access recent access

i

j

i

k j

k

X Y Z

Blocking
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