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Abstract

Long branch delay is a well–known problem in today’s high per-

formance superscalar and supetpipeline processor designs. A com-

mon technique used to alleviate this problem is to predict the direc-

tion of branches during the instruction fetch. Counter-based branch

prediction, in particular, has been reported as an effective scheme for

predicting the direction of branches. However, its accuracy is gener-

ally limited by branches whose future behavior is also dependent

upon the history of other branches. To enhance branch prediction ac-

curacy with a minimum increase in hardware COSLwe propose a cor-

relation-based scheme and show how the prediction accuracy can be

improved by incorporating information, not only from the history of

a specific brsncb but also from the history of other branches. Specif-

ically, we use the information provided by a proper subhistory of a

branch to predict the outcome of that branch. The proper subhistory

is selected based on the outcomes of the most recently executed M

branches. The new scheme is evaluated using traces collected from

running the SPEC benchmark suite on an IBM RISC System/6000

workstation. The results show that, ascompared with the 2-bit coun-

ter-based prediction scheme, the correlation-based branch predic-

tion achieves up to 11 ~0 additional accuracy at the extra hardware

cost of one shift register. The results also show that the accuracy of

the new scheme surpasses that of the counter–based branch predc-

tion at saturation.

1. Introduction

Recent advances in RISC architectures and VLSI technologies

allow computer designers to exploit more instruction-level parallel-

ism with deeper pipelines and more concurrent functional units [1,

2]. As sophisticated processors are built to exploit the available irt-
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strtrction-level parallelism, more attention needs to be paid to the

d~ruption of pipeline flow as a result of branch instruction execution

[8]. Pipeline disruption reduces the effective instruction throughput

by introducing extra delays in the pipeline. Since branches constitute

a large portion of all the executed instructions, the efficiency of han-

dling branches is important. Our primary interest is in reducing the

branch penalty incurred in executing wnditional branches. All

branches mentioned below, unless otherwise stated, are conditional

branches.

Almost all the branch cost reduction techniques reported in the

literature require the use of some mechanism for predicting the out-

come of branches. Other than the profiling tectilque [3, 5], all pre-

diction schemes require hardware assistance. Hardware-assisted

branch predictions typically fall into two categories: static and dy -

nomic. Overview of these schemes can be found in [4,7]. Generally,

dynamic Prediction gives better results than static prediction, but at

the cost of increased hardware complexity. A less-complex yet rea-

sonably effective scheme is the iV-bZI counter scheme [3,4, 7]. In

this scheme, the prediction of the outcome of a branch is basedon the

output of a finite-state machine whose state is recorded in an N-bit

up/down counter. The counter is incremented or decremented ac-

cording to whether the branch is taken or not. We refer to this scheme

as the counter-based branch prediction. Later we will show its oper-

ation in more detail.

A common limitation with most of the dynamic branch predic-

tion schemes is that the prediction is based on “self-history”. Specif-

ically, the prediction is based exclusively on the past history of the

branch under wnsideration, completely ignoring the information

provided by the executions of other branches. Self–history predic-

tion schemes generally work well for scientific/engineering applica-

tions where program execution is dominated by inner-loops. How-

ever, in many integer workloads, control-flows are complex and

very often the outcome of a branch is affected by the outcomes of re-

cently executed branches. In other words, the branches are corre-

lated. Because of the cot-relation, the history of abrartch, considered

by itself, is very chaotic and that reduces the accuracy of self-history
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prediction schemes. A prior study shows that branch correlation threshold value L, the branch is predicted takeu otherwise it is pre-

does take place in programs and that its source can be traced back to dieted not taken. A typical value for L is 2N-1. The counter value C

common high–level language constructs [6]. The Appendix summa- is updated whenever that branch is resolved. If the branch is taken,

rizes some of our observations of the source code-level branch corre- C is incremented by one, otherwise it is decremented by one, If C

lation that appear in the SPEC integer benchmarks. is 2N-1, it remains at that value as long as the branch is taken. If C

Contrary to the self–history based approach, the “two-level is O, it remains at zero as long as the branch is not taken.

adaptive traiw”ng branch prediction” reported recently uses the predict not taken + L=2 + predict taken

global branch history pattern associated with each branch address for
1 1: 1

predicting the outcome of the branch [10]. The same global history

pattern results in the same predictio~ regardless of which branch ad- 0 1

dress the history pattern is associated with, Although this approach o 0: 0

is reported to produce a fairly high prediction accuracy [ 10], its hard-
actual result: 1=taka, O=not taken

ware implementation seems quite complicated.
Fig. 1 FSM for the 2-bit Counter Scheme

To our knowledge, very little work has been done in addressing

the issue of branch correlation in branch prediction. In this paper, we The operation of the N–bit counter scheme corresponds to a fitt-

study the effect of branch correlation in branch prediction and pro- te-state machine (FSM) with 2N states. Fig. 1 shows the FSM with

pose a correlation-based prediction scheme which also produces N=2 and L=2. Smith [7] reported that a counter of 2 bits is usually

high prediction accuracy. The proposed branch prediction scheme as good or better than other strategies and a larger counter size does

is simple to implement and its implementation is very similar to “that not necessarily give better results.

of the counter-based branch prediction.

The new scheme is evaluated using traces collected fromnmning

the SPEC benchmark suite [9] on an IBM RISC Systetn/6000 work-

station. The results show that, as compared with the 2-bit couttter-

based prediction scheme, the correlation-based branch prediction

achieves up to 1l% additional accuracy at the extra hardware cost of

one shift register. The results also show that the accuracy of the new

scheme surpasses that of the counter–based branch prediction at sat-

uration.

2.2 Correlation-Based Branch Prediction

Most studies of dynamic branch prediction focus on the history

of the branch under consideration [4, 7]. With hardware-assisted

branch prediction, only the most recent history of a branch is used to

predict the outcome of that branch. These brartchprediction schemes

work well for scientific/engineering workloads where program ex-

ecution is dominated by inner-loops. However, they do not work as

well for integer workloads where the outcome of a branch is affected

The remainder of this paper is organized as follows: In pection
by the outcomes of recently executed branches. When one branch

2, the correlation-basedbranch prediction scheme is introduced with
depends on artother, in the sense that its outcome depends on the out-

an example. A brief description of the counter-based branch predic-
come of the other branch, we say that the branches are correlated.

tion is also given. In section 3, simulation results evaluating the new As an illustration of branch correlation consider the code frag-

scheme are presented. In section 4, we give the main conclusions. ment shown in Fig. 2:

2. Dynamic Branch Prediction

In this section, we will describe the N-bit counter scheme and

if (aa==2)
au = O;

if(bb==2)
bb = O;

if(aa != bb) {

introduce anew prediction scheme based on branch correlation. An
. . . . .

J
example will be given to explain the difference between these two

Fig. 2 A Code Fragment from SPEC Benchmark eqntott
schemes. Finally, the implementation of the new scheme will be dis-

cussed. This code fragment (other than the comments) appears in a frequent-

2.1 Counter-Based Branch Prediction
ly executed block of the SPEC integer benchmark eqntott. There me

three if-statements in this code fragment. Assume that the if–state-

The basic idea for the counter–based branch prediction is to use ments axe converted by a compiler to three branch instructions bl, bz,

an N–bit up/down counter [3,4, 7] for prediction. In the ideal case, and k, and the action determined by each tj%atement is the branch

an N-bit counter (with some initial value) is assigned to each static “fall-throughpath”, meaning that the branch “taken’’path is the path

branch (branches with distinct addresses). When a branch is about for which the condition is not true. Since the outcome of ~ depends

to be executed, the counter value C, associated with that brsnc~ is on the values of au and bb, it is obvious that b3 is correlated with bl

used for prediction. If C is greater than or equal to a predetermined and bz.
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O=not taken ~

“’’en)+

&&
path: A: O-O B: O-1 C: I&() D: 1-1

Fig. 3 Branch Tree for the Code Fragment Given in Fig, 2

Although the presence of branch correlation may cause the be-

havior of a branch to appem more random, it may shed some light on

the condition upon which the branch decision is based. Consider

again the same example given in Fig. 2. After the executions of bl

and b2, the condition that b~ is dependent upon is already partially

known. Fig. 3 shows the part of the branch mee before the execution

of bg given that bl and bz have been executed,

There are four possible paths reaching b3 through the executions

of bl and ~. For example, if bl is taken and bz is not taken, then b3

is reached via the 1–0 path (path C in Fig. 3). Fig. 4 shows the infor-

mation available at& given that bl and bzhave been executed. It is

clear that if ~ is reached via the O-O path, the outcome of b3 can be

determined prior to its execution. But this situation cannot be ex-

ploited by the conventional self–history based prediction schemes.

This example suggests that the outcome of a branch can be more

readily determined if the path leading to it is known. By splitting the

branch history of ~ into four subhistories according to the paths

leading to ~, one may reduce the randomness of the apparent behav-

ior of b3 and thus make a better prediction.

path leading A: O-O B: O-1 C: 1-0 D: 1–1

Fig. 4 Information About au, M Available at b~

After bl and bz Have Been Executed

Let’s further examine the example with data that are arbitrarily

chosen only to reflect the branch correlation. Suppose that we run

the code fragment given in Fig. 2 on a machine which implements

the 2-bit counter scheme shown in Fig. 1 with initial state set to O.

Table 1 shows the predicted outcomes of b3 and the state transitions.

The first two columns show the initial values of au and bb before the

execution of bl. Columns au’ and bb’ in the table show the new val-

ues of au and bb after bl and ~ are executed, Column “path” indi-

cates the path from which ~ is reached. Column “cum state” shows

the current state of the FSM. Column “pred” shows the predicted

outcome of b~. The actual outcome is given in column “act’. Col-

umn “c/w” indicates the correct (c) or wrong (w) prediction. The

state is updated according to the current state and the actual outcome.

The updated state is shown in the column under “next state”.

Table 1 State Transitions and Branch Predictions for b3

Using 2-bit Counter–Based Prediction Scheme

au bb au’ bb’ path curr state pred act ctw next state
—— —.

0200
2200
2101
2000
2200
1010
1010
2000
0101
1111
1210
1210
2200
2000
0101
2200
0200
0101
1010
2200

- —. —

c o NTw
NT ;

; ; T N;
B 1 NTw;
A 2 TT 3
D 3 T N;2
D 2 T Nwl
B NT 2
D ; T N;
D NTw;
c ; TNw1
c 1 N NcO

o NTw
t 1 NTw:
D 2 TNw
A 1 NTw;
c 2 TTC3
D 3 Nw2
D 2 ;Nwl
A 1 NTW2

N=not taken, T=taken, c=correct pred., w=wrong pred.

A careful inspection of the table reveals that the apparently ran-

dom branch history of b3 (column “act”) is actually formed by inter-

weaving four less random branch subhistories, each of which is asso-

ciated with abranchpadt leading to b3 (compwe columns “path” and

“act”). After splitting the branch history of b3 according to the four

branch paths shown in Fig. 5, one cart obtain the four branch subhis-

tories of b3.

time +- Branch Paths

CA BBADDBDDCCA BDACDDA

lmizlimlkiillImElm!mlbJIElmlmmiIIIElmlIiDDlm
TTNTTNNTNTNN TTNTTNNT

TTTTT NTTT TNNT NNNTNNN

path A path B path C path D

Fig. 5 Subhistories Obtained by Splitting the

History of ~ According to the Branch Paths

It is evident from Fig. 5 that the outcomes of b3 are less random

within each subhistory. Hence better predictions are expected if we

independently implement a2–bit counter for each subhistory. In fact,

only 3 out of the 20 executions of b3 are correctly predicted if only

one 2-bit counter (with initial state equal to O) is used. However, if

four 2–bit counters are used (all initialized to O), with one for each

subhistcny, 10 additional correct predictions can be obtained. Note

that the state transition and the state update of the FSM associated

with each counter are local to each branch path. This is shown in Fig.
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6. Notice that we are not suggesting to use four counters for “each”

branch. We are merely showing that taking the path leading to a

branch into consideration leads to a better prediction. Later we will

show an implementation scheme that exploits the “correlation” be-

tween branches without increasing the overall number of counters

used to track the history of branches.

II
1

01

01

01

0 II
1

01

01

01

0

0

0

0

0II
path O-O path O-1 path 1-0 path 1–1

Fig. 6 FSMS using Four 2–bit Counters

Fig, 6 suggests that in order to select the proper 2-bit counter as

signed to each subhistory for prediction, one needs to memorize the

branch path leading to bg. This can be achieved by using a 2–bit shift

register which records the outcomes of the two most recently ex-

ecuted branches. The shift register is then used to select the appropri-

ate counter. The use of a shift register for tracking and selectively

relating the correlated information to proper branch subhistory is the

main idea of the proposed correlation-based branch prediction. Ba-

sically, the proposed scheme uses the branch path information to split

the history of a branch into several subhistories and selectively use

the proper subhistory information for predicting the outcome of the

branch.

Genertdly, an M-step correlation-based branch prediction uses

the outcomes of the last M branches (including unconditional

branches) seen by the machme to split the history of a branch into 2M

subhktories. The prediction is then done independently withii each

subhistory using arty (or the best) history-based branch prediction al-

gorithm. A good candidate for prediction within each subhistory is

the N-bh counter-based branch prediction mentioned earlier. In this

case, an M-bit shift register is required to store the outcomes of the

lastM branch executions (O for not taken, 1 for taken). This shiftreg-

ister is able to identify a total of 2M subhistories of a branch. Whhii

each subhistory, the prediction is done using an N-bit counter asso-

ciated with it. There are a total of 2M FSM’S associated with each

branch. Everytime the outcome of abrartch is to be predicted, the M-

bit shift register is used to select the proper FSM, resulting in a set

of N prediction bits. Gnce the FSM is selected, the prediction and the

state update are done according to the N-bit counter-based predic-

tion atgorithm.

In the following, we will refer to this scheme as the (M,N) corre-

lation-based branch pre&ction scheme or simply the (M,N) corre-

lation scheme, meaning that art M-bit shift register is used to select

an N-bit counter for prediction. The number of correlation steps

is defined as the number of bhs in the shift register. When the predic-

tion scheme used widtii each subhistory is understandable without

any ambiguity, we will simply refer to it as an M-step correlation

scheme.

2.3 Implementation

When the N–bit counter scheme or the (M,N) correlation scheme

is implemented by itself, a table is required to store the prediction in-

formation. We refer to this table as the “branch prediction [able” or

Mlefly, BIT. Fig. 7 (a) shows the logical organization of a lK-a-try

BPT for the 2–bit counter scheme, with each entry containing 2 pre-

diction bits. Fig. 7 (b) shows the logical organization of a lK-imtry

BPT for the (2,2) comelation scheme, with each entry containing

2X22=8 prediction bits.

Notice the difference in physical size of the two tables, even

though the number of logical entries is identical. In general, if a

2[-entry table is used for (M,N) cot-relation scheme, a total of N)(21+M

bits is required for the table, with each entry containing 2M sets of N

prediction bits. The table is generally accessed using the low-order

I bits of the branch address. However, depending on the implementa-

tion the table may be accessed using the address of the instruction

immediately prior to the branch under consideration [ 11]. Once the

entry is determined, the M–bit shift register which stores the outcom-

es of the last M branches is used to select the proper set of the N bits

horn the entry. These N bits are used for predicting the outcomes of

rdl branches whose addresses are mapped into the same entry.

branch addr. branch addr.

$!:: ski:u●

W4414
select

4-
2-bit shift register

-m

(a) 2-bit counter scheme (b) (2,2) correlation scheme

Fig. 7 Logical Organization of a lK-Entry Table

A design tradeoff in implementing the dynamic branch predic-

tion usually involves in choosing the physical size of the BPT for a

desired prediction accuracy. It is interesting to note from Fig. 7 that

if the BPT size is to be changed, two “logical directions” can be con-

sidered. The table size cart be increaseddecreased either along the

vertical duection as shown in Fig. 8 (a) or along the horizontal direc-

tion as shown in Fig. 8 (b). Fig. 8 (a) is typical for implementing the
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counter-based scheme whereas Fig. 8 (b) is typical for correlation

schemes. We will refer to the directions shown in Fig. 8 (a) and (b)

as the entry-dimension and the correlation-dimension, respec-

tively. Of course, any combination of the two is possible.

n
v,.:.:i:.,.

entry–

I

n

dimension
n

El

n

El

(a) increased along the (b) increased along the
entry-dimension correlation-dimension

Fig. 8 Increasing the Size of a BPT

While the logical organization and the behavior of the tables for

the counter and the correlation schemes are different, the physical

implementations are quite similar. Fig. 9 shows the implementation

using a 1KB-BPT. When this table is used for the 2-bit counter

scheme, 12 bits are required for a table lookup (Fig. 9 (a)). As men-

tioned earlier, these 12 bits are usually obtained from the branch ad-

dress. However, if the same table is used for correlation schemes,

some of the bits for table lookup are obtained from the shift-register.

For example, if the (8,2) correlation scheme is implemented as

shown in Fig. 8 (b), the bits for table lookup consist of 8 bits from

the shift register and 4 bits from the branch address. It is important

to note that as a correlation scheme is implemented instead of the

original 2–bit counter scheme using the same size of table, the only

extra hardware cost incurred by the correlation scheme is the shift

register (Fig. 9 (b)).

8–bit

branch branch
shift reg.

addr. addr.

3129

QlKB

D out D.

2
2 R1KB

DOUt Dm

2
2

pred. new pred. new
bits state bits state

12–bit
shift reg.

1

? 12

QlKB

D out Drn

2
2

pred. new
bits srate

(a) 2---~e:m#ter (b) (8,2) correlation (c) (12,2) Comelation

scheme scheme – degenerate

Fig. 9 Physical Implementation Using a 1KI-BPT

Fig. 9 (b) also shows an interesting case: as the table size is fixed,

the larger the shift register used, the fewer branch address bits are re-

quired. In other words, as the table size is fixed, increasing the size

of the shift register is equivalent to “squashing” the BFT along the
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entry-dimension. An interesting extreme case occurs when the table

degenerates to a single+rttry table. In this case, the bits for table

lookup are obtained entirely from the shift register. Fig. 9 (c) shows

the degenerate case for a lKB-BPT. This case is equivalent to imple-

menting the (12,2) correlation scheme using a single-entry table

shown in Fig. 10. Similarly, Fig. 9 (a) can be thought as the other ex-

treme case when the table in Fig. 9 (b) is “squashed” along the corre-

lation+knension. The advantage of considering the degenerate case

is that its table lookup depends only on the shift register, completely

independent of the branch address. Because of this unique character-

istic, a resolved branch always predicts the outcome of the next

branch. The degenerate case of the correlation scheme is interesting,

not only because of its simple implementation, but also because the

predicted outcome of a branch can be known way before the execu-

tion of that branch.

12–bit shift reg.

r--12

012 212–1

[:1:1:1
1, XIX******* I

xx 2 pred. bits

Fig. 10 Degenerate Case for a HCB-BPT

3. Trace-Driven Simulations & Results

Trace-driven simulations are used to examine the (M,2) cm-rela-

tion schemes for BPT’s with entries ranging from 1 to 32K. Due to

the limitation of the program size and simulation time, only M<1O

are evaluated for non-degenerate cases and M<15 for degenerate

cases, Note that the scheme (0,2) corresponds to the original 2–bit

counter scheme. The programs used for the experiment are from the

SPEC benchmrwk suite. The traces are collected using a trace pro-

gram and commercially available C and FORTRAN compilers for

the IBM RISC System/6000 system. Table 2 summarizes the trace

lengths and branch statistics for the benchmarks used in this study.

The accuracy, defined as the percentage of correctpredictions, will

be used as the metric for measuring the efficiency of branch predic-

tion,

For SPEC floating-point benchmarks rtasa7, tnatrix300, and

torncatv, no difference is found between wrrelation-based schemes

and the 2-bit counter scheme. All predict with more than 99~0 accu-

racy, These results are not surprising for loop-intensive scientific/

engineering applications where programming structures are domi-

nated by simple loops. Because of this, only the results of the other

7 SPEC benchmarks, namely, doduc, spice, fippp, gee, espresso,

eqn[orr, and li, are presented. For convenience, we will use the short-



hand “7 SPEC benchmarks” or “7 benchmarks” to mean these 7

benchmarks, “floating-point benchmarks” to mean the benchmarks

doduc, spice, and fpppp, and “integer benchmarks” to mean the

benchmarks gee, espresso, eqntott, and li.

Table 2 Branch Statistics for SPEC Benchtmwks

Inst. bU bC p q s

spice 50M .093 .125 .538 .196 41.3

doduc 50M .020 .094 .630 .551 137.2

nasa7 50M -o .166 .994 .993 0.6

rmrtrix300 50M .001 .198 .993 .993 1.7

fPPPP 50M ,005 .016 .575 .450 197.2

tomcatv 50M -o .059 .993 .993 72,6

gcc 50M .041 .189 .635 .556 800.3

espresso I 50M I .071 I .193 I .538 I .369 I 46.7

li \ 50M I .062 I .165 I .601 I .45o 39.7

eqnfott I 50M / .021 / .305 / .445 / .406 2.8

b.: frequency of unconditional branches

b.: frequency of conditional branches

p: probability that a branch is taken
q probability that a condhional branch is taken
s: static conditional branches per lmillion executed

conditional branches

3.1 Accuracy for Fixed Table Size

We first compare the correlation-based scheme with the 2-bit

counter scheme using the same lKB-BPT, Notice that the number

of table entries for the two schemes are different (see Fig. 7). A lKB-

table has 4K entries when the 2–bit counter scheme is implemented,

whereas the same table has only 16 entries when the (8,2) correlation

schemes is implemented,

Fig. 11 shows the results for a IKB-BPT. The figure compares

the accuracy obtained by implementing the 2–bit counter scheme and

the additional accuracy gained by implementing the (8,2) correlation

scheme. Since the 2–bit counter scheme has already provided very

high accuracies for doduc and espresso (about %Yo), there is very

little chance for correlation schemes to gain more accuracy. The

benchmark gcc shows very little improvement in accuracy. This is

because that a lKB-table is not large enough to contain most of the

frequently executed branches in gee.

The remaining benchmarks show considerable improvements in

accuracy. The two biggest gains in accuracy are obtained by eqntott

and L Since branches in eqntott are highly correlated, the 2–bit

counter scheme cannot provide high accuracy (only about 83%).

More than 11% of additional accuracy can be attained by the correla-

tion scheme.

The second highest improvement in accuracy is achieved by Ii

(more than 5%). It is known that [i is a “pointer+hasing” oriented

program where a compiler may generate load, compare, and branch

instructions in sequence over and over again. The branch correlation

exists wherever the data loaded for determining the branch direction

is affected by the directions of prior branches. As reported in [2], a

compare-branch pair of instructions in the IBM RISC Systetn/6000

machine causes a 3-cycle bubble in the pipeline. The correlation–

based scheme proposed here is particularly useful to reduce such

delay.

Although we have only shown the results for the 8-step correla-

tion scheme, it is observed from the simulation that, as the number

of table entries is fixed, the accuracy increases as the number of cor-

relation steps increases. This observation is true for all the 7 bench-

marks.

% Accuracy

‘oo~

--
-clod spi fpp gcc esp eqn Ii

❑ acc~y for the 2-bit counter scheme

■ addlttonal accuracy gained by implementing

the (8,2) correlation scheme with the same table

Fig. 11 Accuracies for an lKB-BIW (0,2) V.S. (8,2)

3.2 Accuracy at the Limiting Case

It is observed that the accuracy provided by the 2–bit counter

scheme asymptotically approaches certain limit as the BIT size in-

creases. Fig. 12 shows the limit at which the 2–bit counter scheme

saturates. When the table is large enough to contain most of the fre-

quently executed branches, the prediction capability of the 2-bk

counter scheme reaches its inherent limits. As we mentioned ealier,

one of the limitations of the 2–bit counter scheme is that it is self-his-

tory based. Since the correlation scheme provides better prediction

by incorporating the information from other branches, it can surpass

the limit at which the 2–bit counter scheme saturates.

As an illustration, consider the accuracy curves for li shown in

Fig. 13. It is clear that the accuracy provided by the 2–bit counter

scheme saturates at a table of 2K entries. Increasing the table size

along the entry-dimension as shown in the figure makes very little

improvement in accuracy. However, if the BPT size is increased

along the correlation dimension (see Fig. 8 (b)), more accuracy can

be gained. Fig. 12 shows the additional accuracy achievable by the

correlation scheme for the 7 benchtmmks.
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% Accuracy

‘oo~
.“

96

94

92

90

88

86

84

82

80
dod spi fpp gcc esp eqn Ii

❑ limiting case accuracy of the 2-bit counter scheme

❑ additional accuracy achievable by the correlation scheme

Fig.12 Limiting Case Accuracy

%_Accuracy

address conflict isattenuated when thetable size is large. It isob-

served from the simulation that a larger correlation step is required

before the degenerate case has a noticeable improvement over the

2–bit counter scheme. Table 3 summarizes the observation.

It is also observed that when the table size is large, the degenerate

case sometimes performs better than the non-degenerate case, Fig.

14 shows the results of implementing the degenerate (15,2) scheme

using an 8KB-table.

Table 3 # of Correlation Steps Required Before Degenerate Case

has Noticeable Improvement Over the 2–Bit Counter Scheme

doduc / sPice I fpppp I gcc I espressd eq~ott I ii
15 6 10 I 14 8 5 11 I

% Accuracy

‘oo~
98 \ 17w., 1477%

❑ accuracy for the 2~bit counter scheme

■ addhional accuracy gained by implementing

the degenerate (15,2) correlation scheme

Fig. 14 Accuracy for an 8KB-BPTI (0,2) V.S. Degenerate (15,2)
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3.3 Accuracy at the Degenerate Case

The degenerate correlation scheme provides an interesting case

for a practical implementation, since its table lookup doesn’t depend

on the branch address. Because of this unique characteristic, the

table lookup for the next branch can be done as soon as the current

branch is resolved. This is attractive to timing-critical implementa-

tions of the branch prediction.

The only disadvantage with the degenerate case is that the table

must be very large in order to outperform the 2-bit counter scheme.

This is due to the fact that enormous amount of address cor-d%cts are

introduced with an one-entry table (Fig. 10). However, the effect of

4. Conclusions

In this paper, we have proposed a novel dynamic branch predic-

tion scheme which uses the proper subhistory information of a

branch to predict the outcome of that branch. The key idea is to relate

the subhistory which is being selected to the most recently executed

branches via a shift register. The new scheme is evaluated using

traces collected from running the SPEC benchmark suite on an IBM

RISC Systern/6000 machine. It is shown that the proposed new

scheme gives considerably higher accuracy than that of the 2–bit

counter prediction scheme at the extra hardware cost of one shift reg-

ister. We have observed from the simulation that for the same BPT

of size lICB or above, the (M,2) correlation scheme generally pro-

vides the best improvement in accuracy over the 2–bit counter

scheme for 5<M<8. We want to emphasize that as more instruction–
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level parallelism is exploited by today’s superscalar and sttperpipe-

lined processors, few percent increase in branch prediction accuracy

is significant in improving the overall processor performance.

We have demonstrated that the new scheme is simple and easy

to implement. It provides a new dimension as a design alternative

for increasing the BPT size, i.e., the correlation–dimension. We have

also shown that the accuracy of the correlation scheme surpasses that

of the 2-bit counter scheme at saturation.
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Appendix

Examples of Source Code-Level Branch CorrekUwn from

the SPEC Integer Benchmarks:

benchmark eqntott file name pterm_ops.c
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benchmark: eqntott file name: pterm_ops.c

while (low <= high) {

i = (high+ low)/ 2;

if (H (i) < hsh)
low=i+l;

else if (i >0 && H (i-1) >= hsh)

high= i-l;
else if (H (i) == bsh)

break;
else return (NIL_PTERM);

}

benchmark: eqntott file name ucbqsort.c

j=(j==jj?i:jj);

if ((*qcmp)(j, tmp) < O)
j = mp;

benchmark: li file name: xllist.c

while (*adstr && consp(list))

list = (*adstr++ == ‘a’ ? car(list) : cdr(list));’

benchmark li file name xlread.c

while ((ch = xlpeek(fptr)) != EOF) {

if (slower) ch = topper;

if (!isdigit(ch) && !(ch >= ‘A’ && ch <= ‘F’))

brek,

)
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benchmark: li file name: xhnath.c

if (imode)
switch (fen) {
case ‘<’: icmp = (icmp < O); bre~,
case ‘L’: icmp = (icmp <= O); break;
case ‘=’: icmp = (icmp == O); break;

case ‘#’: icmp = (icmp != O); bre~,
case ‘G’: icmp = (icmp >= O); brek,
case ‘>’: icmp = (icmp > O); bre~,

J
else

switch (fen) {

case ‘<’: icmp = (fcmp < 0.0); brek,
case ‘L’: icmp = (fcmp <= 0.0); break;
case ‘=’: icmp = (fcmp == 0.0); break;

case ‘#’: icmp = (fcmp != 0.0); break;
case ‘G’: icmp = (fcmp >= 0.0); break;
case ‘>’: icmp = (fcmp > 0.0); brealq

}
return (icmp ? true : NIL);

benchmark: li file name: xlcont.c

rbreak = FALSE;
while (xleval(test) == NIL) {

if (tagblock(arg,&rval)) {

rbreak = TRUE;
break;

1)
if (!rbreak)

rtx subexp = get_related_value (x);
if (subexp != O)

relt = lookup (subexp,
safe_hash (subexp, GET_MODE (subexp)) 70

NBUCKETS,

GET_MODE (subexp));

1
if (relt == O)

return O;

benchmark: gcc file name flow.c

for (j= XVECLEN (x, i) - 1; j >= Q j—)

{

if (value== O)
value = tern;

........

1

benchmark: gcc file name: flow.c

while (INSN_DELETED_P (first))
first = NEXT_INSN (first);

while (prev != first)

{
prev = PREV_INSN (prev);

PUT_CODE (prev, NOTE);
NOTE_LINE_NUMBER (prev) = NOTE_INSN_DELETED;
NOTE_SOURCE_FILE (prev) = O;

1

........
benchmark: gcc file name: cse.c

benchmark: espresso file name: compl.c

for(pl = *L1, pr = *RI; (pl != NULL)&&

(pr != NULL); )
switch (dl_order(Ll, Rl)) {

case 1:

pr = *(++R1); bre~,

case –1:

pl = *(++L1); break;

case O:
RESET(pr, ACTIVE);
INLINEset_or(pl, pl, pr);
pr = *(++R1);

}

benchmark: gcc file name: reload.c

if (in != O)

class = PREFERRED_RELOAD_CLASS (in, class);

if (class == NO_REGS)
.......

benchmark: gcc file name: cse.c

if (elt != O && elt–>related_value != O)
relt = el~

else if (elt == O && GET_CODE (x)== CONST)

{

if (tern != O)
yo = tern;

if (yO == O)

return O;

benchmark gcc file name: cse.c

switch (i)

{
case O:

const_argO = const_arg;

breti,
case 1:

const_argl = const_arg;

break;

case 2:
const_arg2 = const_arg;
break;

)
......

switch (code)

{
........
case EQ

if (const_argO && const_argO == XEXP (x, O)

&&(! (const_argl && const_argl == XEXP (x, 1))
II (GET_CODE (const_argO) == CONST_INT

&& GET_CODE (const_argl) != CONST_INT)))

........
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