
Institute of Informatics
Computer Systems Architecture

Jun Xiao
Simon Polstra

Dr. Andy Pimentel
September 4, 2017

Parallel System Architectures 2017

— Lab Assignment 1: Cache Coherency —

Introduction

In this assignment you will use SystemC to build a simulator of a Level-1 Data-cache and various
implementations of a cache coherency protocol and evaluate their performance. The simulator will
be driven using trace files which will be provided. All documents and files for this assignment can be
found on the website of the lab listed below. For information about cache coherencies and memory,
see Appendix A and B.
The framework can be downloaded from:

https://staff.fnwi.uva.nl/s.polstra/psa2017/

This framework contains all documentation, the helper library with supporting functions for managing
trace files and statistics, the trace files, and a Makefile to automatically compile your assignments.
Using the Makefile, the contents of each directory under src/ is compiled automatically as a separate
target. It already includes directories and the code of the Tutorial, as well as a piece of example code
for Assignment 1.

Trace files are loaded through the functions provided by the helper library (psa.h and psa.cpp),
which is in the provided framework or can be downloaded separately from the resources mentioned
above. Detailed documentation for these functions and classes is provided in Appendix D, but the
example code for Assignment 1 also contains all these functions and should make it self-explanatory.

Note that, although later on simulations with up to eight processors with caches are required to
be built, it is easier if you start with a single CPU organization. Then, extend it to support multiple
CPUs, but make sure that the number of CPUs and caches in your simulation is not statically defined
in your code, but uses the number of CPUs read from the trace file.

When you are debugging, please print important events on the console or in a log file, in order
to evaluate the correctness of each action in your cache system. Part of the evaluation of your work
is also based on this log information. If you want to get fancy look into using the logging functions
provided by SystemC such as SC REPORT INFO().

Submission & Assessment

For assessment you must:

1. Demonstrate your solutions and code to one of the lab assistants during one of the lab sessions
before each deadline.

2. Submit your source code for each sub-assignment (packed in tar/gz format) incrementally on
blackboard before each deadline.

3. Write a report with your results, explanation of the results and a comparison between different
cache coherency protocols.

1

https://staff.fnwi.uva.nl/s.polstra/psa2017/

Submission Requirements:

1. Your source code should compile cleanly and run on a recent Linux distribution with the command
make without any modifications to the submitted code, either using the provided Makefile or your
own, which has to be included.

2. The first command line argument your program accepts is the name of the trace file. This
happens automatically when the init tracefile function is used.

3. Hit/Miss rate statistics should be gathered with the provided functions, and should be printed
with the stats print function after the simulation ends.

4. Your simulations should always terminate and exit without any errors.

5. For each deadline, write a report (separate or incremental) in which you describe the problem,
your solution to the problem, discuss your findings and results, and analyse why you observe
these results.

6. Assignment 2: Supporting a different number of CPUs in your simulation should not require
recompilation.

7. A report should be submitted in pdf format only.

Additional Information: Even though attending the lab sessions is not compulsory, we would suggest
you to come in regularly. This is because the lab assistants will have the most time for answering your
questions during the sessions. If you want to work from home or your own machine, test if your code
is working properly on the Linux lab machines before you submit it.
Questions: You can ask questions during the lab sessions. If you have attended the lab sessions and
have additional questions you can ask them via email (S.Polstra@uva.nl and/or J.Xiao@uva.nl) or
drop by at Sciencepark room C3.101 or C3.159. If there are general questions or if the assignment is
unclear and your fellow students can also benefit from the answer, please post to the psa2017 mailing
list psa2017@list.uva.nl. You should register for this list at https://list.uva.nl/mailman/

listinfo/psa2017.

Trace files

In order to drive the simulation, there are 3 kinds of trace files available to you: random, debug and
FFT. All versions exist for 1, 2, 4 and 8 processors. The random trace files (rnd pX.trf) have the
processors read or write memory randomly in a window in memory that is moving. The debug trace
files (dbg pX.trf) are a short version of the random trace files, suited for debugging your simulation.
The FFT trace files (fft 16 pX.trf) are the result of the execution of a FFT on a 64K array and can
be used, along with the random trace files, to generate results for your reports. All reads and writes
are byte-addressed, word-aligned accesses.

Assignment 0: Getting started with SystemC

Read and follow the SystemC tutorial. Complete this before the second lab session. There is no
submission required for this sub-assignment.

2

S.Polstra@uva.nl
J.Xiao@uva.nl
psa2017@list.uva.nl
https://list.uva.nl/mailman/listinfo/psa2017
https://list.uva.nl/mailman/listinfo/psa2017

Assignment 1: Implement a single cache

In this assignment you must build a single 32kB 8-way set-associative L1 D-cache with a 32-Byte line
size1. The simulator must be able to be driven with the single processor trace files. The addresses in
the trace files are 32bits. Assume a Memory latency of 100 cycles, and single cycle cache latency. Use
a least-recently-used, write-back replacement strategy. See the URL in the footnote and Figure 1 for
more information.

Figure 1: Cache Mapping.

Hints:

1. You can use the example code provided for Assignment 1, which is based on the tutorial, as
a guide and modify the Memory module so that instead of RAM, it simulates a set-associative
data cache.

2. As we only simulate accesses to memory, it is not necessary to simulate any actual contents
inside the cache. Furthermore, you do not need to simulate the actual communications with the
memory, just the delay.

Submission due date: to be announced

1http://en.wikipedia.org/wiki/CPU_cache#Associativity

3

http://en.wikipedia.org/wiki/CPU_cache#Associativity

Assignment 2: Implement a multiprocessor coherent cache system

Extending the code from Assignment 1, you are to simulate a multiprocessing system with a shared
memory architecture. Your simulation should be able to support multiple processors, all working in
parallel. Each of the processors is associated with a local cache, and all cache modules are connected
to a single bus. A main memory is also connected to the bus, where all the correct data is supposed
to be stored, although, again, the memory and its contents does not have to be simulated. Assume a
pipelined memory which can handle a request from each processor in parallel with the same latency. In
order to make cache data coherent within the system, implement a bus snooping protocol. This means
that each cache controller connected to the bus receives every memory request on the bus made by
other caches, and makes the proper modification on its local cache line state. In this assignment, you
should implement the simplest VALID-INVALID protocol. The cache line state transition diagram for
this protocol is shown in Figure 2. Using your simulator you must perform experiments with different
numbers of processors (1 to 8 processors) using the different trace files for each case.

Reset

Invalid Valid

Read Miss
Write Miss

Probe Write Hit

Read Hit
Write Hit

Probe Read Hit

Figure 2: VALID INVALID Cache Line State Transition Diagram.

For each experiment you should record (but not limited to) the following data for your report:

1. Cache hit and miss rates (use the framework functions)

2. Main memory access rates

3. Average time for bus acquisition (as a measure for bus contention)

4. Total simulated execution time

You should also investigate what happens to cache hit and miss rates when snooping is deactivated.

Hints:

1. Some help on implementing a Bus is provided in Appendix C. You could use or modify these
implementations for your simulation.

2. The bus can only serve one request at any certain time. Thus if one cache occupies the bus, the
other cache has to wait for the current operation to complete before it can utilize the bus. The
cache does not occupy the bus when it waits for the memory to respond. The responses from
memory should have priority on the bus.

4

3. The cache must not only be able to serve the request from memory, it also has to observe all the
transactions happening on the shared bus, and make proper adjustment on its own corresponding
cache line states as described in Figure 2.

4. Keep in mind you also need to implement cache to cache transfers for when a CPU reads from or
writes to a location for which another cache holds data which was not written back to memory
yet.

Submission due date: to be announced

5

Assignment 3: Bonus assignment

In this bonus assignment, you are to simulate a version of the MOESI protocol. Create a copy of your
Assignment 2 directory and modify this to simulate the MOESI protocol (i.e: alse keep your original
Assignment 2 data!). This protocol is implemented in AMD64 caches. The cache line states of the
MOESI protocol are:

• Invalid: A cache line in the invalid state does not hold a valid copy of the data. Valid copies of
the data can be either in main memory or another processor cache.

• Exclusive: A cache line in the exclusive state holds the most recent, correct copy of the data.
The copy in main memory is also the most recent, correct copy of the data. No other processor
holds a copy of the data.

• Shared: A cache line in the shared state holds the most recent, correct copy of the data. Other
processors in the system may hold copies of the data in the shared state, as well. If no other
processor holds it in the owned state, then the copy in main memory is also the most recent.

• Modified: A cache line in the modified state holds the most recent, correct copy of the data.
The copy in main memory is stale (incorrect), and no other processor holds a copy.

• Owned: A cache line in the owned state holds the most recent, correct copy of the data. The
owned state is similar to the shared state in that other processors can hold a copy of the most
recent, correct data. Unlike the shared state, however, the copy in main memory can be stale
(incorrect). Only one processor can hold the data in the owned state, all other processors must
hold the data in the shared state.

The state transition diagram is depicted in Figure 3. Cache lines are initialized to the Invalid state,
where they hold no data. A cache read-miss or write-miss causes the cache to retrieve the most
recent copy of the data from either another cache or main memory. On a read-miss, if another cache
has the data, the cache gets a copy (a probe-read) and the line becomes Shared. Otherwise, the
cache gets the data from memory and the line becomes Exclusive. On a write-miss, the cache gets
the data from another cache (a probe-write) or from main memory and the line becomes Modified.
On a read-hit, the cache line remains in its current state. On a write-hit, the cache line becomes
Modified and a probe-write is sent out to the other caches, causing their copies to become Invalid.

For more information about the MOESI protocol, see section 7.3 in the AMD64 Architecture Pro-
grammers Manual (http://developer.amd.com/wordpress/media/2012/10/24593_APM_v21.pdf)

You perform the same experiments with different numbers of processors as in Assignment 2 and record
the same data for your report.

Hints:

1. The bus implementation might have to be modified to provide additional information. For
instance, when a cache is suffering a read miss, and fetching the data from main memory. It has
to check whether the data is incorrect in the main memory (when a cache has a piece of data
stored at Modified or Owned state, the value is incorrect in the main memory).

2. In case the cache is running out of space, any data in the Modified and Owned state has to be
saved to main memory first, before it can be replaced.

Submission due date: to be announced

6

http://developer.amd.com/wordpress/media/2012/10/24593_APM_v21.pdf

Reset

Invalid Exclusive

Shared

Owned

Modified

Read Miss, Exclusive

Probe Write Hit

Read Hit

R
ea

d
M

is
s,

S
h

ar
ed

P
ro

b
e

W
ri

te
H

it

Read Hit
Probe Read Hit

Probe
W

rite
Hit

W
rite M

iss (W
B

memory)

Read Hit
Write Hit

Pro
be

Rea
d

Hit P
robe

W
rite

H
it

Read Hit
Probe Read Hit

Write Hit

Probe Read Hit

W
rite

H
it

Write Hit

Figure 3: MOESI Cache Line State Transition Diagram.

7

A Memory Architectures in Multiprocessing Systems

The most straightforward way to accelerate the execution of a sequential program is to extract multiple
tasks from the program and run them simultaneously on multiple processors, which is called parallel
computing. From the memory perspective, three major groups of memory architectures associated with
multiprocessing systems can be identified: Shared Memory Architecture, Distributed Memory Archi-
tecture, and Distributed Shared Memory Architecture.

Generally a Shared Memory Architecture (Figure 4) refers to a large bulk of memory that can be
accessed by multiple different processors in a multiprocessing computer system. In this category all the
processors share a unique memory addressing space. All the memory accesses are directed to the large
bulk of shared memory.

Figure 4: Shared Memory Architecture

In a Distributed Memory Architecture (Figure 5), each processor has its own memory. The com-
munication between different processors is carried out by massage passing across the interconnection
network.

The third group of memory organization is a Distributed Shared Memory Architecture (Figure 6).
In this group of multiprocessing system, all the processors still hold a common addressing space. How-
ever, the physical memory is distributed across the network, and each processor is associated with a
bulk of local memory, which is associated with a part of the memory addressing space. Each processor
could access all the memory modules across the network, meanwhile, the access to the local memory
is much faster than the access to the remote memory module.

8

Figure 5: Distributed Memory Architecture

Figure 6: Distributed Shared Memory Architecture

9

B Cache Coherence

In this assignment we focus on the Shared Memory Architecture. As in an uniprocessor system, caches
can help reducing the memory access delay. However, now each processor can read and write directly to
local cache, as shown in Figure 7. Thus, when one processor writes to a memory location and its cache
just stores it locally, a read of the same memory location on another processor can read a different
value from its cache. Subsequently, this could lead to the wrong execution outcome of the program.
To avoid this problem, cache coherence among different cache modules has to be implemented within
the cache system.

Two major coherence protocols are the snooping protocol and directory-based protocol. In the
snooping technique each cache monitors every request on the bus and changes the state in its cache
lines accordingly. This protocol requires every transaction in the network to be visible to all caches.
Thus it is most commonly used with a bus implementation.

The other coherence protocol is a directory-based protocol. In this protocol, directories are utilized
to track data and memory requests in the memory system. The directories can be implemented dis-
tributed as well as centralized. In comparison with the snooping protocol, the directory based protocol
is easier to use in network topologies other than a bus topology. Those other network implementa-
tions are more scalable than normal bus. This protocol is generally used in distributed shared memory
architectures.

Figure 7: Cache associated with different processors in Shared Memory system

From the cache line state transition perspective, most of the cache coherence protocol consists of
a portion of five states, which are Modifed, Owned, Exclusive, Shared, and Invalid (MOESI).

• Invalid state means that the current cache line does not hold valid data.

• Shared state represents the data is shared across the network and the value is the same as the

10

value in the main memory.

• Exclusive state means that the data is the only copy in the cache system, the value is the same
as the value in the main memory.

• Owned state means that the cache line holds the correct data and it could be shared, however
at the same time, the value could be different from the value in the main memory. Only one
cache can hold the data in Owned state.

• Modified state means that the cache line holds the most recent and correct data, which is
different from the value in main memory.

One of the most commonly used cache coherence protocols are different versions of the MESI
protocol. In this version, the arcs in the transition diagrams are slightly different.

11

C Implementing a Bus in SystemC

This Appendix provides you with some sample code that may help you to implement your bus.

1. A bus could simply be represented by a group of signals. For instance, the address bus could
be represented with sc signal rv<32> BusAddress; The corresponding port in cache module
can be constructed as sc inout rv<32> Port BusAddress;

By connecting all the Port BusAddress in a cache with BusAddress signal, all the cache
modules could read from or write to the address bus. It is important to notice that the main
memory delay has to be handled at some places, probably in cache.

2. A bus can also be packed into a bus class Bus which is implementing a bus interface Bus if.

class Bus_if : public virtual sc_interface

{
public :

virtual bool read (int addr) = 0 ;
virtual bool write (int addr , int data) = 0 ;

} ;

class Bus : public Bus_if , public sc_module

{
public :

// p o r t s
sc_in<bool> Port_CLK ;
sc_signal_rv<32> Port_BusAddr ;

public :
SC_CTOR (Bus)
{

// Handle Port CLK to s imu l a t e d e l a y
// I n i t i a l i z e some bus p r o p e r t i e s

}

virtual bool read (int addr)
{

// Bus might be i n c on t e n t i o n
Port_BusAddr . write (addr) ;
return true ;

} ;

virtual bool write (int addr , int data)
{

// Handle c on t e n t i o n i f any
Port_BusAddr . write (addr) ;

// Data does not have to be hand led i n the s imu l a t i o n
return true ;

}
}

Listing 1: A simple bus interface and class

Within the cache, a bus port with bus interface can be represented with sc port<Bus if>

Port Bus;. The statement Port Bus->read(address); in a cache can put a read request on
bus.

The code in Listing 1 is not complete, so please add more code to simulate your bus. You could
add as many signals and ports as needed. Please notice that in the Bonus assignment, the bus
might also need to transfer some information about cache line state information, because if cache
A wants to read data which is at Modified state in cache B, cache B has the obligation to write
the data back to main memory before cache A can read from it.

12

D Helper Functions

D.1 Trace files

The TraceFile class is a data type that represents a file that contains traces of memory requests
from a programs execution. Instances of this class can be used to read those traces from trace files
in order to drive a memory simulation. A trace file might contain traces from multiple processors if
it has been created from a multi-processor system. The file psa.h contains the declaration of the
TraceFile class while the file psa.cpp contains its implementation. These two files must be part
of programs that use the class. We also provide a structure to collect statistics from the simulation.
Below is brief explanation of using the trace file and how to store the statistics to be displayed at the
end of simulation.

D.2 Opening a trace file

A function named init tracefile is provided which takes the commandline arguments and creates
a TraceFile object from the trace file specified in the first argument. The signature of this function
is given as:

void init tracefile(int* argc, char** argv[])

The created TraceFile object can then be accessed by the global pointer tracefile ptr. This
function also sets the global variable num cpus to indicate how many CPU traces are present in the
opened trace file. Furthermore, as argc and argv are passed by reference, the function removes the
first argument so that the rest of the arguments can be parsed afterwards.

Alternatively, the tracefile can be opened manually by creating a TraceFile object. The TraceFile
class has only one public constructor with the following signature:

TraceFile(const char* filename);

The parameter filename is a C-style string with the name of the file. On object creation (either on
stack or dynamically using new) the file will be opened. If an error occurred when opening the file, a
runtime error is thrown.

On object destruction the file will be closed, if it wasnt already. You can explicitly close a file and
free up resources before the object is destructed by using the close member function.

D.3 Reading from a trace file

Reading a trace for a processor from the file can be achieved using the next member function (after
the file has been opened). The signature of this function is the following:

bool next(uint32 t pid, Entry& e);

The parameter pid is the id (index) of the processor for which the next trace-entry will be read and the
e parameter is a reference to a structure of type TraceFile::Entry which will receive the entry read
from the file. The function will return false if an error occurred. If there is no event for the current time
step, the function will return true, and the entrys type will be ENTRY TYPE NOP. The Entry data type
is a struct declared in the public interface of the class. Thus, when variables of this data type are
declared, the name of the class must be prefixed with the name of the class (e.g. TraceFile::Entry).

If the file contains traces for more than one processor, then the reading of the traces does not need
to be synchronized between processors. This means that each processor can call the next function
individually. If a processor calls next when it already reached the end of its trace, it will keep reading
ENTRY TYPE NOP.

13

// Open and s e t up the t r a c e f i l e from cmd l ine arguments
init_tracefile(&argc , &argv) ;

TraceFile : : Entry tr_data ;
Memory : : Function f ;

// Loop u n t i l end o f t r a c e f i l e
while (! tracefile_ptr−>eof ())
{

// Get the next a c t i o n f o r the p r o c e s s o r i n the t r a c e
if (! tracefile_ptr−>next (pid , tr_data))
{

cerr << "Error reading trace for CPU" << endl ;
break ;

}

switch (tr_data . type)
{

case TraceFile : : ENTRY_TYPE_READ :
cout << "P" << pid << ": Read from " << tr_data . addr << endl ;
break ;

case TraceFile : : ENTRY_TYPE_WRITE :
cout << "P" << pid << ": Write to " << tr_data . addr << endl ;
break ;

case TraceFile : : ENTRY_TYPE_NOP :
break ;

default :
cerr << "Error got invalid data from Trace" << endl ;
exit (0) ;

}
}

Listing 2: An example of how the functions to handle trace files can be used

The code in Listing 2 will read the trace file provided at command line using the function init tracefile(&argc,

&argv) and will write all its trace entries to the standard output stream (cout). The TraceFile class
also contains a number of member functions that return information about the file or its state and are
shown in Table 1. How the functions in Table 1 can be used is also demonstrated in the example code
in Listing 2.

Function Signature Operation

bool eof() const; Returns true when all processors reached the end of
its trace.

uint32 t get proc count() const; Returns the number of processors for which the file
contains traces for.

Table 1: Table 1: Member Functions

D.4 Statistics

The psa.cpp file also comes with functions to gather and print statistics required for the simulator.
These functions for the statistics are shown in Table 2. To explain the use of functions in Table 2,
consider the code given in Listing 3. The cache hit or miss is generated randomly here.

case TraceFile : : ENTRY_TYPE_READ :
f = Memory : : FUNC_READ ;
if (rand () % 2){

stats_readhit (pid) ;
}
else{

stats_readmiss (pid) ;

14

}
break ;

Listing 3: Example code for reading tracefiles

Function Signature Operation

void stats init(); Initialize internal data for the number of
processors required in the trace file. Re-
quires num cpus to be set.

void stats cleanup(); Free the internal statistic data.
void stats print(); Prints the statistics for each processor at

the end of the simulation.
void stats writehit(uint32 t cpuid); Increments the writehit for the specified

processor.
void stats writemiss(uint32 t cpuid); Increments the writemiss for the specified

processor.
void stats readhit(uint32 t cpuid); Increments the readhit for the specified pro-

cessor.
void stats readmiss(uint32 t cpuid); Increments the readmiss for the specified

processor.

Table 2: Functions to calculate statistics

15

	Memory Architectures in Multiprocessing Systems
	Cache Coherence
	Implementing a Bus in SystemC
	Helper Functions
	Trace files
	Opening a trace file
	Reading from a trace file
	Statistics

